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Figure 1: An overview of generated images and inference latency of Sana.

ABSTRACT

We introduce Sana, a text-to-image framework that can efficiently generate images
up to 4096×4096 resolution. Sana can synthesize high-resolution, high-quality
images with strong text-image alignment at a remarkably fast speed, deployable
on laptop GPU. Core designs include: (1) Deep compression autoencoder: un-
like traditional AEs, which compress images only 8×, we trained an AE that can
compress images 32×, effectively reducing the number of latent tokens. (2) Lin-
ear DiT: we replace all vanilla attention in DiT with linear attention, which is
more efficient at high resolutions without sacrificing quality. (3) Decoder-only
text encoder: we replaced T5 with modern decoder-only small LLM as the text
encoder and designed complex human instruction with in-context learning to en-
hance the image-text alignment. (4) Efficient training and sampling: we propose
Flow-DPM-Solver to reduce sampling steps, with efficient caption labeling and
selection to accelerate convergence. As a result, Sana-0.6B is very competitive
with modern giant diffusion model (e.g. Flux-12B), being 20 times smaller and
100+ times faster in measured throughput. Moreover, Sana-0.6B can be deployed
on a 16GB laptop GPU, taking less than 1 second to generate a 1024×1024 reso-
lution image. Sana enables content creation at low cost. Code and model will be
publicly released.

∗ Project co-lead.
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1 INTRODUCTION

In the past year, latent diffusion models have made significant progress in text-to-image research
and have generated substantial commercial value. On one hand, there is a growing consensus among
researchers regarding several key points: (1) Replace U-Net with Transformer architectures (Chen
et al., 2024b;a; Esser et al., 2024; Labs, 2024), (2) Using Vision Language Models (VLM) for
auto-labelling images (Chen et al., 2024b; OpenAI, 2023; Zhuo et al., 2024; Liu et al., 2024a) (3)
Improving Variational Autoencoders (VAEs) and Text encoder (Podell et al., 2023; Esser et al.,
2024; Dai et al., 2023) (4) Achieving ultra High-resolution image generation (Chen et al., 2024a),
etc. On the other hand, industry models are becoming increasingly large, with parameter counts
escalating from PixArt’s 0.6B parameters to SD3 at 8B, LiDiT at 10B, Flux at 12B, and Playground
v3 at 24B. This trend results in extremely high training and inference costs, creating challenges for
most consumers who find these models difficult and expensive to use. Given these challenges, a
pivotal question arises: Can we develop a high-quality and high-resolution image generator that is
computationally efficient and runs very fast on both cloud and edge devices?
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Figure 2: Algorithm and system co-optimize reduce the inference latency of 4096×4096 image
generation, from 469 seconds to 9.6 seconds, and achieve 106× faster than the current SOTA model,
FLUX. The numbers are measured with batch size 1 on an A100 GPU.
This paper proposes Sana, a pipeline designed to efficiently and cost-effectively train and synthesize
images at resolutions ranging from 1024×1024 to 4096×4096 with high quality. To our knowl-
edge, no published works have directly explored 4K resolution image generation, except for PixArt-
Σ (Chen et al., 2024a). However, PixArt-Σ is limited to generating images close to 4K resolution
(3840×2160) and is relatively slow when producing such high-resolution images. To achieve this
ambitious goal, we propose several core designs:

Deep Compression Autoencoder: We introduce a new Autoencoder (AE) in Section 2.1 that ag-
gressively increases the scaling factor to 32. In the past, mainstream AEs only compressed the
image’s length and width with a factor of 8 (AE-F8). Compared with AE-F8, our AE-F32 outputs
16 × fewer latent tokens, which is crucial for efficient training and generating ultra-high-resolution
images, such as 4K resolution.

Efficient Linear DiT: We introduce a new linear DiT to replace vanilla quadratic attention modules
(Section 2.2). The computational complexity of the original DiT’s self-attention is O(N2), which
increases quadratically when processing high-resolution images. We replace all vanilla attention
with linear attention, reducing the computational complexity from O(N2) to O(N). At the same
time, we propose Mix-FFN, which integrates 3×3 depth-wise convolution into MLP to aggregate
the local information of tokens. We argue that linear attention can achieve results comparable to
vanilla attention with proper design and is more efficient for high-resolution image generation (e.g.,
accelerating by 1.7× at 4K). Additionally, the indirect benefit of Mix-FFN is that we do not need
position encoding (NoPE). For the first time, we removed the positional embedding in DiT and find
no quality loss.

Decoder-only Small LLM as Text Encoder: In Section 2.3, we utilize the latest Large Language
Model (LLM), Gemma, as our text encoder to enhance the understanding and reasoning capabilities
regarding user prompts. Although text-to-image generation models have advanced significantly over
the years, most existing models still rely on CLIP or T5 for text encoding, which often lack robust
text comprehension and instruction-following abilities. Decoder-only LLMs, such as Gemma, ex-
hibit strong text understanding and reasoning capabilities, demonstrating an ability to follow human
instructions effectively. In this work, we first address the training instability issues that arise from di-
rectly adopting an LLM as a text encoder. Secondly, we design complex human instructions (CHI) to
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leverage the LLM’s powerful instruction-following, in-context learning, and reasoning capabilities
to improve image-text alignment.

Efficient Training and Inference Strategy: In Section 3.1, we propose a set of automatic labelling
and training strategies to improve the consistency between text and images. First, for each image, we
utilize multiple VLMs to generate re-captions. Although the capabilities of these VLMs vary, their
complementary strengths improve the diversity of the captions. In addition, we propose a clipscore-
based training strategy (Section 3.2), where we dynamically select captions with high clip scores
for the multiple captions corresponding to an image based on probability. Experiments show that
this approach improve training convergence and text-image alignment. Furthermore, We propose a
Flow-DPM-Solver that reduces the inference sampling steps from 28-50 to 14-20 steps compared to
the widely used Flow-Euler-Solver, while achieving better results.

In conclusion, our Sana-0.6B achieves a throughput that is over 100× faster than the current state-of-
the-art method (FLUX) for 4K image generation (Figure 2), and 40× faster for 1K resolution (Fig-
ure 4), while delivering competitive results across many benchmarks. In addition, we quantize
Sana-0.6B and deploy it on an edge device, as detailed in Section 4. It takes only 0.37s to generate
a 1024×1024 resolution image on a customer-grade 4090 GPU, providing a powerful foundation
model for real-time image generation. We hope that our model can be efficiently utilized by all
industry professionals and everyday users, offering them significant business value.

2 METHODS

2.1 DEEP COMPRESSION AUTOENCODER

2.1.1 PRELIMINARY

To mitigate the excessive training and inference costs associated with directly running diffusion
models in pixel space, Rombach et al. (2022) proposed latent diffusion models that operate in a
compressed latent space produced by pre-trained autoencoders. The most commonly used autoen-
coders in previous latent diffusion works (Peebles & Xie, 2023; Bao et al., 2022; Cai et al., 2024;
Esser et al., 2024; Dai et al., 2023; Chen et al., 2024b;a) feature a down-sampling factor of F = 8,
mapping images from pixel space RH×W×3 to latent space RH

8 ×W
8 ×C , where C represents the

number of latent channels. In DiT-based methods (Peebles & Xie, 2023), the number of tokens pro-
cessed by the diffusion models is also influenced by another hyper-parameter, P , known as patch
size. The latent features are grouped into patches of size P × P , resulting in H

PF ×
W
PF tokens. A

typical patch size in previous works is 2.

In summary, previous latent diffusion models (LDM), e.g. PixArt (Chen et al., 2024b), SD3 (Esser
et al., 2024) and Flux (Labs, 2024), usually employ AE-F8C4P2 or AE-F8C16P2, where the AE
compresses images by 8× and DiT compresses by 2×. In our Sana, we aggressively scale the
compression factor to 32× and propose several techniques to maintain the quality.

2.1.2 AUTOENCODER DESIGN PHILOSOPHY

Unlike the previous AE-F8, we aim to increase the compression ratio more aggressively. The mo-
tivation is that high-resolution images naturally contain more redundant information. Moreover,
efficient training and inference of high-resolution images (e.g., 4K) necessitate a high compression
ratio for the autoencoder. Table 1 illustrates that on MJHQ-30K, although previous methods (e.g.,
SDv1.5) have attempted to use AE-F32C64, the quality remains significantly inferior to that of AE-
F8C4. Our AE-F32C32 effectively bridges this quality gap, achieving reconstruction capabilities
comparable to SDXL’s AE-F8C4. We believe that the minor difference in AE will not become a
bottleneck for DiT’s capability.

Moreover, instead of increasing the patch size P , we argue that the autoencoders should take full
responsibility for compression, allowing the latent diffusion models to focus solely on denoising.
Therefore, we develop an AE with a down-sampling factor of F = 32, Channel C = 32, and run
diffusion models in its latent space with a patch size of 1 (AE-F32C32P1). This design reduces the
number of tokens by 4×, significantly improving training and inference speed while lowering GPU
memory requirements.
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2.1.3 ABLATION OF AUTOENCODER DESIGNS

From the perspective of model structure, we implement several adjustments to accelerate conver-
gence. Specifically, We replace the vanilla self attention mechanism with linear attention blocks to
improve the efficiency of high-resolution generation. Additionally, from a training standpoint, we
propose a multi-stage training strategy to improve training stability, which involving finetune our
AE-F32C32 on 1024×1024 images to achieve better reconstruction results on high-resolution data.

Table 1: Reconstruction capability of different
Autoencoders.

Autoencoder rFID ↓ PSNR ↑ SSIM ↑ LPIPS ↓
F8C4 (SDXL)1 0.31 31.41 0.88 0.04
F32C64 (SD)2 0.82 27.17 0.79 0.09
F32C32 (Ours) 0.34 29.29 0.84 0.05

Can we compress tokens in DiT using a
larger patch size? We compare AE-F8C16P4,
AE-F16C32P2 and AE-F32C32P1. These three
settings compress a 1024×1024 image into the
same number of token numbers 32 × 32. As
shown in Figure 3(a), although AE-F8C16 ex-
hibits the best reconstruction ability (rFID:
F8C16<F16C32<F32C32), we empirically
find that the generation results of F32C32 are superior (FID: F32C32P1<F16C32P2<F8C16P4).
This indicates that allowing the autoencoder to focus solely on high-ratio compression and the dif-
fusion model to concentrate on denoising is the optimal choice.

(a). FID comparison of different DiT scaling. (b). CLIP score comparison of different DiT 
scaling.
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Figure 3: Ablation study on our deep compression autoencoder (AE).

Different Channels in AE-F32: We explore various channel configurations and finally choose C=32
as our optimal setting. As shown in Figure 3(b), fewer channels converge more quickly, but the
reconstruction quality is worse. We observe that after 35K training steps, the convergence speeds of
C=16 and C=32 are similar; however, C=32 yields better reconstruction metrics, resulting in better
FID and CLIP scores. Although C=64 offers superior reconstruction, its following DiT’s training
convergence speed is significantly slower than that of C=32.

2.2 EFFICIENT LINEAR DIT DESIGN
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Figure 4: Comparison between Sana and state-of-
the-art diffusion models under 1024×1024 reso-
lution. All models are tested on an A100 GPU.
Sana provides 0.64 GenEval overall performance
with only 590M model parameters.

The self-attention used by DiT has a com-
putational complexity of O(N2), resulting in
low computational efficiency when processing
high-resolution images and incurring signifi-
cant overhead. To address this issue, we first
proposed linear DiT, which completely replaces
the original self-attention with linear attention,
achieving higher computational efficiency in
high-resolution generation without compromis-
ing performance. In addition, we employ Mix-
FFN to replace the original MLP-FFN, incor-
porating 3×3 depth-wise convolution to better
aggregate token information. These micro de-
signs are inspired by Cai et al. (2023); Xie et al.
(2021), but we keep DiT’s macro architecture
design to maintain simplicity and scalability.

1https://huggingface.co/stabilityai/sdxl-vae
2https://github.com/CompVis/latent-diffusion
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Given a user prompt, generate an "Enhanced prompt" that 
provides detailed visual descriptions suitable for image 
generation. Evaluate the level of detail in the user prompt: 
- If the prompt is simple, focus on adding specifics about 
colors, shapes, sizes, textures, and spatial relationships to 
create vivid and concrete scenes. 
Examples of how to transform or refine prompts: 
- User Prompt: A cat sleeping -> Enhanced: A small, fluffy 
white cat curled up in a round shape, sleeping peacefully on 
a warm sunny windowsill, surrounded by pots of blooming 
red flowers. 
Please generate only the enhanced description for the 
prompt below and avoid including any additional 
commentary or evaluations:   
User Prompt: A cat and a dog.

<Complex Human Instruction> <User Prompt>

Given a user prompt, generate an "Enhanced prompt" 
that provides detailed visual descriptions suitable for 
image generation. Evaluate the level of detail in the 
user prompt: 
- If the prompt is simple, focus on adding specifics 
about colors, shapes, sizes, textures, and spatial 
relationships to create vivid and concrete scenes. 
Examples of how to transform or refine prompts: 
- User Prompt: A cat sleeping -> Enhanced: A small, 
fluffy white cat curled up in a round shape, sleeping 
peacefully on a warm sunny windowsill, surrounded by 
pots of blooming red flowers. 
Please generate only the enhanced description for the 
prompt below and avoid including any additional 
commentary or evaluations:   
User Prompt: A cyberpunk cat with a 
neon sign that says "SANA" .

<Complex Human Instruction> <User Prompt>

Figure 5: Overview of Sana: Fig. (a) describes the high-level training pipeline, containing our 32×
deep compression Autoencoder, Linear DiT, and complex human instruction. Note that Positional
embedding is not required in our framework. Fig. (b) describes the detailed design of the Linear
Attention and Mix-FFN in Linear DiT.

Linear Attention block. An illustration of our utilized linear attention module is provided in Fig-
ure 5. To reduce computational complexity, we replace the traditional softmax attention with ReLU
linear attention (Katharopoulos et al., 2020). While ReLU linear attention and other variants (Cai
et al., 2023; Wang et al., 2020; Shen et al., 2021; Bolya et al., 2022) have primarily been explored in
high-resolution dense prediction tasks, our work represents an early exploration to demonstrate the
effectiveness of linear attention in image generation.

The computational benefits of our approach are evident in the implementation. As shown in Eq. 1,
instead of computing attention for each query, we compute shared terms

(∑N
j=1 ReLU(Kj)

TVj

)
∈ Rd×d

and
(∑N

j=1 ReLU(Kj)
T
)
∈ Rd×1 only once. These shared terms can then be reused for each query,

leading to a linear computational complexity of O(N) in both memory and computation.

Oi =
∑N

j=1
ReLU(Qi)ReLU(Kj)

TVj∑N
j=1 ReLU(Qi)ReLU(Kj)T

=
ReLU(Qi)(

∑N
j=1 ReLU(Kj)

TVj)
ReLU(Qi)(

∑N
j=1 ReLU(Kj)T )

(1)

Mix-FFN block. As discussed in EfficientViT (Cai et al., 2023), linear attention models benefit from
reduced computational complexity and lower latency compared to softmax attention. However, the
absence of a non-linear similarity function may lead to sub-optimal performance. We observe a sim-
ilar conclusion in image generation, where linear attention models suffer from much slower conver-
gence despite eventually achieving comparable performance. To further improve training efficiency,
we replace the original MLP-FFN with Mix-FFN. The Mix-FFN consists of an inverted residual
block, a 3×3 depth-wise convolution, and a Gated Linear Unit (GLU) (Dauphin et al., 2017). The
depth-wise convolution enhances the model’s ability to capture local information, compensating for
the weaker local information-capturing ability of ReLU linear attention. Performance ablations for
the model design space are shown in Table 8.

DiT without Positional Encoding (NoPE). We are surprised that we can remove Positional Embed-
ding without any loss in performance. Some earlier theoretical and practical works have mentioned
that introducing 3×3 convolution with zero padding can implicitly incorporate the position infor-
mation (Islam et al., 2020; Xie et al., 2021). In contrast to previous DiT-based methods that mostly
use absolute PE, learnable PE, and RoPE, we propose NoPE, the first design that entirely omits po-
sitional embedding in DiT. Recent cutting-edge research in the LLM field (Kazemnejad et al., 2024;
Haviv et al., 2022) has also indicated that NoPE may offer better length generalization ability.

Triton Acceleration Training/Inference. To further accelerate linear attention, we use Tri-
ton (Tillet et al., 2019) to fuse kernels for both the forward and backward passes of the linear atten-
tion blocks to speed up training and inference. By fusing all element-wise operations—including
activation functions, precision conversions, padding operations, and divisions—into matrix multi-
plications, we reduce the overhead associated with data transfer. We attach more details and benefits
coming from Triton to the appendix.
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2.3 TEXT ENCODER DESIGN

Why Replace T5 to Decoder-only LLM as Text Encoder? The most advanced LLMs nowadays
are decoder-only GPT architectures that are trained on a larger scale of data. Compared to T5 (a
method proposed in 2019), decoder-only LLMs possess powerful reasoning capabilities. They can
follow complex human instructions by using Chain-of-Thought (CoT) (Wei et al., 2022) and In-
context-learning (ICL) (Brown, 2020). In addition, some small LLMs, such as Gemma-2 (Team
et al., 2024a), can rival the performance of large LLMs while being very efficient. Therefore, we
choose to adopt Gemma-2 as our text encoder.

As shown in Table. 9, Compared to T5-XXL, Gemma-2-2B has an inference speed that is 6×
faster, while the performance of Gemma-2B is comparable to T5-XXL in terms of Clip Score, FID,
GenEval, and HPSv2 (Wu et al., 2023).

Stabilize Training using LLM as Text encoder: We extract the last layer of features of the Gemma-
2 decoder as text embedding. We empirically find that directly following the approach of using T5
text embedding as key, value, and image tokens (as the query) for cross-attention training results in
extreme instability, with training loss frequently becoming NaN.

We find that the variance of T5’s text embedding is several orders of magnitude smaller than that of
the decoder-only LLMs (Gemma-1-2B, Gemma-2-2B, Qwen-2-0.5B), indicating that there are many
large absolute values in the text embedding output. To address this issue, we add a normalization
layer (i.e., RMSNorm) after the decoder-only text encoder, which normalizes the variance of the text
embeddings to 1.0. In addition, we discover a useful trick that further accelerates model convergence
by initializing a small learnable scale factor (e.g., 0.01) and multiplying it by the text embedding.
The results are shown in Figure 6.

Table 2: Ablation study of whether using
Complex Human Instruction (CHI).

Prompt Train Step GenEval
User 52K 45.5
CHI + User 47.7 (+2.2)

User 140K 52.8
CHI + User + 5K(finetune) 54.8 (+2.0)
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Figure 6: Ablation study of whether using text
embedding normalization and small scale factor.
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User prompt: A cat

Figure 7: Generations w/ or w/o Complex-
Human-Instruction (CHI). Without CHI, a simple
prompt may lead to inferior generations, includ-
ing artifacts and less-detailed results.

Complex Human Instruction Improves Text-
Image Alignment: As mentioned above,
Gemma has better instruction-following capa-
bilities than T5. We can further leverage this ca-
pability to strengthen text embedding. Gemma
is a chat model, and although it possesses
strong capabilities, it can be somehow unpre-
dictable, thus we need to add instructions to
help it focus on extracting and enhancing the
prompt itself. LiDiT (Ma et al., 2024) is the first
to combine simple human instruction with user
prompts. Here, we further expand it by using
in-context learning of LLM to design a complex
human instruction (CHI). As shown in Table 2,
incorporating CHI during train—whether from
scratch or through fine-tuning—can further im-
prove the image-text alignment capability.

Additionally, as shown in Figure 7, we find that
when given a short prompt such as ”a cat”, CHI
helps the model generate more stable content.
This is evident in the fact that models without
CHI often output content unrelated to the prompt.
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3 EFFICIENT TRAINING/INFERENCE

3.1 DATA CURATION AND BLENDING

Multi-Caption Auto-labelling Pipeline: For each image, whether or not it contains an origi-
nal prompt, we will use four VLMs to label it: VILA-3B/13B (Lin et al., 2024), InternVL2-
8B/26B (Chen et al., 2024d). Multiple VLMs can make the caption more accurate and more diverse.

CLIP-Score-based Caption Sampler: One problem multi-captioning presents is selecting the cor-
responding one for an image during training. The naive approach randomly selects a caption, which
may select low-quality text and affect model performance.

We propose a clip score-based sampler, the motivation is to sample high-quality text with greater
probability. We first calculate the clip score ci for all captions corresponding to an image, and then,
when sampling, we sample according to the probability based on the clip score. Here, we introduce
an additional hyper-parameter, temperature τ , into the probability formulation P (ci) =

exp(ci/τ)∑N
j=1 exp(cj/τ)

.
The temperature can be used to adjust the sampling intensity. If the temperature is near 0, only the
text with the highest clip score is sampled. The results in Table 4 show that variations in captions
have minimal impact on image quality (FID) while improving semantic alignment during training.

Cascade Resolution Training: Benefiting from using AE-F32C32P1, we skip the 256px pre-
training and start pre-training directly at a resolution of 512px, gradually fine-tuning the model
to 1024px, 2K and 4K resolution. We believe that the traditional practice of pre-training at 256px
is too cost-effective, as images at 256 resolution lose too much detailed information, resulting in
slower learning for the model in terms of image-text alignment.
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Figure 8: Impact of sampling steps on FID
and CLIP-Score: A Comparison between Flow-
DPM-Solver and Flow-Euler.

Table 3: Comparison of different training sched-
ules on 256×256 resolution.

Schedule FID ↓ CLIP ↑ Iterations
DDPM 19.5 24.6 120K
Flow Matching 16.9 25.7 120K

Table 4: Comparison of image-text pair sam-
pling strategies during training.

Prompt Strategy FID ↓ CLIP ↑ Iterations
Single 6.13 27.10 65K
Multi-random 6.15 27.13 65K
Multi-clipscore 6.12 27.26 65K

3.2 FLOW-BASED TRAINING / INFERENCE

Flow-based Training: We analyze the superior performance of Rectified Flow from SD3 (Esser
et al., 2024) and find that, unlike DDPM (Ho et al., 2020), which rely on noise prediction, both
1-Rectified Flow (RF) (Lipman et al., 2022) and EDM (Karras et al., 2022) use data or velocity pre-
diction, resulting in faster convergence and improved performance. Specifically, all these methods
follow a common diffusion formulation: xt = αt ·x0+σt · ϵ, where x0 represents the image data, ϵ
denotes random noise, and αt and σt are hyper-parameters of the diffusion process. In DDPM train-
ing, the objective is noise prediction, defined as ϵθ(xt, t) = ϵt. However, both EDM and RF follow
a different approach: EDM aims for data prediction with the objective xθ(xt, t) = x0, while RF
uses velocity prediction with the objective vθ(xt, t) = ϵ− x0. This transition from noise prediction
to data or velocity prediction is critical near t = T , where noise prediction can lead to instability,
while data or velocity prediction provides more precise and stable estimates. As noted by Balaji
et al. (2022), attention activation near t = T is stronger, further emphasizing the importance of
accurate predictions at this critical point. This shift effectively reduces cumulative errors during
sampling, resulting in faster convergence and improved performance. Further details can be found
in Appendix B.
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Flow-based Inference: In our work, we modify the original DPM-Solver++ (Lu et al., 2022b)
adapting the Rectified Flow formulation, named Flow-DPM-Solver. The key adjustments involve
substituting the scaling factor αt with 1 − σt, where σt remains unchanged but time-steps are re-
defined over the range [0, 1] instead of [1, 1000], with a time-step shift applied to achieve a lower
signal-noise ratio, following SD3 (Esser et al., 2024). Additionally, our model predicts the velocity
field, which differs from the data prediction in the original DPM-Solver++. Specifically, data is
derived from the relation: data← x0 = xT − σT · vθ(xT , tT ), where vθ(·) is the velocity predicted
by the model.

As a result, in Figure 8, our Flow-DPM-Solver converges at 14∼20 steps with better performance,
while the Flow-Euler sampler needs 28∼50 steps for convergence with a worse result.

4 ON-DEVICE DEPLOYMENT

To enhance edge deployment, we quantize our model with 8-bit integers. Specifically, we adopt per-
token symmetric INT8 quantization for activation and per-channel symmetric INT8 quantization
for weights. Moreover, to preserve a high semantic similarity to the 16-bit variant while incurring
minimal runtime overhead, we retain normalization layers, linear attention, and key-value projection
layers within the cross-attention block at full precision.

Table 5: On-device Deployment: our inference engine with W8A8 quantization realized a 2.4×
speedup when generating 1024px images on the laptop GPU. The performance of Sana is assessed
with the CLIP-Score on MJHQ-30K (Li et al., 2024a) and the Image-Reward (Xu et al., 2024) on its
first 1K images.

Methods Latency (s) CLIP-Score ↑ Image-Reward ↑
Sana (FP16) 0.88 28.5 1.03

+ W8A8 Quantization 0.37 28.3 0.96

We implement our W8A8 GEMM kernel in CUDA C++ and employ kernel fusion techniques to
mitigate the overhead associated with unnecessary activation loads and stores, thereby enhancing
overall performance. Specifically, we integrate the ReLU(K)TV product of linear attention (Equa-
tion 1) with the QKV -projection layer; we also fuse the Gated Linear Unit (GLU) with the quanti-
zation kernel in Mix-FFN, and combine other element-wise operations. Additionally, we adjust the
activation layout to avoid any transpose operations in GEMM and Conv kernels.

Table 5 shows the speed comparison before and after our deployment optimization on a laptop GPU.
For generating a 1024px image, our optimized implementation achieves 2.4× speedup, taking only
0.37 seconds, while maintaining almost lossless image quality.

5 EXPERIMENTS

Model Details. Table 6 describes the details of the network architecture. Our Sana-0.6B only
contains 590M parameters, and the number of layers and channels is almost identical to those of the
original DiT-XL and PixArt-Σ. Our Sana-1.6B increases the parameters to 1.6B, with 20 layers and
2240 channels per layer, and increases the channels to 5600 in FFN. We believe that keeping the
model layers between 20 and 30 strikes a good balance between efficiency and quality.

Evaluation Details. We use five mainstream evaluation metrics to evaluate the performance of
our Sana, namely FID, Clip Score, GenEval (Ghosh et al., 2024), DPG-Bench (Hu et al., 2024), and
ImageReward (Xu et al., 2024), comparing it with SOTA methods. FID and Clip Score are evaluated
on the MJHQ-30K (Li et al., 2024a) dataset, which contains 30K images from Midjourney. GenEval
and DPG-Bench both focus on measuring text-image alignment, with 533 and 1,065 test prompts,
respectively. ImageReward assesses human preference performance and includes 100 prompts.

Table 6: Architecture details of the proposed Sana.
Model Width Depth FFN #Heads #Param (M)

Sana-0.6B 1152 28 2880 36 590

Sana-1.6B 2240 20 5600 70 1604
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Table 7: Comprehensive comparison of our method with SOTA approaches in efficiency and
performance. The speed is tested on one A100 GPU with FP16 Precision. Throughput: Measured
with batch=16. Latency: Measured with batch=1 and sampling step=20. We highlight the best,
second best, and third best entries.

Methods Throughput Latency Params Speedup FID ↓ CLIP ↑ GenEval ↑ DPG ↑(samples/s) (s) (B)
512 ×512 resolution
PixArt-α (Chen et al., 2024b) 1.5 1.2 0.6 1.0× 6.14 27.55 0.48 71.6
PixArt-Σ (Chen et al., 2024a) 1.5 1.2 0.6 1.0× 6.34 27.62 0.52 79.5

Sana-0.6B 6.7 0.8 0.6 5.0× 5.67 27.92 0.64 84.3
Sana-1.6B 3.8 0.6 1.6 2.5× 5.16 28.19 0.66 85.5

1024 ×1024 resolution
LUMINA-Next (Zhuo et al., 2024) 0.12 9.1 2.0 2.8× 7.58 26.84 0.46 74.6
SDXL (Podell et al., 2023) 0.15 6.5 2.6 3.5× 6.63 29.03 0.55 74.7
PlayGroundv2.5 (Li et al., 2024a) 0.21 5.3 2.6 4.9× 6.09 29.13 0.56 75.5
Hunyuan-DiT (Li et al., 2024c) 0.05 18.2 1.5 1.2× 6.54 28.19 0.63 78.9
PixArt-Σ (Chen et al., 2024a) 0.4 2.7 0.6 9.3× 6.15 28.26 0.54 80.5
DALLE3 (OpenAI, 2023) - - - - - - 0.67 83.5
SD3-medium (Esser et al., 2024) 0.28 4.4 2.0 6.5× 11.92 27.83 0.62 84.1
FLUX-dev (Labs, 2024) 0.04 23.0 12.0 1.0× 10.15 27.47 0.67 84.0
FLUX-schnell (Labs, 2024) 0.5 2.1 12.0 11.6× 7.94 28.14 0.71 84.8
Sana-0.6B 1.7 0.9 0.6 39.5× 5.81 28.36 0.64 83.6
Sana-1.6B 1.0 1.2 1.6 23.3× 5.76 28.67 0.66 84.8

Table 8: Performance of Sana block design space. The speed is tested on one A100 GPU with
FP16 Precision with 1024 image size. MACs: Multi-accumulate operations for a single forward
pass. TP (Throughput): Measured with batch=16. Latency: Measured with batch=1.

Blocks AE MACs (T) TP (/s) Latency (ms)

FullAttn & FFN F8C4P2 6.48 0.49 2250
+ LinearAttn F8C4P2 4.30 0.52 1931

+ MixFFN F8C4P2 4.19 0.46 2425
+ Kernel Fusion F8C4P2 4.19 0.53 2139

LinearAttn & MixFFN F32C32P1 1.08 1.75 826
+Kernel Fusion F32C32P1 1.08 2.06 748

5.1 PERFORMANCE COMPARISON AND ANALYSIS

We compare Sana with the most advanced text-to-image diffusion models in Table 7. For 512× 512
resolution, Sana-0.6 demonstrates a throughput that is 5× faster than PixArt-Σ, which has a similar
model size, and significantly outperforms it in FID, Clip Score, GenEval, and DPG-Bench. For
1024× 1024 resolution, Sana is considerably stronger than most models with <3B parameters and
excels in inference latency. Our models achieve competitive performance even when compared to
the most advanced large model FLUX-dev. For instance, while the accuracy on DPG-Bench is
equivalent and slightly lower on GenEval, Sana-0.6B’s throughput is 39× faster, and Sana-1.6B is
23× faster.

In Table 8, we analyze the efficiency of replacing the original DiT’s modules with the corresponding
linear DiT’s modules under the 1024× 1024 resolution setting. We observe that using AE-F8C4P2,
replacing the original full attention with linear attention can reduce latency from 2250ms to 1931ms,
but the generation results are worse. Replacing the original FFN with our Mix-FFN compensates
for the performance loss, although it sacrifices some efficiency. With Triton kernel fusion, our
linear DiT can ultimately be slightly faster than the original DiT at the 1024px scale and faster at
higher resolution. Moreover, when upgrading from AE-F8C4P2 to AE-F32C32P1, the MACs can
be further reduced by 4×, and throughput can also be improved by 4×. Triton kernel fusion can
bring ∼10% speed acceleration.

The left side of Figure 9 compares the generation results of Sana, Flux-dev, SD3, and PixArt-Σ.
In the first row of text rendering, PixArt-Σ lacks text rendering capability, while Sana can render
text accurately. In the second row, the quality of the images generated by our Sana and FLUX is
comparable, while SD3’s text understanding is inaccurate. The right side of Figure 9 shows that
Sana can be successfully deployed on a laptop locally. A Demo video is provided in the appendix.
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Table 9: Comparison of different Text-Encoders. All models are tested with an A100 GPU with
FP16 precision after 50K training steps. Gemma-2B models achieve better performance than T5-
large at a similar speed and comparable performance to the larger, much slower T5-XXL.

Text-Encoder #Params (M) Latency (s) FID ↓ CLIP ↑ GenEval ↑ HPSv2 ↑
T5-XXL 4762 1.61 6.1 27.1 0.51 27.95
T5-Large 341 0.17 6.1 26.2 0.39 27.57
Gemma2-2B 2614 0.28 6.0 26.9 0.45 27.92
Gemma-2B-IT 2506 0.21 5.9 26.8 0.47 27.78
Gemma2-2B-IT 2614 0.28 6.1 26.9 0.50 27.92

Done

Sana is locally 
deployable on a laptop

FLUX-dev (23s)Sana-1.6B (1.2s) SD3 (4.4s) PixArt-Σ (2.7s)

a cyberpunk cat with a neon sign that says "Fast"

A very detailed and realistic full body photo set of a tall, slim, and athletic Shiba Inu in a 
white oversized straight t-shirt, white shorts, and short white shoes.

Figure 9: Left: Visualization comparison of Sana-1.6B vs FLUX-dev, SD3 and PixArt-Σ. The
speed is tested on an A100 GPU with FP16 precision. Right: Quantize Sana-1.6B is deployable on
a GPU laptop generating an 1K×1K image within 1 seconds.

6 RELATED WORK

We put a relatively brief overview of related work in the main text, with a more comprehensive
version available in the supplementary material. In terms of generative model architecture, Diffusion
Transformer (Peebles & Xie, 2022) and DiT-based Text-to-image extensions (Chen et al., 2024b;
Esser et al., 2024; Labs, 2024) have made significant progress over the past year. Regarding text
encoder, the earliest work (Rombach et al., 2022) uses CLIP, while subsequent works (Saharia et al.,
2022; Chen et al., 2024b;a) adopt T5-XXL. There are also efforts that combine T5 and CLIP (Balaji
et al., 2022; Esser et al., 2024). For high-resolution generation, PixArt-Σ (Chen et al., 2024a) is the
first model capable of directly generating images at 4K resolution. Additionally, GigaGAN (Kang
et al., 2023) can generate 4K images using a super-resolution model. In the context of on-device
deployment, Zhao et al. (2023); Li et al. (2024b) have explored the deployment of diffusion models
on mobile devices.

7 CONCLUSION

This paper builds a new efficient text-to-image pipeline named Sana. We have made improvements
in the following dimensions: we propose a deep compression autoencoder, widely use linear atten-
tion to replace self-attention in DiT, utilize decoder-only LLM as text encoder with complex human
instruction, establish an automatic image caption pipeline, and propose flow-based DPM-Solver to
accelerate sampling. Sana can generate images at a maximum resolution of 4096×4096, delivering
throughput more than 100× higher than the SOTA methods while maintaining competitive genera-
tion results.

In the future, we will consider building an efficient video generation pipeline based on Sana. A
potential limitation of this work is that it cannot fully guarantee the safety and controllability of the
generated image content. Additionally, challenges remain in certain complex cases, such as text
rendering and the generation of faces and hands.
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A FULL RELATED WORK

Efficient Diffusion Transformers. The introduction of Diffusion Transformers (DiT) (Peebles &
Xie, 2023) marked a significant shift in image generation models, replacing the traditional U-Net ar-
chitecture with a transformer-based approach. This innovation paved the way for more efficient and
scalable diffusion models. Building upon DiT, PixArt-α (Chen et al., 2024b) extended the concept to
text-to-image generation, demonstrating the versatility of transformer-based diffusion models. Sta-
ble Diffusion 3 (SD3) (Esser et al., 2024) further advanced the field by proposing the Multi-modal
Diffusion Transformer (MM-DiT), which effectively integrates text and image modalities. More
recently, Flux (Labs, 2024) showcased the potential of DiT architectures in high-resolution image
generation by scaling up to 12B parameters. In addition, earlier works like CAN (Cai et al., 2024)
and DiG (Zhu et al., 2024) explored linear attention mechanisms in class-condition image genera-
tion. Several works are also related to modifying the model configuration, e.g., diffusion without
attention (Yan et al., 2024; Teng et al., 2024) and cascade model structures (Pernias et al., 2023; Ren
et al., 2024; Tian et al., 2024).

Text Encoders in Image Generation. The evolution of text encoders in image generation models
has significantly impacted the field’s progress. Initially, Latent Diffusion Models (LDM) (Rom-
bach et al., 2022) adopted OpenAI’s CLIP as the text encoder, leveraging its pre-trained visual-
linguistic representations. A paradigm shift occurred with the introduction of Imagen (Saharia et al.,
2022), which employed the T5-XXL language model as its text encoder, demonstrating superior
text understanding and generation capabilities. Subsequently, eDiff-I (Balaji et al., 2022) proposed
a hybrid approach, ensemble T5-XXL, and CLIP encoders to combine their respective strengths in
language comprehension and visual-textual alignment. Recent advancements (Ma et al., 2024; Liu
et al., 2024b; Hu et al., 2024; Liu et al., 2024a), such as Playground v3, have explored the use of
decoder-only Large Language Models (LLMs) as text encoders, potentially offering more nuanced
text understanding and generation. This trend towards more sophisticated text encoders reflects the
ongoing pursuit of improved text-to-image alignment and generation quality in the field.

On Device Deployment. Several studies have explored post-training quantization (PTQ) techniques
to optimize diffusion model inference for edge devices. Research in this area has focused on cal-
ibration objectives and data acquisition methods. BRECQ (Li et al., 2021) incorporates Fisher in-
formation into the objective function. ZeroQ (Cai et al., 2020) uses distillation to generate proxy
input images for PTQ. SQuant (Guo et al., 2022) employs random samples with objectives based
on Hessian spectrum sensitivity. Recent work such as Q-Diffusion (Li et al., 2023) has achieved
high-quality generation using only 4-bit weights. In our work, we choose W8A8 to reduce peak
memory usage.

B MORE IMPLEMENTATION DETAILS

Rectified-Flow vs. DDPM. In our theoretical analysis, we investigate the reasons behind the fast
convergence of flow-matching methods, demonstrating that both 1st flow-matching and EDM mod-
els rely on similar formulations. Unlike DDPMs, which use noise prediction, flow-matching and
EDM focus on data or velocity prediction, resulting in improved performance and faster conver-
gence. This shift from noise prediction to data prediction is particularly critical at t = T , where
noise prediction tends to be unstable and leads to cumulative errors. As noted by Balaji et al. (2022),
attention activation near t = T grows stronger, highlighting the necessity of accurate predictions at
this key moment in the sampling process.

As discussed in Lu (2023), the behavior of diffusion models near t = T reveals that when t ≈ T,
the data distribution resembles noise, and noise prediction approaches randomness. The challenge
arises because the errors made at t = T propagate through all subsequent sampling steps, making it
crucial for the sampler to be particularly precise near this time step. Based on Tweedie’s formula,
the gradient of the log density at time t, ∇xt

log qt(xt), is approximated by:

∇xt
log qt(xt) = −

xt − αtEq0t(x0|xt)[x0]

σ2
t

. (2)
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When t ≈ T , x0 and xt become conditionally independent, leading to q0t(x0 | xt) ≈ q0(x0).
Consequently, the noise prediction model’s optimal solution becomes:

ϵθ(xt, t) ≈ −σt∇xt
log qt(xt) ≈

xt − αtEq0(x0)[x0]

σt
. (3)

Since Eq0(x0)[x0] is independent of xt, the noise prediction model simplifies to a linear function of
xt. However, as discussed in Section 5.2.1, this additional linearity can result in more accumulated
errors during sampling, explaining why the original DPM-Solver struggles with guided sampling in
such cases.

To address this issue and improve stability, DPM-Solver (Lu et al., 2022a) proposes modifying the
noise prediction model to a more stable parameterization. By subtracting all linear terms inspired by
equation 3, the remaining term is proportional to Eq0(x0)[x0], corresponding to the data prediction
model. Specifically, when t ≈ T , the data prediction model approximates a constant:

xθ(xt, t) ≈
xt + σ2

t∇xt log qt(xt)

αt
≈ Eq0(x0)[x0]. (4)

Thus, for t ≈ T , the data prediction model becomes approximately constant, and the discretiza-
tion error for integrating this constant is significantly smaller than for the linear noise prediction
model. This insight guides our development of an improved Flow-DPM-Solver based on DPM-
Solver++ (Lu et al., 2022b), which adapts a velocity prediction model Sana to a data prediction one,
enhancing performance for guided sampling.

Flow-based DPM-Solver Algorithm. We present the rectified flow-based DPM-Solver sampling
process in Algorithm 1. This modified algorithm incorporates several key changes: hyper-parameter
and time-step transformations, as well as model output transformations. These adjustments are
highlighted in blue to differentiate them from the original solver.

In addition to improvements in FID and CLIP-Score, which are shown in Figure 8 of the main
paper, our Flow-DPM-Solver also demonstrates superior convergence speed and stability compared
to the Flow-Euler sampler. As illustrated in Figure 10, Flow-DPM-Solver retains the strengths of
the original DPM-Solver, converging in only 10-20 steps to produce stable, high-quality images. By
comparison, the Flow-Euler sampler typically requires 30-50 steps to reach a stable result.

Algorithm 1 Flow-DPM-Solver (Modified from DPM-Solver++)

Require: initial value xT , time steps {ti}Mi=0, data prediction model xθ , velocity prediction model vθ , time-
step shift factor s

1: Denote hi := λti − λti−1 for i = 1, . . . ,M

2: σ̃ti =
s·σti

1+(s−1)·σti
, αti = 1− σ̃ti ▷ Hyper-parameter and Time-step transformation

3: xθ(x̃ti , ti) = x̃ti − σ̃tivθ(x̃ti , ti) ▷ Model output transformation
4: x̃t0 ← xT . Initialize an empty buffer Q.
5: Qbuffer ← xθ(x̃t0 , t0)

6: x̃t1 ←
σ̃t1
σ̃t0

x̃t0 − αt1

(
e−h1 − 1

)
xθ(x̃t0 , t0)

7: Qbuffer ← xθ(x̃t1 , t1)
8: for i = 2 to M do
9: ri ← hi−1

hi

10: Di ←
(
1 + 1

2ri

)
xθ(x̃ti−1 , ti−1)− 1

2ri
xθ(x̃ti−2 , ti−2)

11: x̃ti ←
σ̃ti

σ̃ti−1
x̃ti−1 − αti

(
e−hi − 1

)
Di

12: if i < M then
13: Qbuffer ← xθ(x̃ti , ti)
14: end if
15: end for
16: return x̃tM

Multi-Caption Auto-labeling Pipeline. In Figure 12, we present the results of our CLIP-Score-
based multi-caption auto-labeling pipeline, where each image is paired with its original prompt and
4 captions generated by different powerful VLMs. These captions complement each other, enhanc-
ing semantic alignment through their variations.
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Done
50 steps 5 steps 8 steps 14 steps 20 steps

Flow-DPM-SolverFlow-Euler

Figure 10: Visual comparison of Flow-Euler Sampler with 50 steps and Flow-DPM-Solver with
5/8/14/20 steps.

Done

Original images DC-AE-F32C32 SDXL-VAE-F8C4

Figure 11: Comparison between the original images, our DC-AE-F32C32 (Chen et al., 2024c) and
SDXL’s VAE-F8C4.
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Caption_original (ClipScore: 25.67)
top view the written " HAPPY VALENTINE " on a tart chocolate cake, black wood background 

Caption_VILA-13B (ClipScore: 26.33)
The image captures a delightful scene of a Valentine's Day celebration. At the center of the image is a round chocolate cake, rich 
and inviting. The cake is adorned with a red heart on top, symbolizing love and affection. The words "Happy Valentine's" are 
elegantly written in red icing on the cake, adding to the festive atmosphere. The cake is placed on a wooden table, which provides a 
rustic charm to the setting. Scattered around the cake are red heart-shaped confetti, further enhancing the Valentine's theme. In the 
background, there's a hint of a bouquet of red roses, a classic symbol of love and romance. The roses are slightly blurred, drawing 
focus to the cake in the foreground. Overall, the image beautifully encapsulates the spirit of Valentine's Day, with its focus on love, 
affection, and celebration. 

Caption_VILA-3B (ClipScore: 25.46)
The image captures a delightful scene of a Valentine's Day celebration. At the center of the frame is a round chocolate cake, its 
surface adorned with a glossy chocolate ganache. The cake is further embellished with a scattering of chocolate shavings and a 
heart-shaped topper, adding to its festive appeal. The cake is placed on a wooden surface, which provides a rustic contrast to the 
rich, dark color of the chocolate. The background is dark, allowing the cake to stand out prominently. Adding to the Valentine's Day 
theme, red heart-shaped sprinkles are scattered around the cake, their vibrant color popping against the dark backdrop. The cake is 
positioned slightly off-center, drawing the viewer's attention to it. The overall composition of the image suggests a carefully arranged 
celebration, with the cake as the star of the show. The image does not contain any discernible text. The relative positions of the 
objects and their detailed descriptions provide a comprehensive understanding of the image content. 

Caption_InternVL2-26B (ClipScore: 25.57)
The image features a beautifully decorated chocolate cake placed on a dark wooden surface. The cake is richly covered in a layer
of dark chocolate ganache, giving it a smooth and glossy appearance. The top of the cake is adorned with piped chocolate swirls 
and heart- shaped decorations, adding a touch of elegance and romance. At the center of the cake, the words "HAPPY 
VALENTINE" are written in bold, red icing, creating a striking contrast against the dark chocolate background. Surrounding the 
cake, there are additional heart- shaped decorations in red, some of which are placed on the wooden surface, while others are 
scattered around the cake. The overall setting is warm and inviting, with a rustic wooden background that complements the rich, 
indulgent nature of the chocolate cake. The use of red hearts and the "HAPPY VALENTINE" message clearly indicate that this 
cake is intended for a Valentine's Day celebration 

Caption_InternVL2-8B (ClipScore: 26.37)
The image features a beautifully decorated chocolate cake with a heartfelt Valentine's Day message. The cake is round and sits on 
a dark, rustic wooden surface. The cake is covered in a rich, dark chocolate ganache, and it is adorned with a generous amount of 
chocolate shavings and crushed nuts, giving it a luxurious and indulgent appearance. At the top of the cake, the words "HAPPY
VALENTINE" are written in bold, red icing, creating a striking contrast against the dark chocolate. The icing is piped in a slightly 
uneven, handwritten style, adding a personal touch to the message. Surrounding the cake are several red heart-shaped 
decorations, some of which are whole and others that are broken into smaller pieces, scattered around the cake. These hearts add
to the romantic and festive theme of the cake. The cake is placed on a dark, round cake board, which complements the rustic 
wooden background. The overall presentation is elegant and festive, making it perfect for a Valentine's Day celebration 

Figure 12: Illustration of re-caption of an image with multiple VLMs.

Discussion: CLIP Text Encoder’s Input Token Length limitation. Sana primarily uses the CLIP
model to score the caption as the selective strategy during training. The 77-token limitation of the
original CLIP model may seem restrictive. However, after extensive observation, we found that the
most valuable content typically appears in the first half of the caption, such as “The image captures
$content of image$...”, that is, 77-token length is typically sufficient to encapsulate essential se-
mantic information for our purposes. Consequently, we believe that the CLIP-Score based on 77
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tokens still offers valuable insights and relevance for assessing caption quality in our context. In the
future, we will attempt to fine-tune a larger context-length CLIP model or use more advanced VLM
to score the text-image pairs.

Triton Acceleration Training/Inference Detail. This section describes how to accelerate the train-
ing inference with kernel fusion using Triton. Specifically, for the forward pass, the ReLU activa-
tions are fused to the end of QKV projection, the precision conversions and padding operations are
fused to the start of KV and QKV multiplications, and the divisions are fused to the end of QKV
multiplication. For the backward pass, the divisions are fused to the end of the output projection, and
the precision conversions and ReLU activations are fused to the end of KV and QKV multiplications.

2K/4K Fine-tuning. We reintroduce Positional Encoding (PE) to improve performance during the
fine-tuning of 2K models on top of 1K models. For fine-tuning 4K models based on 2K models,
we apply the same PE interpolation strategy used in Chen et al. (2024a). The training process with
the addition of positional encoding (PE) converges remarkably quickly, typically within just 10K
iterations.

Positional Embedding. As previously discussed, positional embeddings can be effectively re-
implemented in just a few training steps. Specifically, our experiments demonstrate that the model
rapidly adapts to the absolute positional embedding, utilizing the sin-cos formulation, through a
brief fine-tuning process. This adaptation occurs within merely 10K training steps, using a total
batch size of 1024.

Definition of Gemma2-2B-IT. Gemma2 (Team et al., 2024b) is a family of lightweight, state-of-the-
art open models from Google, built from the same research and technology used to create the Gemini
models. The specific Gemma we use in Sana is the Gemma-2-2B-IT (Team, 2024) version. ”IT”
here represents the model is Instruct-Tuned for better prompt following and chat ability, experiments
show that instruction-following tuned versions are superior to non-Instruction-Tuned models, as
shown in Table 9.

C MORE RESULTS

Comparison Between Autoencoders Figure 11 illustrates the visual differences between the orig-
inal images and the reconstructions generated by two distinct models: our DC-AE-F32C32 (Chen
et al., 2024c) and SDXL’s VAE-F8C4. Both models deliver reconstructions nearly indistinguishable
from the original images, showcasing their powerful encoding and decoding capabilities.

Ablation on Sana Blocks. Table 13 describes how different block designs affect performance.
Directly switching from DiT’s self-attention to linear attention will result in FID and Clip Score
performance loss, but adding Mix-FFN can compensate for the performance loss. Adding triton
kernel fusion can speed up training/inference without negatively impacting performance.

Compare SANA’s CHI with LiDiT’s SHI. LiDiT (Ma et al., 2024) is the first work that attempts
to promote the reasoning ability of LLM through relatively simple human instruction(SHI).
Additionally, LiDiT is necessary to fine-tune the last few layers of the LLM model, which increases
the training cost and pipeline complexity. In contrast, our CHI designs more complex prompt
templates and utilizes in-context-learning techniques, which can fully stimulate LLM’s high-order
reasoning ability, extract better text embedding, and thus improve semantic alignment capabilities.

Table 10: Comparison of CHI vs. SHI perfor-
mance on GenEval metric during fine-tuning.

Training Step CHI SHI
+2K steps 0.636 0.617
+5K steps 0.642 0.626

Complex Human Instruction Analysis. To
observe the effectiveness of CHI, we input the
user prompt with/without CHI into Gemma-
2. We believe a strong positive correlation ex-
ists between LLM output and text embedding
quality. As shown in Figure 13, without CHI,
although Gemma-2 can understand the mean-
ing of the input, the output is conversational
and does not focus on understanding the user
prompt itself. After adding CHI, Gemma-2’s output is better focused on understanding and enhanc-
ing the details of the user prompt. Besides, as illustrated in Table 10, we fine-tune both CHI and SHI
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settings from a pre-trained model without human instructions. After 2K and 5K fine-tuning steps,
CHI consistently shows better GenEval performance.

Detailed Results on DPG-Bench, GenEval and ImageReward. As an extension of Table. 7 in the
main paper, we show all the metric details of GenEval, DPG-Bench, and ImageReward for reference
in Table 11 and Table 12 respectively.

Finding: Zero-shot Language Transfer Ability. As shown in Figure 14, we were surprised to find
that by using Gemma-2 as the text encoder and Chinese/Emoji expressions as text prompts; our Sana
can also understand and generate corresponding images. Note that we filter out all prompts other
than English during training, so Gemma-2 brings the zero-shot generation capability of Chinese/E-
moji.

w/o complex human Instruction

A man is walking <Complex Human Instruction> + A man is
walking

Given a user prompt, generate an "Enhanced prompt" that provides detailed visual descriptions suitable for image 
generation. Evaluate the level of detail in the user prompt:
- If the prompt is simple, focus on adding specifics about colors, shapes, sizes, textures, and spatial relationships to 
create vivid and concrete scenes.
- If the prompt is already detailed, refine and enhance the existing details slightly without overcomplicating.

Here are examples of how to transform or refine prompts:
- User Prompt: A cat sleeping -> Enhanced: A small, fluffy white cat curled up in a round shape, sleeping peacefully on a 
warm sunny windowsill, surrounded by pots of blooming red flowers.
- User Prompt: A busy city street -> Enhanced: A bustling city street scene at dusk, featuring glowing street lamps, a 
diverse crowd of people in colorful clothing, and a double-decker bus passing by towering glass skyscrapers.

Please generate only the enhanced description for the prompt below and avoid including any additional commentary or 
evaluations:
User Prompt:

Complex Human Instruction

Gemma Input Gemma Input

w/ complex human Instruction

A man in a worn leather jacket walks briskly down a 
cobblestone street, his head downcast, his silhouette 
framed by the setting sun. He wears a faded blue scarf 
around his neck and carries a worn leather briefcase. The 
cobblestones are worn smooth by time and weather, and 
the street is lined with quaint, brightly painted buildings.

That's a great start! To make this more interesting, tell me 
more about the man and his walk.
For example:
* **Where is he walking?** A bustling city street? A quiet 
forest path?
* **What is he carrying?** A briefcase? A picnic basket? A 
dog?
* **What is his mood?** Happy and carefree? Stressed 
and hurried? Lost in thought?
* **What is the weather like?** Sunny and warm? Rainy 
and cold? Snowy and crisp?
The more details you give me, the more vivid and 
engaging the story can be!

Gemma Output Gemma Output

Figure 13: Illustration of Gemma-2’s output with/without complex human instruction, and the full
prompt of our complex human instruction.

Detailed Speed Comparison of Text Encoder. In Table 14, we compare the latency and parameters
for various T5 models alongside the Gemma models. Notably, the Gemma-2B model exhibits a
similar latency to T5-large while significantly increasing the model size. This enhancement in model
size is a key factor in achieving improved capabilities with greater efficiency.

Detailed Speed Comparison of Diffusion Model. In Table 15, we compare the throughput and
latency of the mainstream DiT-based text-to-image method and our model in detail and test them
at resolutions of 512, 1024, 2048, and 4096, respectively. Our Sana is far ahead of other methods
at different resolutions. As the resolution increases, the efficiency advantage of our Sana becomes
more significant.

More Visualization Images. As shown in Figure 15, we can see that 4K images can directly
generate more details than 1k images. In Figure 16, we show more images generated by our model
with various prompts. We also provide a video mp4 demo in the supplementary material (zip file) to
show that Sana is deployed on a laptop.
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Table 11: Comparison of SOTA methods on GenEval with details. The table includes different
metrics such as overall performance, single object, two objects, counting, colors, position, and color
attribution.

Model Params (B) Overall ↑ Objects Counting Colors Position Color
Single Two Attribution

512 ×512 resolution
PixArt-α 0.6 0.48 0.98 0.50 0.44 0.80 0.08 0.07
PixArt-Σ 0.6 0.52 0.98 0.59 0.50 0.80 0.10 0.15

Sana-0.6B (Ours) 0.6 0.64 0.99 0.71 0.63 0.91 0.16 0.42
Sana-1.6B (Ours) 0.6 0.66 0.99 0.79 0.63 0.88 0.18 0.47

1024 ×1024 resolution
LUMINA-Next (Zhuo et al., 2024) 2.0 0.46 0.92 0.46 0.48 0.70 0.09 0.13
SDXL (Podell et al., 2023) 2.6 0.55 0.98 0.74 0.39 0.85 0.15 0.23
PlayGroundv2.5 (Li et al., 2024a) 2.6 0.56 0.98 0.77 0.52 0.84 0.11 0.17
Hunyuan-DiT (Li et al., 2024c) 1.5 0.63 0.97 0.77 0.71 0.88 0.13 0.30
DALLE3 (OpenAI, 2023) - 0.67 0.96 0.87 0.47 0.83 0.43 0.45
SD3-medium (Esser et al., 2024) 2.0 0.62 0.98 0.74 0.63 0.67 0.34 0.36
FLUX-dev (Labs, 2024) 12.0 0.67 0.99 0.81 0.79 0.74 0.20 0.47
FLUX-schnell (Labs, 2024) 12.0 0.71 0.99 0.92 0.73 0.78 0.28 0.54

Sana-0.6B (Ours) 0.6 0.64 0.99 0.76 0.64 0.88 0.18 0.39
Sana-1.6B (Ours) 1.6 0.66 0.99 0.77 0.62 0.88 0.21 0.47

Table 12: Comparison of SOTA methods on DPG-Bench and ImageReward with details. The
table includes different metrics such as overall performance, entity, attribute, relation, and other
categories.

Model Params (B) Overall ↑ Global Entity Attribute Relation Other ImageReward ↑
512 ×512 resolution
PixArt-α (Chen et al., 2024b) 0.6 71.6 81.7 80.1 80.4 81.7 76.5 0.92
PixArt-Σ (Chen et al., 2024a) 0.6 79.5 87.5 87.1 86.5 84.0 86.1 0.97

Sana-0.6B (Ours) 0.6 84.3 82.6 90.0 88.6 90.1 91.9 0.93
Sana-1.6B (Ours) 0.6 85.5 90.3 91.2 89.0 88.9 92.0 1.04
1024 ×1024 resolution
LUMINA-Next (Zhuo et al., 2024) 2.0 74.6 82.8 88.7 86.4 80.5 81.8 -
SDXL (Podell et al., 2023) 2.6 74.7 83.3 82.4 80.9 86.8 80.4 0.69
PlayGroundv2.5 (Li et al., 2024a) 2.6 75.5 83.1 82.6 81.2 84.1 83.5 1.09
Hunyuan-DiT (Li et al., 2024c) 1.5 78.9 84.6 80.6 88.0 74.4 86.4 0.92
PixArt-Σ (Chen et al., 2024a) 0.6 80.5 86.9 82.9 88.9 86.6 87.7 0.87
DALLE3 (OpenAI, 2023) - 83.5 91.0 89.6 88.4 90.6 89.8 -
SD3-medium (Esser et al., 2024) 2.0 84.1 87.9 91.0 88.8 80.7 88.7 0.86
FLUX-dev (Labs, 2024) 12.0 84.0 82.1 89.5 88.7 91.1 89.4 -
FLUX-schnell (Labs, 2024) 12.0 84.8 91.2 91.3 89.7 86.5 87.0 0.91

Sana-0.6B (Ours) 0.6 83.6 83.0 89.5 89.3 90.1 90.2 0.97
Sana-1.6B (Ours) 1.6 84.8 86.0 91.5 88.9 91.9 90.7 0.99

Done
🐱  Wearing 🕶  flying on the 🌈 🐔   in the ❄ 在灿烂的阳光照耀下，⻄湖⽔微

波粼粼，波光艳丽，看起来很美
塞北的天空⼋⽉就飘降⼤雪

Figure 14: Visualization of zero-shot language transfer ability. Our Sana only has English prompts
during training but can understand Chinese/Emoji during inference. This benefits from the general-
ization brought by the powerful pre-training of Gemma-2.
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Table 13: Performance of Sana block design space. We train all the models with the same training
setting with 52K iterations.

Blocks AE Res. FID ↓ CLIP ↑
FullAttn & FFN F8C4P2 256 18.7 24.9

+ Linear F8C4P2 256 21.5 23.3
+ MixFFN F8C4P2 256 18.9 24.8

+ Kernel Fusion F8C4P2 256 18.8 24.8

Linear+GLUMBConv2.5 F32C32P1 512 6.4 27.4
+ Kernel Fusion F32C32P1 512 6.4 27.4

Table 14: Comparison of various T5 models and Gemma models based on speed and parameters.
The sequence length (Seq Len) is the number of text tokens.

Text Encoder Batch Size Seq Len Latency (s) Params (M)
T5-XXL

32 300

1.6 4762
T5-XL 0.5 1224
T5-large 0.2 341
T5-base 0.1 110
T5-small 0.0 35
Gemma-2b 0.2 2506
Gemma-2-2b 0.3 2614

D DISCUSSION OF POTENTIAL MISUSE OF SANA

Misusing generative AI models to generate NSFW content is a challenging issue for the community.
To enhance safety, we have equipped SANA together with a safety check model (e.g. ShieldGemma-
2B (Zeng et al., 2024)). Specifically, the user prompt will first be sent to the safety check model
to determine whether it contains NSFW(not safe for work) content. If the user prompt does not
contain NSFW, it will continue to be sent to Sana to generate an image. If the user prompt contains
NSFW content, the request will be rejected. After extensive testing, we found that ShieldGemma
can perfectly filter out NSFW prompts entered by users under strict thresholds and our pipeline will
not create harmful AI-generated content.

Table 15: Comparison of throughput and latency under different resolutions. All models tested on
an A100 GPU with FP16 precision.

Methods Speedup Throughput(/s) Latency(ms) Methods Speedup Throughput(/s) Latency(ms)

512×512 Resolution 1024×1024 Resolution

SD3 7.6x 1.14 1.4 SD3 7.0x 0.28 4.4
FLUX-schnell 10.5x 1.58 0.7 FLUX-schnell 12.5x 0.50 2.1
FLUX-dev 1.0x 0.15 7.9 FLUX-dev 1.0x 0.04 23
PixArt-Σ 10.3x 1.54 1.2 PixArt-Σ 10.0x 0.40 2.7
HunyuanDiT 1.3x 0.20 5.1 HunyuanDiT 1.2x 0.05 18
Sana-0.6B 44.5x 6.67 0.8 Sana-0.6B 43.0x 1.72 0.9
Sana-1.6B 25.6x 3.84 0.6 Sana-1.6B 25.2x 1.01 1.2

2048×2048 Resolution 4096×4096 Resolution

SD3 5.0x 0.04 22 SD3 4.0x 0.004 230
FLUX-schnell 11.2x 0.09 10.5 FLUX-schnell 13.0x 0.013 76
FLUX-dev 1.0x 0.008 117 FLUX-dev 1.0x 0.001 1023
PixArt-Σ 7.5x 0.06 18.1 PixArt-Σ 5.0x 0.005 186
HunyuanDiT 1.2x 0.01 96 HunyuanDiT 1.0x 0.001 861
Sana-0.6B 53.8x 0.43 2.5 Sana-0.6B 104.0x 0.104 9.6
Sana-1.6B 31.2x 0.25 4.1 Sana-1.6B 66.0x 0.066 5.9
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4096x4096 1024x1024

Figure 15: Comparison of 4K and 1K resolution images. We can see that the 4K image contains
more details.
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working

a cyberpunk 
cat with a 
neon sign 
that says 

"Fast"

Res:3168x4256

A hot air balloon in the shape of a heart. 
Grand Canyon

 a blue Porsche 356 parked in front of a 
yellow brick wall.

A curvy timber house near a sea, designed by Zaha 
Hadid, represents the image of a cold, modern 

architecture, at night, white lighting, highly detailed

an avocado wearing a royal crown and robe, seated on a 
throne in a grand, opulent setting. The scene is 

surrounded by other avocados, also adorned with crowns.
A portrait of a human growing colorful flowers from her hair. Hyperrealistic oil 

painting. Intricate details. 

Astronaut in a jungle, cold color palette, muted colors, detailed, 8k
a stunning and luxurious bedroom carved into a rocky mountainside seamlessly blending 

nature with modern design with a plush earth-toned bed textured stone walls circular 
fireplace massive uniquely shaped window framing snow-capped mountains dense forests

a black and white picture of a woman looking through the window, in the 
style of Duffy Sheridan, Anna Razumovskaya, smooth and shiny, wavy, 

Patrick Demarchelier, album covers, lush and detailed

an old rusted robot wearing pants and a jacket riding 
skis in a supermarket.

cartoon dog sits at a table, coffee mug on hand, as a room 
goes up in flames. "Help" the dog is yelling

Figure 16: More samples generated from Sana.
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