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Here you may find parts of proofs omitted in the main article. The numbering herein
employed is the same as in the main article.

We remind the reader that 5§ C R™ is compact, f : K — R is (-Lipschitz, and
F(@) = p(If(@)| =l —al) sg f(a);
gla) = (20) ™ | P0)explitv,) — o /222 W0/ A) dos
h(z) = (27?)_’”/2)\’”E<|F()\n)|\1/(n) [|n| > 19] c(xn,:p)).

Furthermore, H;, ..., H, are iid copies of G(w, )p((u, {) + 6)) defined in Lemma 4
of the main paper.

Lemma 1. f is a compactly supported (-Lipschitz extension of f.

Proof. All that remains to be shown is that fis (-Lipschitz; the rest was shown in the
main paper.

Let z1, 25 € R™. Following [4] suppose WLOG that | f(z;)| > | f(x2)|. In other words,

p(If (@)l = tles = ar]) > p(| ()] — flaz = asl).



If f(al)f(ag) > 0, then

(@) = @)l = |p(1f(@)] = flas = ar]) = p(1F(@2)] = thos = aal)|
(1)

since p is evidently nondecreasing and 1-Lipschitz.
If f(a1)f(az) < 0, however, we must distinguish three further cases.

If additionally | f(z5)| > 0, i.e., |f(as)| — £|xs — as| > 0, then

[F(e) = F@2)l = p(|F(@)] = tlas = ar] ) + (| (a2)] = thos = s
(

= <|f ar)| — bz — CL1|> + <|f(a2)| —l|xy — a2|>
= |f(a)| + |f(az)| — llxz — az| — L]z1 — a4
= [f(a1) — flaz)| — |2 — as| — l]z) — ay

E\al — &2’ — €|$2 — G/Q‘ — g’l’l — a1|

<
< f|l’2 — CL1| — £|l‘1 — CL1| < €|ZI)1 — ZL‘2|.
If additionally | f(z1)| > 0 and | f(as)| — €|xs — as| < 0, that is, f(z) is zero, then

Fe0)l = 17 ()] = f(2)]
p(1F (@)l = far = arl) = p(If(a2)| = tloz = aal ).

[f(a1) = fla2)]

which is (T). Lastly, if both f(z;) and f(x5) are zero, then | f(z1) — f(z2)| = 0, whence
the desired Lipschitz continuity of f readily follows.

O

Lemma 2. ||f — 9|l < ;(2 — 21/3am’2/3) Vvm.



Proof. Using various substitutions yields that
(27) ™ J F o) exp(i(v, 2) — o /2220 (v/A) dv =
(2r)~™ ﬂ Flu) exp(—i(, u)) exp(ilv, ) — [v]2/202) T (/) du dv —
(27) ™ ﬂ F(w) exp(i(v, 2 — u) — [02/2X2)U(v/A) dv du =
(2m)™ [ fla—1) Jexp(’i(’u, 1) — [0 /222) T (v /) do dt —
2m) ™ | Fla = 5/ [ explitw.s) = ful?/2)¥(w) du dt =
| 7o = sz ) (s) s

where the second equality follows readily from Fubini’s theorem because f and W are
compactly supported. In the main article it was shown that

x 14
17 = sll.. < 5 [1s166z 05 s,

so all that remains to be shown is that ,[|8|<5Z * 1) (s)ds < (2 - 21/3am_2/3> Vm.

Since ¢ is a pdf, 1) = dx for some random variable X. Thus,
J|s](6z x)(s)ds = J]s|(5z xdx)(s)ds =E|Z + X| < E|Z| + E|X].
Since |Z] is chi distributed with m degrees of freedom, Wendel’s inequality [6] yields that

E|Z| = W\/ﬁ < V.

By Jensen’s inequality and [3, thm 5.1],

EIX| < j|x12w<x> dx = 2j, /.



Indeed, as follows from the scaling property of the Fourier transform,
J|x!2?1{(w * W) (Q/ﬁ) }(1:) dx =
m™/? {|x|2?_1{w * w} (x\/ﬁ) de =

J|u|297_1{w * wi(u) du = 452 /m.

1
m

We now claim that 25, /v/m < v/m — 2Y2am =5 In [5], it has been proven that

jo <v—a(v/2)? + Za*(v/2)7/?

forallvy > 0.If m > 3, thenv =m/2 —1> 0, so

2,V < Vi = 2V = 2 alm )2 = DY+ a(v/2)7
< Vi = 2a(m/2) Vi + (3502~ 2) /v

= m —2Y3aqm™1/6 + (%a2(u/2)_1/3 —2)/v/m.

Since (1/2) /% is clearly decreasing in m and m = 3 = £4°(v/2)

everything together yields the desideratum.

Proof. In the main article we has already shown that

Lemma 3. Hg — h||OO <

o = bl < (2m) 2| 7 B{In] < oy},
so all that remains is to bound || f||, and (27T)_m/2)»mIP’{|n| < 1%/%}

Starting with the former, since | f(z)| = p(|f(a)| — |z — a]),

171, = J|f| = J|f\ +J|f| < MIK| +J<M—£|u|> du.

K K K-K lu|<M/E

~1/3 < 2. as can be

verified numerically, the last term will always be negative and can thus be discarded to
yield our claim for all m > 3. One can verify the cases m = 1,2 numerically. Putting

[]



Now,

M/
J(M - €|u]> du ="V, J(M — byt dy =

|u|<M/e 0

Vy, M™ !
"m(m+1)

In conjunction with the previous display, this yields that

17, < M(|K| + Vi (M/@m)) < M(VmRm + Vm(M/K)m> < 20RV, R™

m(m + 1
because M < (R. Indeed, since K has circumradius R, it follows that diam(K) < 2R,
so0 2M = max f — min f < {diam(K') = 2¢R because f is (-Lipschitz.

As for the latter, |n| has a chi distribution with m degrees of freedom, so the cdf of |n|
may be expressed as P(m/2,<{?/2) [2, §8.2(1)]. If x > 0, then [2, (8.6.3)]

o0

J exp(—at) dt =

0

exp(—at — ze ") dt < I(a)

3
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=
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Q

Additionally aI'(a) > (a/e)*V2ma for all a > 0 [2, (5.6.1)]. Ergo,
(2m) "X B{n) < Oy} = (2m) AT P2, i [2)

1 (m?/2\™?
—m/2ym
< (2m) A \/Wm( m/2e )

1 ( IA >m
VT \/2r/e)
Multiplying the obtained bounds readily yields the desideratum.
Lemmad4. h = E(G(w, t)p((w, ) + 6)) on K, where
« G(w,b) = —20R/mA?(27) ™2 A" |F (Aw)|¥ (w/0)
[[w[ > 190\/5] cos(Ab — arg F(Aw));
o 6 being uniformly distributed on | —oR+v/m,oR\/m|;

e w ~ N(0,07,).



Proof. Letting N ~ N(0,01,,) and p(v) = arg F'(v) allows us to write
2r) B (|FAn) W ()| In] > 9vim]e(n,2) ) =
(2m) "™/ \m J|F(Xu)]¢/(u) [yu\ > wm] c(Mu, )85 (u) du =
(2m) " [P (/o) ] > v/ (A, x)dv(w) du
[ (Crymamip @ [ju) > vovin] wtw/e )

cos(p(Aw) + Alw, z)) [|<w, )| < oRm] S (w) dw,

since |(w, )| < |w|.]z| and the support of W is {w eR™: |w| < \/ﬁ}

Now, using the fundamental theorem of calculus and integration by parts,

z

cos(p + Az) [|z[ < B] =—A J sin(p + Ay) [\y[ < B] dy

—0o0

=—A J sin(¢ + Ay) || [ B] —y)dy
= —A? J cos(y + Ay) [Iyl B]p
= —A? J cos(ip — Ab)p(z +b) [|b| < B] db.

Upon plugging back in, this yields that

h(z) = H G(w, b)p({w, z) +b) [|b| < GR\/%} S (w) db duw,

1
20R\/m
which is the expanded form of desired expectation.
Lemma 5. Let N, = > H, and t > 0. Then

P{||N, — E(H)| . > t} <

t

2€Xp< (QRQ\/E(QW)m/2)\m+1(1+1/19)€|}?|> )




Proof. We first prove the existence of the measurable selector X,.
To that end, let (€2, ) be the measurable space underlying . We define
QXK 3 (w,2) = | Ny(z)(w) — E(H(z))|;
E(w) = argmax {(w, x) = {x € K:¢(w,x)— ma}z{f(w,u) = O} C K.
ue

zeK

Note that H ()(w) and E(H (<>)) are Lipschitz continuous for all w € €, and

{maxe(0.u) < ef = {600 <o} = N{E(0.0) < o),

ueK
ueK qesS

where S is a countably dense subset of K, whence max £(<», u) is measurable. Ergo,
ue

OXx K> (w,z) = &(w, ) — mea%ﬁ(w,u)

is a Carathéodory function [1} def. 4.50]. Since K is a compact subset of R™ it follows
that = is a (weakly) [[1, lem. 18.2] measurable []1, cor. 18.8] correspondence 1, def. 17.1]
with nonempty closed values from a measurable space into a Polish space. Thus = admits
a measurable selector [ 1, thm 18.13], that is, there exists a random variable

Xn: Q23w X,(w) € E(w)
such that | N,,(X,,) — E(H (X,,))| = || N, — E(H)|| .-
In order to apply Hoeftding’s inequality to
]P’{HNn ~E(H)||, > t} - P{|Nn(Xn) ~ E(H(X,))| > t},
we need to bound H (X,,) a.s., which we can do as follows.
|H(X,)| = [G(w, 6)p({w, Xn) + 6)] <
20 Rv/mA2(2m) "N | (Aw) || W (w/0)|({w, Xa) + o RV ) [[w] > dov/m| <
26 Ry/mA(21) ™2\ <A|F(Aw)|>R(1 +1/9)|w] <
2R2\/m(2r) ™A (1 + 1/19)H\A<>|.]F(A<>)!HOO =
2R/ (2m) A (L4 1/9)|||OLF )|



because |V| < 1 and X, (w) € K. Now, using the fact that H?{O}Hm < ||€]], and
utilizing Minkowski’s integral inequality twice yields that

iot1F@|_ = iesrmm] < [{loF@ll.}

=|{l# @} | <[{lo.}
<@y, = 171, < 41

m

p=1

so H(X,) is (a.s.) bounded by 2R*v/m(2r) "™/?A™*1(1 + 1/9)¢| K|. Here, |{{, 10|
denotes the Euclidean norm of the vector {{,},2; € R™.

Above we implicitly used Rademacher’s theorem to conclude that V f exists a.e. We also
used that HV f HOO < /4, which can be seen as follows.

It suffices to show that IVF(z) < ¢ for all 2 € K for which V f () exists. Suppose
x € K is such that V f () exists. If V f(x) = 0, there is nothing to prove, so we may
additionally assume that V f(x) # 0. For almost every such z it holds that

NI (@ + hu) — f(=)] ; | [+ hu) = f(2) ;
lim . - V()] < lim V=IO 19 )
et b = )~ V)]

h—0 || ’

where u = v = ?) and h > 0. As such,
IV f(2)]

- z+ hu) — f(z
i) = i LTI,

because u 1s a unit vector.

The claim of the lemma then follows from directly applying Hoeffding’s inequality. ]
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