A APPENDIX

A.1 TRAINING-PIPELINE OF OUR BALANCED METHOD
A.1.1 BALANCED ADAPTIVE RE-COMPUTATION STRATEGY

Here, we provide a detailed introduction to the Balanced Adaptive Re-Computation Strategy. In this
context, (), and Q; represent the inputs for Vision Transformer (VIT) and Large Language Model
(LLM) respectively. M, denotes the remaining GPU memory at the current stage, while M; and
M, indicate the GPU memory saved by each transformer layer of the LLM and VIT when enabling
re-computation.

Step-1: Given the inputs), and ()¢, we enable the re-computation strategy across all transformer
modules of the model. At each forward pass, we clear the cache and record each stage’s remaining
memory usage M,..

Step-2: We manually disable re-computation for some layers based on the remaining GPU memory.
Subsequently, we record the GPU memory usage M. for each stage.

Step-3: Based on the memory differences AM,. observed between Step-1 and Step-2, along with
the re-computation strategy implemented at each stage, we estimate the memory savings M; and
M, for each transformer layer of the VIT and LLM, respectively.

Step-4: Based on the estimated GPU memory savings M; and M, measured in Step-3, as well as
the remaining memory M,. from Step-1, We first estimate the theoretically optimal re-computation
strategy for each stage and conduct the training test. If the test runs successfully, we adopt this
strategy. If it fails, we incrementally increase the number of re-computation layers by the remaining
GPU memory for each stage.

A.1.2 TRAINING-PIPELINE

Images

e ViT ViT LLM LLM

i‘ﬂ ViT ViT LLM LLM

& — ViT —_ LLM —_— LLM —_— LLM

Text1 : : : :

Text2 ViT LLM LLM LLM
Balanced Batch Balanced Partition + Balanced Adaptive Re-Computation

Figure 1: The pipeline consists of four stages, labeled Stage-1 to Stage-4, each representing a
different stage of pipeline parallelism. Within this structure, ”ViT” stands for the Vision Trans-
former layer, while "LLM?” refers to the Transformer layer used for large language models (LLM).
Regarding computational execution, the darker-colored sections signify forward passes with re-
computation. In contrast, the lighter-colored sections denote a standard forward pass without re-
computation.

A.2 RESULTS ON DIFFERENT MODEL SI1ZE

We test various combinations of vision and language models. As shown in Table[T] our approach
significantly reduces the required GPU days for model training, achieving nearly a 2x speedup across
models of various sizes.

A.3 RESULTS ON DIFFERENT DYNAMIC HIGH-RESOLUTION SETTING

To validate the effectiveness of our method, we test it under various high-resolution settings. Our
approach consistently demonstrates low Dist Ratio and strong acceleration across all configurations
as shown in Table 2] significantly improving training speed under different settings.

Table 1: Results for different model sizes are shown, with TP, PP, and DP representing various dis-
tributed training strategies: Tensor Parallel (TP), Pipeline Parallel (PP), and Data Parallel (DP), re-
spectively. The ”Stages-Layer-Num (V+L)” column indicates the number of Vision Transformer (V)
and Language Transformer (L) layers assigned to each stage. Additionally, the "Re-computation”
column denotes the number of re-computations enabled in each stage.

Vision-Model |Language-Model|TP PP DP|Stages-Layer-Num (V+L)| Re-computation| GPU Days(speed up)

InternVL-6B | Llama3-8B | (1,4.8) [16,17,20,24] [8,7,10,24]| 27.7 — 13.8(2.0x)
InternVL-6B | InternLM2-20B | (2,4.4) [22,23,24,24] [0,0,0,0]| 61.8 — 21.3(2.9x)
InternVL-6B Yi-34B (4,4.2) [28,29,24,24] [3,2,0,0]| 75.4 — 30.5(2.5x)

InternVL-6B Llama3-70B (4,8,2) |[22,23,13,14,14,14,13,12]|[11,12,8,5,3,2,0,0]| 129 — 52.5(2.4x)
InternVL-6B | Qwenl.5-110B | (8,8,1) |[21,22,13,13,14,14,14,14]| [6,9,1,3,0,0,0,0]| 243 — 75.2(3.2x)

EVA-CLIP-1B | InternLM2-20B | (2,4.4) [43,16,15,14] [0,0,0,0]| 23.6 — 12.2(1.9x)
EVA-CLIP-4B | InternLM2-20B | (2,4.4) [39,22,21,20] [10,8,1,3]] 38.1 — 17.0(2.2x)
EVA-CLIP-8B | InternLM2-20B | (2,4.4) [17,18,23,22] [5,5.8,10] 41.8 — 20.3(2.0x)
EVA-CLIP-18B| InternLM2-20B | (4,4.4) [18,19,25,34] [2,2,0,0] 63.6 — 33.8(1.9x)

Table 2: Results on different dynamic high-resolution settings. “Max-Patch-Num” indicates the
maximum number of patches into which an image can be divided. This parameter controls the
granularity of image segmentation, impacting both model performance and computational efficiency.
Adjusting the Max-Patch-Num allows for more flexible handling of high-resolution images in the
model, optimizing resource usage while maintaining accuracy.

Model | Max-Patch-Num | AVE-BS | Max-Seq-Len | DistRatio | GPU Days (speed-up)
| VIT LLM | VIT LLM |

1 76 | 9K 4K | 006 005 | 286 — 137 (21x)

4 46 | 9K 4K | 002 014 | 61.8—21.3(29%)
InternVL-6B-20B 6 27 | 14K 5K 0019 0136 | 147 =72 (2.05%)

12 19 | 14K 5K | 003 0.12| 209-+105(2.0x)

A.4 RESULTS ON PRETRAIN SETTING

We evaluate our method in other tasks like Pre-training task. In Pre-training, we train both the Vision
Transformer (ViT) and MLP components for models ranging from 6B to 20B. However, for larger
models, such as 6B-34B and 6B-70B, we focus solely on training the MLP component. Across all
configurations, we observe consistent performance improvements shown in Table particularly
with the largest model, where GPU days are significantly reduced from 16.8 to 9.6, demonstrating
enhanced training efficiency.

Table 3: Results on Pretrain Setting

Model | Dataset | Trainable Module | AvE-Bs | PiStRatio | qpiypy, o0
| | | | VIT LM |
InternVL-6B-20B | LCS-558K | ViT+MLP 5.8 0 003 | 9.9—6.0(1.65%)
InternVL-6B-34B | LCS-558K MLP 5.1 0 0031 | 8.3 4.9 (1.69%)
InternVL-6B-70B | LCS-558K MLP 5.2 0 0029 | 16.8 — 9.6 (1.75)

A.5 RESULTS ON DIFFERENT RESOLUTIONS

We further test our method with different image resolution inputs. As shown in Table[d] our method
consistently delivers low Dist Ratio and highly satisfactory acceleration results across varying image
resolutions, demonstrating its effectiveness in improving training efficiency.

Table 4: Results on Different Resolutions
Dist Ratio |

Resolution ‘ AVE-BS ‘

GPU Days
\ | VIT LLM |
224 4.8 0.009 0.068 | 32.0 — 20 (1.6x)
336 33 0.005 0.07 | 62.0 — 33 (1.88x)
448 4.6 0.02 0.14 | 61.8—21.3(2.9x)

A.6 RESULTS ON OPEN-SOURCE LLAVA-1.6

We also validate our method using another popular open-source model, LLava-1.6, with the Deep-
Speed backend, as shown in Table 5] For the DeepSpeed backend, we employ only our balanced
dynamic mini-batch strategy. In the case of the open-source LLava model, while its ViT component
is relatively small and the imbalance occurs primarily at the data level, we still achieved a notable
overall speedup. Although the speedup ratio is smaller compared to other models, our method de-
livered a 30% improvement in performance.

Table 5: Results on Open-source LLava-1.6

Model | AvE-Bs | DistRatio | qpiyp,0
Vit LLM |
Llava-1.6-7B | 454 | 0.008 0037 | 102 —7.7(1.3%)
Llava-1.6-13B | 454 | 0.008 0037 | 18— 13.3 (1.35x)
Llava-1.6-34B | 44 | 0.009 00041 | 42.7 — 31.3 (1.36x)

A.7 RESULTS ON QWEN2-VL PRE-PROCESSING STRATEGY

Qwen2-VL is a recent, highly regarded open-source project that provides strong support for dy-
namic image input. Consequently, we adopt the pre-processing strategy of Qwen2-VL to validate
our method. As shown in Table [6] our approach demonstrates a substantial acceleration effect (ap-
proximately 1.9x) when applied to the Qwen2-VL strategy, significantly reducing both the padding
ratio and dist ratio.

Table 6: Results on Qwen2-VL Pre-Processing strategy

Model | Dataset | AVE-BS | Pad-Ratio | PIRaO | Gpis pave (speed-up)
| | | | VIT LLM |
InternVL-6B-20B | InternVL-1.2M 4 0.31 0.408 0.393 40.2 (1x)
InternVL-6B-20B | InternVL-12M | 6.6 0 012 0.06 21.0 (1.9%)

A.8 LONG-CONTEXT RESULTS

Our method can also be applied to long-context training. To evaluate its effectiveness, we con-
structed a dataset named Long-2.5W consisting of multi-modal inputs with a maximum text length
of 32k tokens and up to 80 images. Handling both long and short texts together is often necessary in
long-context training. Thus, it’s essential to maintain balance not only at the data-parallel level but
also at the sequence-parallel level.

To address this, we propose a straightforward solution. For long text inputs, we evenly split the im-
ages across different sequence-parallel (SP) processes, and then gather them during LLM training.
For short multi-modal training samples, we apply our balanced group ISF algorithm, which ensures
that both sequence and data parallelism remain approximately balanced. Additionally, we designed
a grouping sampler to ensure that long and short multi-modal text samples remain relatively inde-
pendent at the data-parallel level. Figure [2]illustrates our complete training pipeline.

In this instance, we set sequence parallelism to 4. To maintain the original InternVL-1.2M input at
32k, we expand the training input batch size to 10. As shown in Table[7] our method achieves nearly
identical training speeds for both separate and mixed training. Compared to basic hybrid training,
our approach substantially reduces the dist ratio while significantly accelerating the training process.

DP-0 DP-1 Hybrid-Input
SP-0 SP-1 SP-0 SP-1 Dy-Bs ==
‘/Split InpN
VLM-1 VLM-2 VLM-1 VLM-2 VLM-1-1 VLM-1-2
SP
LLM-1-1 LLM-1-2 LLM-2-1 LLM-2-2
R R . . Dy-Bs > 1
: : - : P
VLM-1 VLM-2 VLM-3 VLM-4 VLM VI
All Batch In Each Forward Step are Balanced SP Input Generate

Figure 2: SP-0 and SP-1 denote different sequence parallel process numbers, while DP-0 and DP-1
represent different data parallel process numbers. VLM-1-1 and VLM-1-2 refer to the two resulting
inputs after splitting the same input, whereas VLM-1 and VLM-2 correspond to two distinct sets of
inputs.

Table 7: Results on Long-Context Training

| Dist Ratio | SP-Ratio

Dataset ‘ AVE-BS \Max-Sieq-Len\ Pad-Ratio ‘ GPU Days

\ \VIT LLM | | VIT LLM | \
InternVL-1.2M 8 40k 32k 0.417 10.27 0.24 0 36.2
InternVL-1.2M-Balanced 10.3 |20K 8K 0 0.03 0.07 0 18.7
Long-2.5W 1 80K 32K 0 0.03 0.02| 0.22 23.2
Long-2.5W-Balanced 1 80K 32K 0 0.03 0.02 0 19.6
InternVL-1.2M + Long-5W| 39 |80K 32K 0 0.03 0.08| 0.025 38.6

A.9 DIFFERENT HARDWARE RESULTS

We test our method on various hardware platforms with different GPUs (e.g., A100, H100) and
network bandwidths. The experiments in Table [§]confirmed consistent performance improvements
across all platforms.

Table 8: Results on Different Hardware. IB indicates network bandwidths

Dataset | Hardware | 1B M GPU Days (speed-up)
\ | vIT LLM |

InternVL-1.2M A100 4x200G | 0.02 0.145 | 61.8 —21.3 (2.90x)
InternVL-1.2M A100 2x200G | 0.02 0.145 | 64.0 — 24.8 (2.58x)
InternVL-1.2M H100 8x400G | 0.02 0.145 | 32.5— 12.2(2.67x)

A.10 LARGE-SCALE RESULTS

To validate the effectiveness of our method, we conduct a study using larger-scale models and a
greater number of GPUs. As shown in the Tabel 9] our method achieves a speedup ratio exceed-
ing 2.0 across varying GPU configurations. Moreover, the results demonstrate that our approach
maintains a more favorable linear speedup (85% — 95%) as GPUs increase.

Table 9: Results on Large-Scale models (6 + 70B) and GPUs

Dataset ‘ Hardware ‘ 1B ‘ GPUs M GPU Days (speed-up)

| | VIT LLM |

InternVL-1.2M H100 8x400G 64 0.02 0.139 | 72.8 —29.3 (2.48x)
InternVL-1.2M H100 8x400G 128 | 0.02 0.139 | 75.2 —+29.7 (2.53x)
InternVL-1.2M H100 8x400G | 256 | 0.02 0.139 | 82.1 — 30.4(2.70x)
InternVL-1.2M H100 8x400G | 512 | 0.02 0.139 | 85.3 —+30.9 (2.76x)

	Appendix
	Training-Pipeline of our balanced method
	Balanced Adaptive Re-Computation Strategy
	Training-Pipeline

	Results on different Model Size
	Results on Different Dynamic High-Resolution Setting
	Results on Pretrain Setting
	Results on Different Resolutions
	Results on Open-source LLava-1.6
	Results on Qwen2-VL Pre-Processing Strategy
	Long-Context Results
	Different Hardware Results
	Large-Scale Results

