
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

A APPENDIX

A.1 TRAINING-PIPELINE OF OUR BALANCED METHOD

A.1.1 BALANCED ADAPTIVE RE-COMPUTATION STRATEGY

Here, we provide a detailed introduction to the Balanced Adaptive Re-Computation Strategy. In this
context, Qv and Qt represent the inputs for Vision Transformer (VIT) and Large Language Model
(LLM) respectively. Mr denotes the remaining GPU memory at the current stage, while Mt and
Mv indicate the GPU memory saved by each transformer layer of the LLM and VIT when enabling
re-computation.

Step-1: Given the inputs Qv and Qt, we enable the re-computation strategy across all transformer
modules of the model. At each forward pass, we clear the cache and record each stage’s remaining
memory usage Mr.

Step-2: We manually disable re-computation for some layers based on the remaining GPU memory.
Subsequently, we record the GPU memory usage M ′

r for each stage.

Step-3: Based on the memory differences ∆Mr observed between Step-1 and Step-2, along with
the re-computation strategy implemented at each stage, we estimate the memory savings Mt and
Mv for each transformer layer of the VIT and LLM, respectively.

Step-4: Based on the estimated GPU memory savings Mt and Mv measured in Step-3, as well as
the remaining memory Mr from Step-1, We first estimate the theoretically optimal re-computation
strategy for each stage and conduct the training test. If the test runs successfully, we adopt this
strategy. If it fails, we incrementally increase the number of re-computation layers by the remaining
GPU memory for each stage.

A.1.2 TRAINING-PIPELINE

ViT
ViT
ViT LLM

ViT

ViT LLM

ViT LLM
LLM
LLM

LLM

LLM
LLM
LLM

LLM

Text1

Balanced Batch Balanced Partition + Balanced Adaptive Re-Computation

Input

Text2

Images

Stage-1 Stage-2 Stage-3 Stage-4

Figure 1: The pipeline consists of four stages, labeled Stage-1 to Stage-4, each representing a
different stage of pipeline parallelism. Within this structure, ”ViT” stands for the Vision Trans-
former layer, while ”LLM” refers to the Transformer layer used for large language models (LLM).
Regarding computational execution, the darker-colored sections signify forward passes with re-
computation. In contrast, the lighter-colored sections denote a standard forward pass without re-
computation.

A.2 RESULTS ON DIFFERENT MODEL SIZE

We test various combinations of vision and language models. As shown in Table 1, our approach
significantly reduces the required GPU days for model training, achieving nearly a 2x speedup across
models of various sizes.

A.3 RESULTS ON DIFFERENT DYNAMIC HIGH-RESOLUTION SETTING

To validate the effectiveness of our method, we test it under various high-resolution settings. Our
approach consistently demonstrates low Dist Ratio and strong acceleration across all configurations
as shown in Table 2, significantly improving training speed under different settings.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Table 1: Results for different model sizes are shown, with TP, PP, and DP representing various dis-
tributed training strategies: Tensor Parallel (TP), Pipeline Parallel (PP), and Data Parallel (DP), re-
spectively. The ”Stages-Layer-Num (V+L)” column indicates the number of Vision Transformer (V)
and Language Transformer (L) layers assigned to each stage. Additionally, the ”Re-computation”
column denotes the number of re-computations enabled in each stage.

Vision-Model Language-Model TP PP DP Stages-Layer-Num (V+L) Re-computation GPU Days(speed up)

InternVL-6B Llama3-8B (1,4,8) [16,17,20,24] [8,7,10,24] 27.7 → 13.8(2.0x)
InternVL-6B InternLM2-20B (2,4,4) [22,23,24,24] [0,0,0,0] 61.8 → 21.3(2.9x)
InternVL-6B Yi-34B (4,4,2) [28,29,24,24] [3,2,0,0] 75.4 → 30.5(2.5x)
InternVL-6B Llama3-70B (4,8,2) [22,23,13,14,14,14,13,12] [11,12,8,5,3,2,0,0] 129 → 52.5(2.4x)
InternVL-6B Qwen1.5-110B (8,8,1) [21,22,13,13,14,14,14,14] [6,9,1,3,0,0,0,0] 243 → 75.2(3.2x)

EVA-CLIP-1B InternLM2-20B (2,4,4) [43,16,15,14] [0,0,0,0] 23.6 → 12.2(1.9x)
EVA-CLIP-4B InternLM2-20B (2,4,4) [39,22,21,20] [10,8,1,3] 38.1 → 17.0(2.2x)
EVA-CLIP-8B InternLM2-20B (2,4,4) [17,18,23,22] [5,5,8,10] 41.8 → 20.3(2.0x)

EVA-CLIP-18B InternLM2-20B (4,4,4) [18,19,25,34] [2,2,0,0] 63.6 → 33.8(1.9x)

Table 2: Results on different dynamic high-resolution settings. ”Max-Patch-Num” indicates the
maximum number of patches into which an image can be divided. This parameter controls the
granularity of image segmentation, impacting both model performance and computational efficiency.
Adjusting the Max-Patch-Num allows for more flexible handling of high-resolution images in the
model, optimizing resource usage while maintaining accuracy.

Model Max-Patch-Num AVE-BS Max-Seq-Len Dist Ratio GPU Days (speed-up)
VIT LLM VIT LLM

InternVL-6B-20B

1 7.6 9K 4K 0.06 0.05 28.6 → 13.7 (2.1x)
4 4.6 9K 4K 0.02 0.14 61.8→ 21.3 (2.9x)
6 2.7 14K 5K 0.019 0.136 147 →72 (2.05x)

12 1.9 14K 5K 0.03 0.12 209 →105 (2.0x)

A.4 RESULTS ON PRETRAIN SETTING

We evaluate our method in other tasks like Pre-training task. In Pre-training, we train both the Vision
Transformer (ViT) and MLP components for models ranging from 6B to 20B. However, for larger
models, such as 6B-34B and 6B-70B, we focus solely on training the MLP component. Across all
configurations, we observe consistent performance improvements shown in Table 3, particularly
with the largest model, where GPU days are significantly reduced from 16.8 to 9.6, demonstrating
enhanced training efficiency.

Table 3: Results on Pretrain Setting

Model Dataset Trainable Module AVE-BS Dist Ratio GPU Days
VIT LLM

InternVL-6B-20B LCS-558K ViT+MLP 5.8 0 0.03 9.9 → 6.0 (1.65x)
InternVL-6B-34B LCS-558K MLP 5.1 0 0.031 8.3 → 4.9 (1.69x)
InternVL-6B-70B LCS-558K MLP 5.2 0 0.029 16.8 → 9.6 (1.75)

A.5 RESULTS ON DIFFERENT RESOLUTIONS

We further test our method with different image resolution inputs. As shown in Table 4, our method
consistently delivers low Dist Ratio and highly satisfactory acceleration results across varying image
resolutions, demonstrating its effectiveness in improving training efficiency.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Table 4: Results on Different Resolutions

Resolution AVE-BS Dist Ratio GPU Days
VIT LLM

224 4.8 0.009 0.068 32.0 → 20 (1.6x)
336 3.3 0.005 0.07 62.0 → 33 (1.88x)
448 4.6 0.02 0.14 61.8 → 21.3 (2.9x)

A.6 RESULTS ON OPEN-SOURCE LLAVA-1.6

We also validate our method using another popular open-source model, LLava-1.6, with the Deep-
Speed backend, as shown in Table 5. For the DeepSpeed backend, we employ only our balanced
dynamic mini-batch strategy. In the case of the open-source LLava model, while its ViT component
is relatively small and the imbalance occurs primarily at the data level, we still achieved a notable
overall speedup. Although the speedup ratio is smaller compared to other models, our method de-
livered a 30% improvement in performance.

Table 5: Results on Open-source LLava-1.6

Model AVE-BS Dist Ratio GPU Days
VIT LLM

Llava-1.6-7B 4.54 0.008 0.037 10.2 → 7.7 (1.3x)
Llava-1.6-13B 4.54 0.008 0.037 18 → 13.3 (1.35x)
Llava-1.6-34B 4.4 0.009 0.0041 42.7 → 31.3 (1.36x)

A.7 RESULTS ON QWEN2-VL PRE-PROCESSING STRATEGY

Qwen2-VL is a recent, highly regarded open-source project that provides strong support for dy-
namic image input. Consequently, we adopt the pre-processing strategy of Qwen2-VL to validate
our method. As shown in Table 6, our approach demonstrates a substantial acceleration effect (ap-
proximately 1.9x) when applied to the Qwen2-VL strategy, significantly reducing both the padding
ratio and dist ratio.

Table 6: Results on Qwen2-VL Pre-Processing strategy

Model Dataset AVE-BS Pad-Ratio Dist Ratio GPU Days (speed-up)
VIT LLM

InternVL-6B-20B InternVL-1.2M 4 0.31 0.408 0.393 40.2 (1x)
InternVL-6B-20B InternVL-1.2M 6.6 0 0.12 0.06 21.0 (1.9x)

A.8 LONG-CONTEXT RESULTS

Our method can also be applied to long-context training. To evaluate its effectiveness, we con-
structed a dataset named Long-2.5W consisting of multi-modal inputs with a maximum text length
of 32k tokens and up to 80 images. Handling both long and short texts together is often necessary in
long-context training. Thus, it’s essential to maintain balance not only at the data-parallel level but
also at the sequence-parallel level.

To address this, we propose a straightforward solution. For long text inputs, we evenly split the im-
ages across different sequence-parallel (SP) processes, and then gather them during LLM training.
For short multi-modal training samples, we apply our balanced group ISF algorithm, which ensures
that both sequence and data parallelism remain approximately balanced. Additionally, we designed
a grouping sampler to ensure that long and short multi-modal text samples remain relatively inde-
pendent at the data-parallel level. Figure 2 illustrates our complete training pipeline.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

In this instance, we set sequence parallelism to 4. To maintain the original InternVL-1.2M input at
32k, we expand the training input batch size to 10. As shown in Table 7, our method achieves nearly
identical training speeds for both separate and mixed training. Compared to basic hybrid training,
our approach substantially reduces the dist ratio while significantly accelerating the training process.

VLM-1 VLM-2 VLM-2VLM-1

LLM-1-1 LLM-1-2 LLM-2-2LLM-2-1

VLM-1 VLM-2 VLM-4VLM-3

SP-0 SP-1 SP-0 SP-1

All Batch In Each Forward Step are Balanced

DP-1DP-0

SP

VLM-1-1 VLM-1-2

Dy-Bs == 1
Split Input

VLM-1 VLM-2

Dy-Bs > 1

SP Input Generate

Hybrid-Input

Balanced Group

Figure 2: SP-0 and SP-1 denote different sequence parallel process numbers, while DP-0 and DP-1
represent different data parallel process numbers. VLM-1-1 and VLM-1-2 refer to the two resulting
inputs after splitting the same input, whereas VLM-1 and VLM-2 correspond to two distinct sets of
inputs.

Table 7: Results on Long-Context Training

Dataset AVE-BS Max-Seq-Len Pad-Ratio Dist Ratio SP-Ratio GPU Days
VIT LLM VIT LLM

InternVL-1.2M 8 40k 32k 0.417 0.27 0.24 0 36.2
InternVL-1.2M-Balanced 10.3 20K 8K 0 0.03 0.07 0 18.7

Long-2.5W 1 80K 32K 0 0.03 0.02 0.22 23.2
Long-2.5W-Balanced 1 80K 32K 0 0.03 0.02 0 19.6

InternVL-1.2M + Long-5W 3.9 80K 32K 0 0.03 0.08 0.025 38.6

A.9 DIFFERENT HARDWARE RESULTS

We test our method on various hardware platforms with different GPUs (e.g., A100, H100) and
network bandwidths. The experiments in Table 8 confirmed consistent performance improvements
across all platforms.

Table 8: Results on Different Hardware. IB indicates network bandwidths

Dataset Hardware IB Dist Ratio GPU Days (speed-up)
VIT LLM

InternVL-1.2M A100 4x200G 0.02 0.145 61.8 → 21.3 (2.90x)
InternVL-1.2M A100 2x200G 0.02 0.145 64.0 → 24.8 (2.58x)
InternVL-1.2M H100 8x400G 0.02 0.145 32.5 → 12.2 (2.67x)

A.10 LARGE-SCALE RESULTS

To validate the effectiveness of our method, we conduct a study using larger-scale models and a
greater number of GPUs. As shown in the Tabel 9, our method achieves a speedup ratio exceed-
ing 2.0 across varying GPU configurations. Moreover, the results demonstrate that our approach
maintains a more favorable linear speedup (85% → 95%) as GPUs increase.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Table 9: Results on Large-Scale models (6 + 70B) and GPUs

Dataset Hardware IB GPUs Dist Ratio GPU Days (speed-up)
VIT LLM

InternVL-1.2M H100 8x400G 64 0.02 0.139 72.8 → 29.3 (2.48x)
InternVL-1.2M H100 8x400G 128 0.02 0.139 75.2 → 29.7 (2.53x)
InternVL-1.2M H100 8x400G 256 0.02 0.139 82.1 → 30.4 (2.70x)
InternVL-1.2M H100 8x400G 512 0.02 0.139 85.3 → 30.9 (2.76x)

5


	Appendix
	Training-Pipeline of our balanced method
	Balanced Adaptive Re-Computation Strategy
	Training-Pipeline

	Results on different Model Size
	Results on Different Dynamic High-Resolution Setting
	Results on Pretrain Setting
	Results on Different Resolutions
	Results on Open-source LLava-1.6
	Results on Qwen2-VL Pre-Processing Strategy
	Long-Context Results
	Different Hardware Results
	Large-Scale Results


