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1 FULL RELATED WORK

Efficient Diffusion Transformers. The introduction of Diffusion Transformers (DiT) (Peebles &
Xie, 2023) marked a significant shift in image generation models, replacing the traditional U-Net ar-
chitecture with a transformer-based approach. This innovation paved the way for more efficient and
scalable diffusion models. Building upon DiT, PixArt-α (Chen et al., 2024b) extended the concept to
text-to-image generation, demonstrating the versatility of transformer-based diffusion models. Sta-
ble Diffusion 3 (SD3) (Esser et al., 2024) further advanced the field by proposing the Multi-modal
Diffusion Transformer (MM-DiT), which effectively integrates text and image modalities. More
recently, Flux (Labs, 2024) showcased the potential of DiT architectures in high-resolution image
generation by scaling up to 12B parameters. In addition, earlier works like CAN (Cai et al., 2024)
explored linear attention mechanisms in class-condition image generation.

Text Encoders in Image Generation. The evolution of text encoders in image generation models
has significantly impacted the field’s progress. Initially, Latent Diffusion Models (LDM) (Rombach
et al., 2022) adopted OpenAI’s CLIP as the text encoder, leveraging its pre-trained visual-linguistic
representations. A paradigm shift occurred with the introduction of Imagen (Saharia et al., 2022),
which employed the T5-XXL language model as its text encoder, demonstrating superior text under-
standing and generation capabilities. Subsequently, eDiff-I (Balaji et al., 2022) proposed a hybrid
approach, ensemble T5-XXL and CLIP encoders to combine their respective strengths in language
comprehension and visual-textual alignment. Recent advancements, such as Playground v3 (Li
et al., 2024a), have explored the use of decoder-only Large Language Models (LLMs) as text en-
coders, potentially offering more nuanced text understanding and generation. This trend towards
more sophisticated text encoders reflects the ongoing pursuit of improved text-to-image alignment
and generation quality in the field.

On Device Deployment. Several studies have explored post-training quantization (PTQ) techniques
to optimize diffusion model inference for edge devices. Research in this area has focused on cal-
ibration objectives and data acquisition methods. BRECQ (Li et al., 2021) incorporates Fisher in-
formation into the objective function. ZeroQ (Cai et al., 2020) uses distillation to generate proxy
input images for PTQ. SQuant (Guo et al., 2022) employs random samples with objectives based
on Hessian spectrum sensitivity. Recent work such as Q-Diffusion (Li et al., 2023) has achieved
high-quality generation using only 4-bit weights. In our work, we choose W8A8 to reduce peak
memory usage.

2 MORE IMPLEMENTATION DETAILS

Rectified-Flow vs. DDPM. In our theoretical analysis, we investigate the reasons behind the fast
convergence of flow-matching methods, demonstrating that both 1st flow-matching and EDM mod-
els rely on similar formulations. Unlike DDPMs, which use noise prediction, flow-matching and
EDM focus on data or velocity prediction, resulting in improved performance and faster conver-
gence. This shift from noise prediction to data prediction is particularly critical at t = T , where
noise prediction tends to be unstable and leads to cumulative errors. As noted by Balaji et al. (2022),
attention activation near t = T grow stronger, highlighting the necessity of accurate predictions at
this key moment in the sampling process.

As discussed in Lu (2023), the behavior of diffusion models near t = T reveals that when t ≈ T,
the data distribution resembles noise, and noise prediction approaches randomness. The challenge
arises because the errors made at t = T propagate through all subsequent sampling steps, making it
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crucial for the sampler to be particularly precise near this time step. Based on Tweedie’s formula,
the gradient of the log density at time t, ∇xt

log qt(xt), is approximated by:

∇xt log qt(xt) = −
xt − αtEq0t(x0|xt)[x0]

σ2
t

. (1)

When t ≈ T , x0 and xt become conditionally independent, leading to q0t(x0 | xt) ≈ q0(x0).
Consequently, the noise prediction model’s optimal solution becomes:

ϵθ(xt, t) ≈ −σt∇xt
log qt(xt) ≈

xt − αtEq0(x0)[x0]

σt
. (2)

Since Eq0(x0)[x0] is independent of xt, the noise prediction model simplifies to a linear function of
xt. However, as discussed in Section 5.2.1, this additional linearity can result in more accumulated
errors during sampling, explaining why the original DPM-Solver struggles with guided sampling in
such cases.

To address this issue and improve stability, DPM-Solver (Lu et al., 2022a) proposes modifying the
noise prediction model to a more stable parameterization. By subtracting all linear terms inspired by
equation 2, the remaining term is proportional to Eq0(x0)[x0], corresponding to the data prediction
model. Specifically, when t ≈ T , the data prediction model approximates a constant:

xθ(xt, t) ≈
xt + σ2

t∇xt
log qt(xt)

αt
≈ Eq0(x0)[x0]. (3)

Thus, for t ≈ T , the data prediction model becomes approximately constant, and the discretiza-
tion error for integrating this constant is significantly smaller than for the linear noise prediction
model. This insight guides our development of an improved Flow-DPM-Solver based on DPM-
Solver++ (Lu et al., 2022b), which adapts a velocity prediction model SANA to a data prediction
one, enhancing performance for guided sampling.

Flow-based DPM-Solver Algorithm. We present the rectified flow-based DPM-Solver sampling
process in Algorithm 1. This modified algorithm incorporates several key changes: hyper-parameter
and time-step transformations, as well as model output transformations. These adjustments are
highlighted in blue to differentiate them from the original solver.

In addition to improvements in FID and CLIP-Score, which are shown in Figure 8 of the main
paper, our Flow-DPM-Solver also demonstrates superior convergence speed and stability compared
to the Flow-Euler sampler. As illustrated in Figure 1, Flow-DPM-Solver retains the strengths of the
original DPM-Solver, converging in only 10-20 steps to produce stable, high-quality images. By
comparison, the Flow-Euler sampler typically requires 30-50 steps to reach a stable result.

Done
50 steps 5 steps 8 steps 14 steps 20 steps

Flow-DPM-SolverFlow-Euler

Figure 1: Visual comparison of Flow-Euler Sampler with 50 steps and Flow-DPM-Solver with
5/8/14/20 steps.

Multi-Caption Auto-labelling Pipeline. In Figure 2, we present the results of our CLIP-Score-
based multi-caption auto-labelling pipeline, where each image is paired with its original prompt
and 4 captions generated by different powerful VLMs. These captions complement each other,
enhancing semantic alignment through their variations.

Triton Acceleration Training/Inference Detail. This section describes how to accelerate the train-
ing inference with kernel fusion using Triton. Specifically, for the forward pass, the ReLU activation
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Algorithm 1 Flow-DPM-Solver (Modified from DPM-Solver++)
Require: initial value xT , time steps {ti}Mi=0, data prediction model xθ , velocity prediction model vθ , time-

step shift factor s
1: Denote hi := λti − λti−1 for i = 1, . . . ,M

2: σ̃ti =
s·σti

1+(s−1)·σti
, αti = 1− σ̃ti ▷ Hyper-parameter and Time-step transformation

3: xθ(x̃ti , ti) = x̃ti − σ̃tivθ(x̃ti , ti) ▷ Model output transformation
4: x̃t0 ← xT . Initialize an empty buffer Q.
5: Qbuffer ← xθ(x̃t0 , t0)

6: x̃t1 ←
σ̃t1
σ̃t0

x̃t0 − αt1

(
e−h1 − 1

)
xθ(x̃t0 , t0)

7: Qbuffer ← xθ(x̃t1 , t1)
8: for i = 2 to M do
9: ri ← hi−1

hi

10: Di ←
(
1 + 1

2ri

)
xθ(x̃ti−1 , ti−1)− 1

2ri
xθ(x̃ti−2 , ti−2)

11: x̃ti ←
σ̃ti

σ̃ti−1
x̃ti−1 − αti

(
e−hi − 1

)
Di

12: if i < M then
13: Qbuffer ← xθ(x̃ti , ti)
14: end if
15: end for
16: return x̃tM

are fused to the end of QKV projection, the precision conversions and padding operations are fused
to the start of KV and QKV multiplications, and the divisions are fused to the end of QKV multi-
plication. For the backward pass, the divisions are fused to the end of the output projection, and the
precision conversions and ReLU activation are fused to the end of KV and QKV multiplications.

3 MORE RESULTS

Ablation on SANA Blocks. Table 3 describes how different block designs affect performance.
Directly switching from DiT’s self-attention to linear attention will result in FID and Clip Score
performance loss, but adding Mix-FFN can compensate for the performance loss. Adding triton
kernel fusion can speed up training/inference without negatively impacting performance.

Complex Human Instruction Analysis. To observe the effectiveness of CHI, we input the user
prompt with/without CHI into Gemma-2. We believe a strong positive correlation exists between
LLM output and text embedding quality. As shown in Figure 3, without CHI, although Gemma-2 can
understand the meaning of the input, the output is conversational and does not focus on understand-
ing the user prompt itself. After adding CHI, Gemma-2’s output is better focused on understanding
and enhancing the details of the user prompt.

Detailed Results on DPG-Bench, GenEval and ImageReward. As an extension of Table. 7 in the
main paper, we show all the metric details of GenEval, DPG-Bench and ImageReward for reference
in Table 1 and Table 2 respectively.

Finding: Zero-shot Language Transfer Ability. As shown in Figure 4, we were surprised to
find that by using Gemma-2 as the text encoder and Chinese/Emoji expressions as text prompts;
our SANA can also understand and generate corresponding images. Note that we filter out all
prompts other than English during training, so the zero-shot generation capability of Chinese/Emoji
is brought by Gemma-2.

Detailed Speed Comparison of Text Encoder. In Table 4, we present a comparison of the latency
and parameters for various T5 models alongside the Gemma models. Notably, the Gemma-2B
model exhibits a similar latency to T5-large while significantly increasing the model size. This
enhancement in model size is a key factor in achieving improved capabilities with greater efficiency.

Detailed Speed Comparison of Diffusion Model. In Table 5, we compare the throughput and
latency of the mainstream DiT-based text-to-image method and our model in detail and test them at
resolutions of 512, 1024, 2048, and 4096, respectively. Our SANA is far ahead of other methods at
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Table 1: Comparison of SOTA methods on GenEval with details. The table includes different
metrics such as overall performance, single object, two objects, counting, colors, position, and color
attribution.

Model Params (B) Overall ↑ Objects Counting Colors Position Color
Single Two Attribution

512 ×512 resolution
PixArt-α 0.6 0.48 0.98 0.50 0.44 0.80 0.08 0.07
PixArt-Σ 0.6 0.52 0.98 0.59 0.50 0.80 0.10 0.15

SANA-0.6B (Ours) 0.6 0.64 0.99 0.71 0.63 0.91 0.16 0.42
SANA-1.6B (Ours) 0.6 0.66 0.99 0.79 0.63 0.88 0.18 0.47

1024 ×1024 resolution
LUMINA-Next (Zhuo et al., 2024) 2.0 0.46 0.92 0.46 0.48 0.70 0.09 0.13
SDXL (Podell et al., 2023) 2.6 0.55 0.98 0.74 0.39 0.85 0.15 0.23
PlayGroundv2.5 (Li et al., 2024a) 2.6 0.56 0.98 0.77 0.52 0.84 0.11 0.17
Hunyuan-DiT (Li et al., 2024b) 1.5 0.63 0.97 0.77 0.71 0.88 0.13 0.30
DALLE3 (OpenAI, 2023) - 0.67 0.96 0.87 0.47 0.83 0.43 0.45
SD3-medium (Esser et al., 2024) 2.0 0.62 0.98 0.74 0.63 0.67 0.34 0.36
FLUX-dev (Labs, 2024) 12.0 0.67 0.99 0.81 0.79 0.74 0.20 0.47
FLUX-schnell (Labs, 2024) 12.0 0.71 0.99 0.92 0.73 0.78 0.28 0.54

SANA-0.6B (Ours) 0.6 0.64 0.99 0.76 0.64 0.88 0.18 0.39
SANA-1.6B (Ours) 1.6 0.66 0.99 0.77 0.62 0.88 0.21 0.47

Table 2: Comparison of SOTA methods on DPG-Bench and ImageReward with details. The
table includes different metrics such as overall performance, entity, attribute, relation, and other
categories.

Model Params (B) Overall ↑ Global Entity Attribute Relation Other ImageReward ↑
512 ×512 resolution
PixArt-α (Chen et al., 2024b) 0.6 71.6 81.7 80.1 80.4 81.7 76.5 0.92
PixArt-Σ (Chen et al., 2024a) 0.6 79.5 87.5 87.1 86.5 84.0 86.1 0.97

SANA-0.6B (Ours) 0.6 84.3 82.6 90.0 88.6 90.1 91.9 0.93
SANA-1.6B (Ours) 0.6 85.5 90.3 91.2 89.0 88.9 92.0 1.04
1024 ×1024 resolution
LUMINA-Next (Zhuo et al., 2024) 2.0 74.6 82.8 88.7 86.4 80.5 81.8 -
SDXL (Podell et al., 2023) 2.6 74.7 83.3 82.4 80.9 86.8 80.4 0.69
PlayGroundv2.5 (Li et al., 2024a) 2.6 75.5 83.1 82.6 81.2 84.1 83.5 1.09
Hunyuan-DiT (Li et al., 2024b) 1.5 78.9 84.6 80.6 88.0 74.4 86.4 0.92
PixArt-Σ (Chen et al., 2024a) 0.6 80.5 86.9 82.9 88.9 86.6 87.7 0.87
DALLE3 (OpenAI, 2023) - 83.5 91.0 89.6 88.4 90.6 89.8 -
SD3-medium (Esser et al., 2024) 2.0 84.1 87.9 91.0 88.8 80.7 88.7 0.86
FLUX-dev (Labs, 2024) 12.0 84.0 82.1 89.5 88.7 91.1 89.4 -
FLUX-schnell (Labs, 2024) 12.0 84.8 91.2 91.3 89.7 86.5 87.0 0.91

SANA-0.6B (Ours) 0.6 83.6 83.0 89.5 89.3 90.1 90.2 0.97
SANA-1.6B (Ours) 1.6 84.8 86.0 91.5 88.9 91.9 90.7 0.99
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Caption_original (ClipScore: 25.67)
top view the written " HAPPY VALENTINE " on a tart chocolate cake, black wood background 

Caption_VILA-13B (ClipScore: 26.33)
The image captures a delightful scene of a Valentine's Day celebration. At the center of the image is a round chocolate cake, rich 
and inviting. The cake is adorned with a red heart on top, symbolizing love and affection. The words "Happy Valentine's" are 
elegantly written in red icing on the cake, adding to the festive atmosphere. The cake is placed on a wooden table, which provides a 
rustic charm to the setting. Scattered around the cake are red heart-shaped confetti, further enhancing the Valentine's theme. In the 
background, there's a hint of a bouquet of red roses, a classic symbol of love and romance. The roses are slightly blurred, drawing 
focus to the cake in the foreground. Overall, the image beautifully encapsulates the spirit of Valentine's Day, with its focus on love, 
affection, and celebration. 

Caption_VILA-3B (ClipScore: 25.46)
The image captures a delightful scene of a Valentine's Day celebration. At the center of the frame is a round chocolate cake, its 
surface adorned with a glossy chocolate ganache. The cake is further embellished with a scattering of chocolate shavings and a 
heart-shaped topper, adding to its festive appeal. The cake is placed on a wooden surface, which provides a rustic contrast to the 
rich, dark color of the chocolate. The background is dark, allowing the cake to stand out prominently. Adding to the Valentine's Day 
theme, red heart-shaped sprinkles are scattered around the cake, their vibrant color popping against the dark backdrop. The cake is 
positioned slightly off-center, drawing the viewer's attention to it. The overall composition of the image suggests a carefully arranged 
celebration, with the cake as the star of the show. The image does not contain any discernible text. The relative positions of the 
objects and their detailed descriptions provide a comprehensive understanding of the image content. 

Caption_InternVL2-26B (ClipScore: 25.57)
The image features a beautifully decorated chocolate cake placed on a dark wooden surface. The cake is richly covered in a layer
of dark chocolate ganache, giving it a smooth and glossy appearance. The top of the cake is adorned with piped chocolate swirls 
and heart- shaped decorations, adding a touch of elegance and romance. At the center of the cake, the words "HAPPY 
VALENTINE" are written in bold, red icing, creating a striking contrast against the dark chocolate background. Surrounding the 
cake, there are additional heart- shaped decorations in red, some of which are placed on the wooden surface, while others are 
scattered around the cake. The overall setting is warm and inviting, with a rustic wooden background that complements the rich, 
indulgent nature of the chocolate cake. The use of red hearts and the "HAPPY VALENTINE" message clearly indicate that this 
cake is intended for a Valentine's Day celebration 

Caption_InternVL2-8B (ClipScore: 26.37)
The image features a beautifully decorated chocolate cake with a heartfelt Valentine's Day message. The cake is round and sits on 
a dark, rustic wooden surface. The cake is covered in a rich, dark chocolate ganache, and it is adorned with a generous amount of 
chocolate shavings and crushed nuts, giving it a luxurious and indulgent appearance. At the top of the cake, the words "HAPPY
VALENTINE" are written in bold, red icing, creating a striking contrast against the dark chocolate. The icing is piped in a slightly 
uneven, handwritten style, adding a personal touch to the message. Surrounding the cake are several red heart-shaped 
decorations, some of which are whole and others that are broken into smaller pieces, scattered around the cake. These hearts add
to the romantic and festive theme of the cake. The cake is placed on a dark, round cake board, which complements the rustic 
wooden background. The overall presentation is elegant and festive, making it perfect for a Valentine's Day celebration 

Figure 2: Illustration of re-caption of an image with multiple VLMs.

different resolutions. As the resolution increases, the efficiency advantage of our SANA becomes
more significant.

More Visualization Images. As shown in Figure 5, we can see that 4K images can directly generate
more details than 1k images. In Figure 6, we show more images generated by our model with various
prompts. We also provide a video mp4 demo in the supplementary material (zip file) to show SANA
is deployed on a laptop.
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w/o complex human Instruction

A man is walking <Complex Human Instruction> + A man is
walking

Given a user prompt, generate an "Enhanced prompt" that provides detailed visual descriptions suitable for image 
generation. Evaluate the level of detail in the user prompt:
- If the prompt is simple, focus on adding specifics about colors, shapes, sizes, textures, and spatial relationships to 
create vivid and concrete scenes.
- If the prompt is already detailed, refine and enhance the existing details slightly without overcomplicating.

Here are examples of how to transform or refine prompts:
- User Prompt: A cat sleeping -> Enhanced: A small, fluffy white cat curled up in a round shape, sleeping peacefully on a 
warm sunny windowsill, surrounded by pots of blooming red flowers.
- User Prompt: A busy city street -> Enhanced: A bustling city street scene at dusk, featuring glowing street lamps, a 
diverse crowd of people in colorful clothing, and a double-decker bus passing by towering glass skyscrapers.

Please generate only the enhanced description for the prompt below and avoid including any additional commentary or 
evaluations:
User Prompt:

Complex Human Instruction

Gemma Input Gemma Input

w/ complex human Instruction

A man in a worn leather jacket walks briskly down a 
cobblestone street, his head downcast, his silhouette 
framed by the setting sun. He wears a faded blue scarf 
around his neck and carries a worn leather briefcase. The 
cobblestones are worn smooth by time and weather, and 
the street is lined with quaint, brightly painted buildings.

That's a great start! To make this more interesting, tell me 
more about the man and his walk.
For example:
* **Where is he walking?** A bustling city street? A quiet 
forest path?
* **What is he carrying?** A briefcase? A picnic basket? A 
dog?
* **What is his mood?** Happy and carefree? Stressed 
and hurried? Lost in thought?
* **What is the weather like?** Sunny and warm? Rainy 
and cold? Snowy and crisp?
The more details you give me, the more vivid and 
engaging the story can be!

Gemma Output Gemma Output

Figure 3: Illustration of Gemma-2’s output with/without complex human instruction, and the full
prompt of our complex human instruction.

Done
🐱  Wearing 🕶  flying on the 🌈 🐔   in the ❄ 在灿烂的阳光照耀下，西湖水微

波粼粼，波光艳丽，看起来很美
塞北的天空八月就飘降大雪

Figure 4: Visualization of zero-shot language transfer ability. Our SANA only has English prompts
during training but can understand Chinese/Emoji during inference. This benefits from the general-
ization brought by the powerful pre-training of Gemma-2.

Table 3: Performance of SANA block design space. We train all the models with the same training
setting with 52K iterations.

Blocks AE Res. FID ↓ CLIP ↑
FullAttn & FFN F8C4P2 256 18.7 24.9

+ Linear F8C4P2 256 21.5 23.3
+ MixFFN F8C4P2 256 18.9 24.8

+ Kernel Fusion F8C4P2 256 18.8 24.8

Linear+GLUMBConv2.5 F32C32P1 512 6.4 27.4
+ Kernel Fusion F32C32P1 512 6.4 27.4

6
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Table 4: Comparison of various T5 models and Gemma models based on speed and parameters. The
sequence length (Seq Len) is the number of text tokens.

Text Encoder Batch Size Seq Len Latency (s) Params (M)
T5-XXL

32 300

1.6 4762
T5-XL 0.5 1224
T5-large 0.2 341
T5-base 0.1 110
T5-small 0.0 35
Gemma-2b 0.2 2506
Gemma-2-2b 0.3 2614

Table 5: Comparison of throughput and latency under different resolutions. All models tested on an
A100 GPU with FP16 precision.

Methods Speedup Throughput(/s) Latency(ms) Methods Speedup Throughput(/s) Latency(ms)

512×512 Resolution 1024×1024 Resolution

SD3 7.6x 1.14 1.4 SD3 7.0x 0.28 4.4
FLUX-schnell 10.5x 1.58 0.7 FLUX-schnell 12.5x 0.50 2.1
FLUX-dev 1.0x 0.15 7.9 FLUX-dev 1.0x 0.04 23
PixArt-Σ 10.3x 1.54 1.2 PixArt-Σ 10.0x 0.40 2.7
HunyuanDiT 1.3x 0.20 5.1 HunyuanDiT 1.2x 0.05 18
SANA-0.6B 44.5x 6.67 0.8 SANA-0.6B 43.0x 1.72 0.9
SANA-1.6B 25.6x 3.84 0.6 SANA-1.6B 25.2x 1.01 1.2

2048×2048 Resolution 4096×4096 Resolution

SD3 5.0x 0.04 22 SD3 4.0x 0.004 230
FLUX-schnell 11.2x 0.09 10.5 FLUX-schnell 13.0x 0.013 76
FLUX-dev 1.0x 0.008 117 FLUX-dev 1.0x 0.001 1023
PixArt-Σ 7.5x 0.06 18.1 PixArt-Σ 5.0x 0.005 186
HunyuanDiT 1.2x 0.01 96 HunyuanDiT 1.0x 0.001 861
SANA-0.6B 53.8x 0.43 2.5 SANA-0.6B 104.0x 0.104 9.6
SANA-1.6B 31.2x 0.25 4.1 SANA-1.6B 66.0x 0.066 5.9

4096x4096 1024x1024

Figure 5: Comparison of 4K and 1K resolution images. We can see that the 4K image contains more
details.
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working

a cyberpunk 
cat with a 
neon sign 
that says 

"Fast"

Res:3168x4256

A hot air balloon in the shape of a heart. 
Grand Canyon

 a blue Porsche 356 parked in front of a 
yellow brick wall.

A curvy timber house near a sea, designed by Zaha 
Hadid, represents the image of a cold, modern 

architecture, at night, white lighting, highly detailed

an avocado wearing a royal crown and robe, seated on a 
throne in a grand, opulent setting. The scene is 

surrounded by other avocados, also adorned with crowns.
A portrait of a human growing colorful flowers from her hair. Hyperrealistic oil 

painting. Intricate details. 

Astronaut in a jungle, cold color palette, muted colors, detailed, 8k
a stunning and luxurious bedroom carved into a rocky mountainside seamlessly blending 

nature with modern design with a plush earth-toned bed textured stone walls circular 
fireplace massive uniquely shaped window framing snow-capped mountains dense forests

a black and white picture of a woman looking through the window, in the 
style of Duffy Sheridan, Anna Razumovskaya, smooth and shiny, wavy, 

Patrick Demarchelier, album covers, lush and detailed

an old rusted robot wearing pants and a jacket riding 
skis in a supermarket.

cartoon dog sits at a table, coffee mug on hand, as a room 
goes up in flames. "Help" the dog is yelling

Figure 6: More samples generated from SANA.
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