
Under review as a conference paper at ICLR 2023

A METHOD

A.1 MEMORY FOOTPRINT FOR TEST-TIME ADAPTATION

When a learning algorithm looks for deployment on edge devices, it is unavoidable to take the two
folds into account: (1) whether the maximal memory consumption of the algorithm can be fitted
into a mobile device; (2) whether the dynamic and instantly-free space of device memory (RAM)
is sufficient for the adaptation. The current mobile devices generally have memory in GB levels.
For example, current general mobile devices such as Samsung S20 have 2GB or more memory,
Raspberry Pi has 1GB or more memory. However, unlike the training or adaptation on a high-capacity
GPU server where all the resources (memory and CPU time) can be allocated for training, the
memory on mobile devices may be temporarily and partially allocated for the operating system and
other background applications. The situation could be even more severe for mobile devices. Thus,
squeezing the memory footprint dynamically is crucial for edge devices.

To avoid losing focus of the paper, we only consider the cache for gradient computation on batch-
normalization layers, which has been a substantially-larger memory footprint compared to those of
the widely-studied model and gradient memory in the literature (Yuan et al., 2021; Akin et al., 2019;
Wang et al., 2022b). Admittedly, our work does not cover all memory consumption in the life-span of
model adaptation. In Table 1, we only compute the memory costs (cache) of the back-propagation but
not the forward operations, because the memory costs of the latter will be released immediately. The
actual memory occupation in hardware, like NVIDIA GPU, will be enlarged due to the reservation for
faster inference. The holistic solution that jointly optimizes the inference time and memory requires
extra efforts on low-level computation and could be hardware-dependent. Thus, we leave the solution
as a open problem for future study.

B EXPERIMENTAL DETAILS AND SUPPLEMENTARY

B.1 IMPLEMENTATION DETAILS

Hyper-parameters. All test-time adaptation objectives are optimized by stochastic gradient descent
(SGD) with a momentum of 0.9. Tent and EATA utilize a batch size of 64 with a learning rate of
0.005 (0.00025) for CIFAR-10 (CIFAR100 and ImageNet). In our implementation, we use 0.0025
(0.0001) as learning rates to stabilize the training with smaller batch sizes. EATA uses 2,000 samples
to estimate a Fisher matrix for anti-forgetting regularization. For MECTA, we set the threshold �th for
stopping layer training as 0.005 for CIFAR10/100 and 0.00125 for ImageNet-C. The cache pruning
rate is set to be 0.7 for all datasets.

We implement our algorithm using PyTorch 1.12.1, cudatoolkit 11.6 on NVIDIA Tesla T4 GPUs.
The codes of baselines are provided by the open sourced codes of EATA1. For gradient checkpointing,
we use the official implementation from PyTorch, torch.utils.checkpoint. For each stage
in the ResNet with m blocks, we will split the blocks sequentially into bm/2c segments. Therefore,
ResNet50 will be split into 7 segments, approximatedly equal to

p
50.

Measuring cache sizes. Without GC, we measure the cache size by summing up the tensor size of
all features zl in a network. With GC, we estimate the cache size as two parts: one is the segment
cache sizes and the other is the maximal cache for backwarding inside a segment.

Measuring full footprint. In Fig. 1, we track the tensors that are cached in the GPU memory using
the public tool2. The memory tracker will find all the PyThorch tensor variables in the garbage
collector of Python. We also leverage tool, torch.cuda.memory_cached, provided by PyTorch
to estimate the maximal GPU memory costs including non-tensor variables.

1
https://github.com/mr-eggplant/EATA

2
https://github.com/Oldpan/Pytorch-Memory-Utils

13

https://github.com/mr-eggplant/EATA
https://github.com/Oldpan/Pytorch-Memory-Utils

Under review as a conference paper at ICLR 2023

Implementation of stochastic cache. During forward, we will only store the remained values of zl
and the indexes of the remained channels (denoted as R). Later, we compute the gradient by

BX

n=1

@`n

@�
l

i

=

(P
B

n=1

P
W

j=1

P
H

k=1
@`n

@a
l
i,j,k

z
l

n,i,j,k
, i 2 R,

0, i /2 R.

As the zero values do not need cache, the implementation can effectively reduce memory consumption
with a small extra space for storing the index set R.

B.2 MORE EXPERIMENTAL RESULTS

Figure 4: Evaluation on different ResNet
models with varying depth.

MECTA in different network architectures. It is known
that larger and deeper models will merit the robustness of
neural networks (Hendrycks et al., 2020a). In Fig. 4, we
compare the EATA and EATA+MECTA on varying model
depths. We adopt the protocol in Table 2 but reduce the
batch size to 32 to accommodate the huge memory cost
of deeper networks. The experiments are conducted with
4 perturbations. By increasing the depth of ResNet, the
cache size increases steeply. Instead, MECTA reduces the
cache consumption to a low level and achieves even better
accuracy. Beyond ResNet, we evaluate more network
architectures in Table 5. For example, MobileNet (Howard
et al., 2017) is designed for edge devices with limited computation resources. Since our method only
modify the batch-normalization layers, it can be easily plugged into these networks. Except wide
ResNet (WRN), our method outperforms EATA with much lower cache sizes and higher accuracy.

Table 5: Evaluation on different model architectures retrived from PyTorch pre-trained models.

Acc. (%) Cache (Mb)
Architecture Alg. Avg Avg Max

MobileNetV2 (Howard et al., 2017) EATA 26.8 854.8 854.8
EATA+MECTA 28.0 233.5 250.5

MobileNetV3 (Howard et al., 2017) EATA 30.8 563.2 563.2
EATA+MECTA 32.2 158.1 163.7

VGG19+BN (Simonyan & Zisserman, 2015) EATA 34.9 1901.1 1901.1
EATA+MECTA 35.7 544.8 564.9

WRN101⇥2 (Zagoruyko & Komodakis, 2017) EATA 54.7 2716.7 2716.7
EATA+MECTA 53.2 803.2 810.4

ResNet101 EATA 41.2 1885.0 1885.0
EATA+MECTA 51.3 449.1 569.8

ResNet152 EATA 44.0 2694.3 2694.3
EATA+MECTA 52.9 635.6 813.6

ResNeXt101 32⇥8d (Xie et al., 2017) EATA 53.9 3802.1 3802.1
EATA+MECTA 54.5 1094.7 1136.1

DenseNet121 (Huang et al., 2018) EATA 45.9 2005.4 2005.4
EATA+MECTA 42.2 594.3 597.6

EfficientNetV2-S (Tan & Le, 2021) EATA 45.9 1556.3 1556.3
EATA+MECTA 47.1 454.4 463.3

Does layer-sparse training help? In Fig. 5, we evaluate EATA with fewer trainable layers, which
can reduce the cache size, following the protocol in Table 2. During adaptation, we keep k deepest
layers to be trained and freeze other layers, which is denoted as Lk in the figure. We also include the
EATA+GC where we use gradient checkpointing for the trainable layers. We observe that reducing the
trainable layers can significantly decrease the cache size which is even lower than MECTA. However,
the corresponding accuracy is significantly decreased by 5% compared to EATA+MECTA meanwhile.
In comparison, though MECTA also uses the layer-sparse training, our method presents the best
accuracy-memory trade-off in the experiment. The key difference is that our method sparsifies the
training only on demand, specifically when a layer is well adapted without need for further training.

Does MECTA works on even smaller batches? In Table 6, we extend Table 1 with more batch
sizes. One interesting observation is that our method outperforms or is comparable to other baselines
given even smaller caches. For example, given a batch size of 16, EATA+MECTA can outperforms
BN at the best batch size, when MECTA reduces the cache size to 71 Mb on average compared to the
134 Mb by BN.

14

Under review as a conference paper at ICLR 2023

Figure 6: Dynamic cache size and � using MECTA on ImageNet-C.

Figure 5: Compare MECTA to layer-
sparse training using ResNet50 and
batch size of 64. L1 means that only
the deepest 1 layer is trained. Likewise,
L45 denotes the deepest 45 layers.

Does MECTA-B works with BN adaptation and Tent?

We show that MECTA-B can generally works well with
BN adaptation and Tent, in Table 7. Consistent on all
three backbone methods, the MECTA-B can outperforms
EMA and base methods without extra hyper-parameters.
EMA and MECTA-B can salvage BN and Tent from pooer
performance using small batch sizes.

How does MECTA mitigate forgetting? Comparing
the Tent+MECTA-B results with Tent+MECTA with 16-
sized batches in Table 6, we notice that MECTA is more
effective than MECTA-B on improving Tent. Thus, we
conclude that the pruning and adaptive training is essential
for the anti-forgetting.

More shift-accuracy evaluation. We consider more cases
of (K, k) pairs in Table 8. In all three trials, MECTA-B reduce the shift-accuracy drops w.r.t. the
baseline. Given more new-domain samples, e.g., k = 5, the shift-accuracy using EMA and MECTA-B
becomes higher than the baseline, implying the quick convergence of the adaptation.

Cache size and � by iteration. We extend Fig. 3 to a full life-cycle version in Fig. 6. For evaluating
�, we run the experiment on ImageNet-C using ResNet50 and we use MECTA with EATA for
adaptation. In more corruptions, we find the periodic fluctuation of � by the distributional shifts,
which results in the dynamic cache sizes.

15

Under review as a conference paper at ICLR 2023

Table 6: Continual evaluation on three datasets with the highest severity level 5 regarding accuracy
(%). For a fair comparison, batch sizes (BS) are chosen such that the corresponding cache sizes are
lower than those of BN with batch size of 128. Blue cells highlight the accuracy that is the highest
among all methods, and the bold texts indicate the best accuracy given the same base algorithm.

Noise Blur Weather Digital Acc. Cache

Alg. BS Gauss. Shot. Impul. Defoc. Glass. Motion Zoom. Snow Frost Fog Bright. Contr. Elast. Pixel. JPEG Orig. Avg Avg Max

CIFAR10-C
BN 32 80.2 82.0 78.7 91.2 79.2 89.9 91.0 86.9 86.6 84.5 91.9 88.8 84.2 86.8 81.8 93.2 86.1 34 34
BN 64 81.3 82.7 79.6 91.9 79.9 90.8 91.6 87.5 87.0 85.5 92.3 89.4 85.3 87.5 82.6 93.7 86.8 67 67
BN 128 81.5 83.2 79.9 92.4 80.7 91.1 92.1 87.9 87.7 85.7 92.7 89.8 85.6 87.6 83.0 94.2 87.2 134 134

Tent 8 68.8 46.3 16.4 12.8 11.8 8.9 9.9 10.7 10.3 10.2 10.3 10.2 10.1 10.0 10.2 10.2 16.7 100 100
16 81.8 82.2 71.8 68.9 52.8 43.7 39.0 30.7 22.8 17.7 10.1 6.7 7.4 8.2 8.1 9.0 35.1 199 199
32 86.0 87.5 84.1 88.8 81.2 85.5 86.6 85.5 86.6 83.5 88.5 87.0 83.0 85.7 80.7 87.2 85.5 398 398

+MECTA 16 86.7 88.3 85.1 90.0 79.9 85.7 88.2 85.4 86.4 83.5 88.7 88.0 83.0 86.2 79.6 86.2 85.7 41 60
+MECTA 32 87.0 88.6 85.7 91.8 84.5 90.9 92.5 90.1 91.3 88.8 93.2 92.0 88.0 90.5 86.0 93.8 89.7 62 119

EATA 8 74.5 70.9 66.6 69.7 55.5 54.6 47.2 38.4 33.1 35.1 35.2 18.8 12.2 14.5 13.3 8.5 40.5 100 100
16 83.4 84.3 81.3 86.4 77.0 83.8 86.5 84.5 84.7 83.9 88.1 87.9 80.9 85.5 79.3 87.9 84.1 199 199
32 85.7 87.6 85.7 89.8 82.5 88.3 90.0 88.2 88.8 88.7 91.4 91.0 85.5 89.5 85.3 90.6 88.0 398 398

+MECTA 16 86.5 88.2 84.6 89.8 83.0 88.5 90.4 88.4 88.9 88.8 91.7 91.1 85.8 89.5 85.3 92.3 88.3 45 60
+MECTA 32 87.1 89.3 86.8 92.0 85.6 90.7 92.3 90.8 91.1 89.7 93.3 92.5 88.0 91.0 86.9 93.5 90.0 71 119

CIFAR100-C
BN 32 56.2 57.1 54.7 70.5 56.3 68.6 70.2 63.0 63.5 56.6 71.9 68.0 62.2 64.8 56.7 73.8 63.4 34 34
BN 64 56.8 58.7 55.8 71.5 57.7 69.5 71.5 64.1 64.3 57.4 73.1 69.0 63.6 66.1 58.4 75.3 64.6 67 67
BN 128 57.6 59.0 56.6 72.5 58.2 69.9 71.8 64.7 64.8 57.9 73.5 69.8 64.3 66.7 58.6 75.8 65.1 134 134

Tent 8 52.9 53.9 46.7 50.5 31.2 29.7 23.7 14.3 10.0 6.7 5.9 3.4 3.9 3.6 3.5 3.5 21.5 100 100
16 56.8 61.4 59.6 68.5 56.1 65.3 66.9 59.7 60.0 54.9 65.0 57.0 54.2 56.2 46.8 58.6 59.2 199 199
32 58.5 63.0 61.6 71.8 60.3 69.7 71.8 65.1 66.3 60.9 72.4 68.7 64.7 67.8 59.7 74.3 66.0 398 398

+MECTA 16 58.4 63.0 61.1 73.3 60.7 71.3 73.4 66.2 66.4 61.0 73.5 67.7 65.5 68.2 59.3 75.5 66.5 50 60
+MECTA 32 58.6 61.5 60.1 73.9 61.0 72.4 74.9 66.8 68.1 61.9 75.3 71.3 66.7 70.5 61.7 78.1 67.7 77 120

EATA 8 52.1 54.2 53.2 65.3 51.5 63.8 64.9 59.1 58.5 53.9 66.8 63.2 56.3 61.1 52.9 70.1 59.2 100 100
16 57.3 60.5 58.5 69.9 57.1 68.9 69.8 63.7 64.4 59.4 71.6 67.9 62.8 67.1 58.2 74.4 64.5 199 199
32 58.4 62.4 60.9 72.1 59.5 70.3 72.4 66.3 66.5 62.2 74.4 70.8 65.3 69.4 61.0 76.9 66.8 398 398

+MECTA 16 58.4 61.5 59.3 73.2 59.8 71.6 73.1 66.9 66.9 60.8 74.4 70.9 65.0 68.8 60.6 77.2 66.8 52 60
+MECTA 32 58.7 62.0 60.0 73.0 60.5 71.3 73.9 66.7 67.3 62.0 75.3 71.7 66.3 69.8 61.5 78.0 67.4 81 120

ImageNet-C
BN 64 38.4 41.6 38.8 29.1 32.1 40.1 46.4 44.1 46.8 54.8 67.7 35.1 53.7 64.7 54.6 73.5 47.6 206 206
BN 128 39.2 42.6 39.6 29.9 32.9 40.8 47.4 45.0 47.7 55.8 68.5 36.0 54.8 65.4 55.7 74.2 48.5 411 411

Tent 8 33.8 16.5 0.8 0.4 0.3 0.4 0.4 0.4 0.4 0.3 0.4 0.2 0.3 0.4 0.3 0.4 3.5 307 307
16 43.3 46.1 42.8 25.8 14.8 5.0 1.3 0.7 0.7 0.7 0.8 0.6 0.7 0.7 0.7 0.7 11.6 615 615
32 46.1 50.6 49.2 37.2 38.2 41.2 42.5 36.6 36.2 38.8 46.8 27.5 30.5 34.3 26.9 34.8 38.6 1230 1230

+MECTA 16 48.0 52.9 51.8 38.9 42.0 46.5 49.5 44.0 43.9 47.7 56.6 38.3 44.1 49.5 43.2 52.7 46.8 158 187
+MECTA 32 47.0 52.3 51.7 38.5 43.1 47.5 51.5 47.4 49.3 54.2 64.4 46.2 55.6 62.4 57.0 68.8 52.3 269 373

EATA 8 34.1 37.0 35.0 27.5 28.1 35.5 38.6 39.6 39.7 47.8 56.6 35.5 44.1 53.3 46.7 63.2 41.4 307 307
16 44.4 47.1 45.4 39.0 39.4 47.4 49.7 49.7 48.4 57.6 64.3 47.8 54.5 61.7 56.3 69.5 51.4 615 615
32 49.0 52.3 51.1 44.4 45.2 52.3 55.1 54.0 52.7 61.3 67.6 52.7 58.8 65.3 60.4 72.3 55.9 1230 1230

+MECTA 16 48.6 51.7 49.7 42.9 44.4 51.6 55.4 54.5 53.4 62.5 70.0 51.8 60.1 67.6 61.7 74.7 56.3 162 187
+MECTA 32 50.3 54.1 52.6 44.6 47.0 53.6 57.0 55.5 54.8 62.9 70.3 54.3 61.1 68.4 63.0 74.6 57.8 288 373

Table 7: Ablation study of MECTA-B on ImageNet-C with the highest severity level 5 regarding
accuracy (%) and a batch size of 16. Blue cells highlight the accuracy that is the highest among all
methods, and the bold texts indicate the best accuracy among ablations of EMA and MECTA-B.

EMA MECTA-B Noise Blur Weather Digital

Alg. � = 0.1 auto � Gauss. Shot. Impul. Defoc. Glass. Motion Zoom. Snow Frost Fog Bright. Contr. Elast. Pixel. JPEG Orig. Avg

BN
7 7 33.7 36.5 34.0 24.6 27.2 35.0 40.5 39.1 42.3 49.4 62.7 30.7 47.6 59.1 48.9 69.1 42.5
3 7 36.4 40.4 36.4 28.6 31.8 40.1 47.0 43.2 46.4 53.9 67.8 32.3 53.8 64.9 55.2 74.2 47.0
3 3 37.8 41.9 37.7 29.3 32.7 40.6 47.9 44.0 47.2 55.0 68.6 32.9 55.0 65.8 55.9 74.8 47.9

Tent
7 7 43.3 46.1 42.8 25.8 14.8 5.0 1.3 0.7 0.7 0.7 0.8 0.6 0.7 0.7 0.7 0.7 11.6
3 7 48.5 52.6 51.0 37.8 36.4 38.6 38.3 29.7 25.8 23.0 24.9 6.1 6.6 5.3 1.6 2.3 26.8
3 3 50.0 53.9 52.2 38.7 38.3 40.9 41.3 33.8 31.4 30.6 34.8 12.6 14.5 13.0 7.0 9.2 31.4

EATA
7 7 44.4 47.1 45.4 39.0 39.4 47.4 49.7 49.7 48.4 57.6 64.3 47.8 54.5 61.7 56.3 69.5 51.4
3 7 50.4 53.1 51.9 45.2 45.9 53.9 56.3 55.6 54.2 63.1 69.6 53.2 60.5 67.2 62.0 74.0 57.3
3 3 51.7 54.8 53.6 46.0 47.5 54.9 57.7 56.9 55.3 64.2 70.5 54.2 61.6 68.1 63.3 74.9 58.4

16

Under review as a conference paper at ICLR 2023

Table 8: Evaluation of k-new K-old shift accuracy by EATA. Average accuracy (AA %) and worst
accuracy (WA %) are reported for each target perturbation. Values in the brackets denote the difference
between the current method and the base method using batch statistics.

K k EMA MECTA-B Impul. Motion Fog Elast.

� = 0.1 Auto � AA WA AA WA AA WA AA WA

49 1
7 7 35.5 34.6 37.0 36.8 50.1 49.8 48.3 47.8
3 7 35.4 (-0.1) 30.6 (-4.0) 26.6 (-11.0) 20.1 (-16.7) 41.0 (-9.1) 25.9 (-23.9) 42.8 (-5.5) 39.3 (-8.5)
3 3 34.4 (-1.1) 32.0 (-2.6) 28.6 (-8.4) 25.7 (-11.1) 43.6 (-6.5) 39.1 (-10.7) 42.6 (-5.7) 41.2 (-6.6)

9 1
7 7 34.1 33.4 35.7 35.6 49.4 48.9 47.4 47.1
3 7 32.8 (-1.3) 27.0 (-6.4) 25.0 (-10.7) 17.3 (-18.3) 38.4 (-11.0) 23.9 (-25.0) 41.1 (-6.3) 35.7 (-11.4)
3 3 34.1 (0.0) 32.3 (-1.1) 27.4 (-8.3) 23.1 (-12.5) 42.4 (-7.0) 36.5 (-12.4) 41.9 (-5.5) 40.0 (-7.1)

45 5
7 7 35.4 34.6 36.9 36.5 50.3 49.3 48.5 47.7
3 7 38.4 (+3.0) 37.5 (+2.9) 35.4 (-1.5) 30.6 (-5.9) 53.3 (+3.0) 50.2 (0.9) 52.0 (+3.5) 50.8 (+3.1)
3 3 37.8 (+2.4) 37.2 (+2.6) 35.4 (-1.5) 33.0 (-3.5) 51.5 (+1.2) 49.6 (+0.3) 50.8 (+2.3) 49.6 (+1.9)

17

	Introduction
	Related Works
	Problem Formulation
	Proposed Method
	Experiments
	Benchmarks on OOD Performance
	Qualitative Studies

	Conclusion
	Method
	Memory footprint for test-time adaptation

	Experimental Details and Supplementary
	Implementation Details
	More experimental results

