
Appendix: Generic and Privacy-free Synthetic Data
Generation for Pretraining GANs

Anonymous Author(s)
Affiliation
Address
email

1 Additional Experiments and Analysis1

Conditional generation task using CIFAR. We conduct conditional generation via transfer learning2

on CIFAR-10 and 100 as summarized in Table 1. Figure 1 shows the qualitative evaluation result on3

CIFAR-10 with 10% of samples; our Primitives-PS produces the general shape and its structural4

components better than the baseline and DiffAug. Compared to BigGAN trained from scratch,5

BigGAN trained from scratch with DiffAug significantly improves the FID score, and the gain is6

pronounced as the number of training samples decreases. However, we observe that DiffAug suffers7

from augmentation leakage [1] when the samples are scarce (i.e., the generated samples contain8

the cutout). Our pretrained model with Primitives-PS shows remarkable performances under the9

data-hungry scenario, better than DiffAug.10

However, when the samples are sufficient (100%), pretraining does not always provide gains over11

DiffAug. This tendency appears in various downstream tasks. Newell et. al. [2] reported that the12

self-supervised pretraining for semi-supervised classification is not advantageous when the amount of13

data-label pairs are sufficient. TransferGAN [3] showed that the gain via transfer learning decreases14

when the amount of samples is sufficient. In the same vein, the advantage of our pretraining with15

Primitives-PS decreases as the number of samples increases.16

For the extreme low-shot scenario, we also evaluated the model trained with 1% of the dataset. Only17

for this evaluation, we compare three models; 1) the model naïvly trained from scratch, 2) the model18

trained with DiffAug only (DiffAug), and 3) our model pretrained with Primitives-PS and then19

finetuned without DiffAug. The FID score of the baseline, DiffAug, and ours are 112.13, 101.91,20

and 78.48, respectively. Although DiffAug improved FID, we observe that DiffAug suffers from the21

augmentation leakage issue. Therefore, the improvement in FID and its generation results are not22

meaningful. In contrast, our pretrained model can significantly improve the generation performance23

without any issue.24

Diverse filters matter for transferring GANs. From the superior performances of our pretrained25

model, we conjecture that our achievement was possible by the unbiased nature of our dataset; the26

pretrained model with FFHQ (FreezeD) has an inductive bias as the face dataset. A previous study27

analyzing the transferability of CNN [4] also pointed out that the performance of the target dataset28

degrades when the filters are highly specialized to the source dataset. To analyze the transferability29

empirically, we measure the similarity between the filters of each layer of the pretrained model. We30

regard that highly diverse (less similar to each other) filters can indicate that the model is less biased31

towards a particular domain. That means that the highly transferable model tends to have low filter32

similarity on average. Specifically, given a weight matrix of each layer, its shape is [O, I,H,W ],33

where O filters have I ×H ×W tensors. Then, we measure the cosine similarity among all possible34

permutations of O filters and report the average similarity of all layers in Table 3.35

In summary, Primitives-PS shows the more diverse filter set in 21 out of 26 layers than the FFHQ36

pretrained model. According to [4], the higher layer (close to the output) tends to specialize in the37

trained dataset. The same observation holds in our discriminator. The similarity in the last layer of38
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CIFAR-10 CIFAR-100
10% 20% 100% 10% 20% 100%

BigGAN 44.14 20.80 9.45 66.21 34.78 13.45
+ DiffAug 29.78* 14.04 8.55 41.70* 21.14 11.51
+ Pretrained (PS) 21.33 12.79 8.79 32.57 20.58 11.29

Table 1: The FID of BigGAN, with DiffAug, and with
DiffAug initialized by Primitives-PS (PS) pretrained
model on CIFAR. ’*’ indicates the best FID before
augmentation leakage [1].

Policy Obama Grumpy cat Bridge Panda
Fix (1/10) 48.30 29.74 63.00 17.69
Fix (1/5) 46.41 29.22 64.02 14.97
Fix (1/2) 48.05 29.37 64.65 15.14
PinkNoise + PS 49.13 29.87 66.00 15.12
Rand 44.85 29.84 60.45 14.67
Decay 41.62 26.01 54.02 12.23
# of particles Obama Grumpy cat Bridge Panda
0 49.13 29.87 66.00 15.12
10 44.10 28.00 63.26 13.35
50 42.49 28.40 59.17 11.79
100 41.62 26.01 54.02 12.23
500 42.45 27.92 52.27 12.12

Table 2: The average consine similarity between the
filters in the same layer. The lower value indicates the
more diverse filters.

(a) From scratch (b) + DiffAug (c) + Primitives-PS pretraining

Figure 1: Qualitative evaluation on CIFAR-10 dataset with 10% of samples. Each row contains
samples in the same class.

the FFHQ pretrained model is approximately four times higher than Primitives-PS. This explains39

that the FFHQ pretrained model specialized in human faces, thus transferring well to Obama but not40

to others.41

Ablation study. When developing Primitives-PS, we introduce two hyperparameters; 1) the total42

number of shapes and 2) the policy to determine the size of each component. For determining the43

size, we consider three policies; Fix, Rand and Decay. Fix indicates that all particles have the same44

size. To examine the effect of various scale, we set this size as H · [1/10, 1/5, 1/2], where H is the45

image resolution. Rand randomly samples the size from the uniform distribution. Both policies46

can induce the occlusion of the previously injected shapes by the later shape. Decay can bypass the47

occlusion issue effectively. Decay arbitrarily samples the size from the uniform distribution, where48

the maximum size is limited to (H · 1/5 · (N − n)/N), and N and n are the total number of shapes and49

the number of previously injected particles. In this way, we can ensure that the shapes inserted in the50

early stage are still visible in the final data. The upper-side of Table 2 summarizes the FID score for51

each policy on four datasets. The differences in FID among Fix policies are trivial in that their ratios52

are not highly correlated with their ranks. Also, we observe that the shapes at the final stage overwrite53

the previous shapes. Then, the overall appearance with Fix are similar to PinkNoise with a salient54

object. We investigate the synthesizer that combines PinkNoise with PS by injecting a saliency and55

then applying PinkNoise on it. Interestingly, we observe that it shows the similar FID scores to56

Fix. For Rand, it improves the FID score on Obama and bridge, however, the overall performance is57

much worse than Decay. Therefore, we choose a Decay policy as default for choosing the size.58

Besides, the total number of shapes is important because it affects the transferability and the time59

complexity of the synthesizer. The lower-side of Table 2 demonstrates the performance trends upon60

the total number of shapes. A zero particle case implies that only one background and one salient61

object, thus equivalent to PinkNoise + PS. As the number of shapes (N ) grows upon roughly 100,62

the performance tends to improve. However, over N = 100, we do not observe the consistent gain.63

From the ablation study, we decide N = 100 in each image to enjoy the reasonable performance gain64

and to reduce the time complexity.65
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Discriminator Generator
Primitives-PS FFHQ Primitives-PS FFHQ

conv0 0.00660 0.01245 0.00315 0.00685
conv1 0.02104 0.00932 0.00273 0.00843
conv2 0.01012 0.00779 0.00291 0.00956
conv3 0.00839 0.01216 0.00348 0.01080
conv4 0.00607 0.00713 0.00539 0.01059
conv5 0.00596 0.00668 0.00329 0.01406
conv6 0.00507 0.00563 0.00363 0.01199
conv7 0.00632 0.00714 0.00433 0.01465
conv8 0.00380 0.00365 0.00652 0.01317
conv9 0.00521 0.00703 0.00933 0.01626

conv10 0.00503 0.00420 0.01133 0.01778
conv11 0.00462 0.00760 0.01981 0.01977
conv12 0.01844 0.08438 0.03176 0.03250
Mean 0.00820 0.01348 0.00828 0.01434

Table 3: Ablation study on the policy to determine the
size of each particle (upper) and the number of particles
(lower).

Figure 2: The outputs of the model pretrained with
Primitives-PS. The generated outputs are similar to
the synthetic samples.

2 Pretraining Results and Details66

We provide the outputs of the generator pretrained with Primitives-PS. For pretraining, we train67

the model during 800K images with batch size = 16, therefore, the total number of iterations is 50K.68

For finetuing all the models, we train the model during 400K images. The generated (fake) synthetic69

images are similar to the real synthetic samples as shown in Figure 1 of the main text.70
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Figure 3: The additional results of Figure 6 in the main text. FID per training iterations. The star
marker (⋆) indicates the point where the model reaches 95% of the best FID score of the from
scratch model with DiffAug (baseline). The legend is the same for all graphs.

3 Convergence Speed of Transfer Learning Methods71

Figure 3 shows the evolution of the FID scores during the training of the transfer learning methods.72

The model pretrained with our synthetic dataset exhibits comparable or faster convergence than the73

competitors that are pretrained on FFHQ. Herein, we observe the convergence speed in terms of the74

number of iterations to reach 95% of the best FID score of the baseline (from scratch model with75

DiffAug).76
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(a) PinkNoise

(b) Primitives

Figure 4: Low-shot image generation results of the models transferred from PinkNoise and
Primitives.

4 Qualitative Comparison Among Data Synthesizers77

In addition to the quantitative comparison of our data synthesizers, we also qualitatively compare our78

four variants of the data synthesizer used for quantitative evaluation. From the first to the last row,79

Bridge of sighs, Obama, Grumpy cat, and Panda. PinkNoise generates the images with unstructured80

samples (e.g. Obama and Grumpy cat) and the outputs of Primitives on Panda have lower fidelity81

(e.g. the last three samples). Compared to PinkNoise and Primitives, Primitives-S and82

Primitives-PS provide plausible samples. Between the last two synthetic datasets, Primitives-S83

sometimes drops the important factor, for example, the eyes of the cat (6-th column). While84

Primitives-PS generates more diverse and plausible samples than the other synthetic datasets.85
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(a) Primitives-S

(b) Primitives-PS

Figure 5: Low-shot image generation results of the models transferred from Primitives-S and
Primitives-PS.
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5 Qualitative Comparisons With Competing Transfer Learning Methods86

In addition to the quantitative comparison, we also provide the qualitative comparisons on eight87

datasets that are used for quantitative evaluation in the main text. From the first to the last row,88

Buildings, Bridge of sighs, Obama, Medici fountain, Grumpy cat, Temple of heaven, Panda, and89

Wuzhen. In terms of fidelity of the generated images, our Primitives-PS outperforms the competi-90

tors. Especially, Grumpy cat images generated by the competitors often do not contain eyes or have91

only part of the face. Because of the size, we show one figure per page.92
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Figure 6: The additional generated samples of Figure 5 in the main text. The images are generated
with the model trained from scratch.
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Figure 7: The additional generated samples of Figure 5 in the main text. The images are generated
with the model pretrained with FFHQ and transferred by using TransferGAN.
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Figure 8: The additional generated samples of Figure 5 in the main text. The images are generated
with the model pretrained with FFHQ and transferred by using FreezeD.
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Figure 9: The additional generated samples of Figure 5 in the main text. The images are generated
with the model pretrained with our Primitives-PS.
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