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ABSTRACT

Retrieval-augmented generation (RAG) has seen many empirical successes in recent years by aiding
the LLM with external knowledge. However, its theoretical aspect has remained mostly unexplored.
In this paper, we propose the first finite-sample generalization bound for RAG in in-context linear
regression and derive an exact bias-variance tradeoff. Our framework views the retrieved texts as
query-dependent noisy in-context examples and recovers the classical in-context learning (ICL) and
standard RAG as the limit cases. Within this simplified model, our analysis suggests that an intrinsic
ceiling on generalization error can exist on RAG as opposed to the ICL. Furthermore, our framework
is able to model retrieval both from the training data and from external corpora by introducing uniform
and non-uniform RAG noise. Finally, our theoretical insights of RAG is consistent with preliminary
experimental results common QA benchmarks, such as Natural Questions and TriviaQA.

1 INTRODUCTION

Retrieval-Augmented Generation (RAG) enhances language models by appending retrieved data to the input, enabling
access to information beyond pretraining. It is widely used in open-domain QA, fact-checking, and knowledge-intensive
tasks (Huang et al., 2023} |[Lewis et al., 2020a; Ramos et al., [2022; [Sarto et al., 2022} Zhao et al., 2024a). Retrieval
sources typically fall into two categories: (1) labeled dataset, such as the training dataset itself (Liu et al.| 2021}
Izacard et al.,|2022; [Huang et al.| [2024)), and (2) generic corpora without labels, such as Wikipedia (Chen et al., 2017).
Despite its promise, empirical studies show that increasing the number of retrieved passages can degrade performance,
especially when irrelevant or redundant texts are included (Levy et al., [2025;2024). However, the theoretical aspects
for understanding how retrieval affects generalization remain underexplored.

To study its behavior, we frame RAG as noisy in-context learning (ICL). ICL refers to the ability of language models
to adapt given the contextual information without updating model weights (Dong et al [2024). Under this view,
retrieved RAG examples can act as noisy context and their quality depends on the retrieval. This view has motivated
the development of many works in in-context retrieval (Luo et al., 2024; |Shi et al., |2022)), where the goal is to retrieve
high-quality demonstration pairs, which reduce the noise of the retrieval.

Our framework viewing RAG as noisy ICL needs to address novel challenges. Prior ICL work has analyzed structured
in-context learning where the context consists of fixed format demonstration examples, assuming the examples are clean
and i.i.d. (Ahn et al.,[2023; Zhang et al.,2024). These assumptions do not hold in RAG, since the retrieved examples
are inherently query-dependent and noisy, and their noise level tends to be inversely correlated to their relevance.
Furthermore, although retrieved examples close to the query should, in principle, improve the predictive accuracy,
their quantitative contribution remains unknown because RAG introduces these examples only at the test time (absent
during pretraining), thus imposing a distribution shift. In this work, we take an initial step towards bridging the gap by
modeling RAG as a variant of ICL that keeps the two core ingredients, query dependence and noisy examples, while
abstracting away other system details for tractability. To model the noises, we propose and examine two noise regimes:
uniform (noise level identical across examples) and non-uniform (noise inversely correlated with relevance), which
capture key phenomena seen in practice. Indeed, our experiments on common QA benchmarks show that the two
categories of RAG (using training datasets or generic corpora for retrieval) lead to experimental results that align well
with our two noise regimes, respectively. This framework thus allows us to quantify the impact of retrieval noise and
derive generalization bounds that depend on the number of in-context and RAG examples, and the retrieval distance
from queries.

Our contributions are summarized as follows:
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* We propose a simplified theoretical framework for analyzing RAG and provide the first finite sample bounds
for in-context linear regression with RAG. Our bounds show that the improvement from RAG shrinks as you
add more retrieved examples, and can even flip to hurt performance.

¢ Our framework recovers ICL and standard RAG as limit cases, and also models retrieved data under different
noise regimes: uniform and non-uniform retrieval noises.

* We develop new tools for analyzing the query-dependent RAG data, e.g., a derivation of the expectation for
high order Gaussian monomial (Lemma [3), which can be useful for future research on RAG.

* We conduct experiments for representative models on common QA datasets and demonstrate that the results
align with our theory about the two noise regimes, providing positive support for our analysis.

2 RELATED WORK

Retrieval Augmented Generation Retrieval-augmented generation (RAG) has emerged as a widely adopted paradigm
for enriching LLMs with external knowledge by prepending retrieved passages to the input context (Lewis et al., 2020a}
[zacard & Gravel |2020; [Borgeaud et al., [2021)). From a functional perspective, RAG transforms the model’s input
distribution by conditioning generation on retrieved textual evidence, often drawn from large-scale corpora via learned
or heuristic retrieval mechanisms (Li et al.l 2023} [Meng et al.,|2024; |Chen et al.,[2024). While much of the literature
focuses on improving retrieval quality, system performance (Asai et al.,[2023} L1 et al.| 2024; Xu et al.| 2024a), and
answer reliability (Xiang et al., 2024} Xu et al., 2024a)). There are some recent attempts in studying the theory of
RAG (Xu et al.| [2024b; | Kang et al., [2024)) focusing on the token-level risk, and the sequence-level risk still remains
underexplored. In-context Learning (ICL) ICL obtains its popularity from the original GPT-3 paper (Brown et al.,
2020), and becomes widely used in LLM applications (Dong et al., [2024; Min et al., 2021). The recent advance in
ICL theory (Ahn et al., 2023 |[Zhang et al., 2024; [Xie et al., 2021) provides a rigorous and versatile framework to
study transformers and LLMs. People have used this ICL framework to study novel settings, like out-of-distribution
tasks (Wang et al., [2024b)) and test-time training (Gozeten et al.,[2025). People have also studied the noisy in-context
learning from robustness (Cheng et al.,2025) and calibration perspectives (Zhao et al., 2024b)), which are different from
our setup.

In-context Retrieval In-context retrieval (Luo et al.,[2024) refers to retrieving a set of query-dependent demonstrations
rather than using a fixed set of demonstrations. The label of the demonstration pairs can come from various sources,
such as in-domain training set (Izacard et al.| [2022; Huang et al.| 2024} |Ye et al., 2023)), cross-domain data (Cheng
et al., 2023} |Shi et al.| [2022), automatic LLM generation (Zhang et al., [2022; |L1 & Qiul 2023)), pseudo-labels from
unstructured data (Lyu et al.|, 2022; |Li et al.,[2022). In our theoretical analysis and experiments, we focus on the simplest
in-context retrieval, in-domain retrieval from the training set, as in (Izacard et al.| 2022; |Huang et al., |2024). Note that
in-context retrieval is a term developed later and some earlier papers discuss ICL with retrieval as retrieving relevant
documents without labels (Ram et al., [2023)).

3 PROBLEM SETUP

Our problem setup is similar to (Zhang et al.| 2024} |Garg et al.} 2022)), but with RAG examples to form the additional
in-context examples. It is worth noting that many works focus on ICL at test (inference) time, specifically without
parameter updates (Dong et al.l 2022). Our work adopts the framework of ICL with warmup, also known as, supervised
in-context training. Specifically, we assume that the pretraining data is also formed by in-context examples. Then,
during the test time, we formed prompts with in-context examples with additional RAG examples.

Notations We denote [n] = {1,...,n} for an integer n > 1. We denote the trace product of two matrices A, B € R™*™
as tr(ABT). We denote f(m,n) = O, (g(m,n)), iff there exists ¢,mg,ng > 0 such that 0 < f(m,n) <
cg(m,n), Ym > mg,n > ng. We denote f(m,n) = O, ,, (g (m,n)), iff there exists c1, ¢z, mo,no > 0 such that
Clg(mvn) < f(m,n) < CQQ(man)v vm > mo,n 2 no.

Pretraining Data We consider learning over linear regression data. The training data is a set of prompts. Each prompt
is of size m: (T1,Y1,- -+ Ty Ym, Tq) € RUATTDT™ where (z1,41), . . -, (Tm, Ym ) form the m demonstration pairs.
The goal is to predict §j, for the query example x, to match the true label y,. The prompt is embedded in the following
form:

Ppt — Ty T2 ... LTy L4 c R(d+1)><(m+1) )
m Yt y2 oo Ym0 '
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where (z1,41), ..., (Tm, Ym), (Tq, Yq) L Dy (pt denoting Pretraining). The output follows the linear model:
Yi = (B;rﬁpt +€, € F N(0,0%) under Dyt @

where i € [m] U {q}, Bt is the weight vector in pretraining, and ¢; is the noise for example :.

tt+rag
m,n

Inference Data (with RAG) During inference/test time, the test prompt P (tt denoting test-time) is formed by m

in-context pairs (z1,Y1), - -, (Tm, Ym ), 1 retrieval-augmented pairs (27, 41%), ..., (5, y™¢), and the query pair
T4, Yq- The test prompt is embedded in the following form:
T Ty T)E ht T (d+1)x( 1)
Ptt-i—rag - s m 1 ce n q cR +1)x(m+n+ . 3
m,n Vi e YUm YrE o yme 0 )

The input & in each in-context or query pair follows the test-time distribution Dy, and the label is:

yi = w;rﬂtt + €i7 ei 1'1\51 N(07 02) under Dtt) (4)

where i € [m] U {q}, ¢, is the noise of example i, and S is the weight vector during test time. The input « in each
RAG pair follows the corresponding RAG distribution Dyae(24): assume the RAG query x;® = x, + r; is generated
around the query example x,, where 7; is the offset. The label in the RAG example is given by:

Y = ()T B+ €%, € N N(0, UrQag,i) under  Drge(y), )

where i € [n], €, is the noise of the i-th RAG example.

For the compactness of writing, we define the following matrices and vectors:

Xia = [®] 5], Xeag = (@775 5 (@) 7], Yia = (V155 Ym)s Yrag = 005550028,
€icl 1= [€15. .. €m], €rag = [€1 ;... €8], P = [r;r;...;r;ll—]
Tg+T1

Xil m4n)Xd
X:{XC}ER( Fxd X e =

rag

c Rnxd’ y= Yicl c Rm-&-n’ €= €icl c Rm-«—n.
. rag €rag
g+ T

Training and Testing We let W be the model parameters, and F be the model. Given an input prompt PP with
demonstration pairs, the model predicts g, := F(PE,; W). As a common practice in theoretical studies of LLM for
feasible analysis, we use the MSE loss as the evaluation metrics (Zhang et al.| [2024} |/Ahn et al.| 2023} [Xie et al.| 2021).

Then, the population loss on the pretraining data is:

Ly(W) :=
pt( ) (21,91)5--(®m Ym ) (®q,Yq)~Dpt

(5= F (P w))?]. ©

Its minimizer is denoted as:

W= min Lp(W). ©)

To apply the pretrained W™ from the pretraining context size of m to the test-time context size of m + n, we will need

to scale it properly (see Lemmal(I)) and use
m — %

W* = W’ ®)

m-+n

During the test time we evaluate the population loss over the test prompt with RAG examples P“nf:flg:

Ta, 2
Lirag(W) 1= E (g — F (Pl W) ©)
(m}ayl);“w(mm7ywn)(mquq)N'Dtt
(@3 U)o (B ) Dy ()

Model Architecture We study the single-layer linear self-attention model (LSA) as the framework for theoretical
analysis, similar to many existing studies (e.g., (Ahn et al., 2023} [Zhang et al.,[2024)). The prediction of the model F'
on a prompt P with query x, is:

g = F(P) = PWW (P PWy]pinitas1 =2, WX Ty, (10)
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where the query, key, and value matrices W, W, Wy, ¢ R(@+1)x(d+1) are parameterized by W in the following
way:

W 04x1 Oixd Oaxi
WoW = S Wy = | %% :
Q K |:01 xd 0 :| ’ v |:01 xd 1
We note that this parameterization is commonly used in the previous works (Ahn et al., [2023; Zhang et al.||2024)), and is
shown to capture the key properties of in-context learning. Furthermore, (Ahn et al.| 2023) shows that the formulation
is the optimum converged from pretraining on Gaussian data.

4 THEORETICAL ANALYSIS: GENERALIZATION BOUND FOR RAG

To study test-time error and sample complexity in in-context linear regression with RAG examples, we consider two
noise regimes: uniform retrieval noise and non-uniform retrieval noise. Uniform retrieval noise assumes the RAG
noise €; ¢ for each example i is i.i.d. Since its variance is distance-agnostic, it can model a scenario of retrieval where
the noise is similar across data points. Non-uniform retrieval noise assumes either the variance or the label-corruption
probability grows with the variance of retrieval vectors — e.g. afam increases with §7 or the probability of making
mistakes increases with 7. This captures retrieval from datasets where near neighbors often supply the right signal while
far ones are potentially noisy or even misleading. Because the noise spectrum is now heavy-tailed, adding more RAG
examples past a threshold could yield diminishing benefits for RAG examples and even become counter-productive.
Framing RAG through these two lenses provides intuition about when extra retrieved examples will pay off, and when
they will hit the intrinsic ceiling and more retrieved examples do not help anymore. These are well corroborated by our

experimental results on real data (see Section 3.

First, we introduce the key data assumptions.

Assumption 1 (Gaussian Retrieval Offset). We assume the retrieval offset v;, Vi € [n] to follow a Gaussian distribution:
i RN(0,0214) .

The key property that we want to control for RAG examples is its distance from the query points &,. However, modeling
the queried example directly through the retrieval distance leads to complicated theoretical analysis. Here, we note that
the retrieval distance ||r;]|o converges to a distribution concentrated in an O(§;+/d) ball around the query with respect
to d (Cover & Hart, [1967)). Thus, controlling the variance of the retrieval offset can alternatively control the retrieval
distance. And we make the following additional data assumptions.

Assumption 2 (Data Assumption). We assume the data follows the following:

1. PRETRAINING EXAMPLES (D,). For a pretraining prompt of length m + 1 and for all i € [m] U {q}, we
assume zcii‘i'vd'J\/'(O, %), e "R N(0, 02), Bpt ~N (0, I).

2. TEST TIME EXAMPLES (Dy). For a test-time prompt of length m + n + 1 and for all i € [m] U {q}, we
assume x; i'fi'vd'./\/(O, %), € i'33'./\/(0, 0?), Bee~N(0,1).

3. TEST-TIME RAG EXAMPLES (D,a5(xq)). For a test-time prompt of length m + n + 1 and for all i €

[m+1,...,m+ n], we assume x;"* i'i&d'/\/((), ¥), 6" ~N(0,02, ;) and the same By as (2).
Here, we assume the generic Gaussian property for the input, and isotropic Gaussian property for the noise and the
weight vector, a common assumption made in ICL theory (Ahn et al.|, [2023]; |Gozeten et al., 2025) for simple yet
meaningful analysis.

Overview of the Key Results

* (Uniform Noise) RAG examples are as effective as ICL examples in reducing the variance-induced err but
ineffective at reducing the bias-induced err, causing a loss plateau for n — co.

* (Non-Uniform Noise) RAG could improve the variance-induced error up to a finite n at a cost of increasing
bias-induced error.

Roadmap Under these assumptions and uniform retrieval noise, we will first derive the population loss of RAG,
Lyt yrag (W), for general W as in Theorem analyze its finite sample complexity under the optimal pretrained weight
W™ as in Proposition [1|and derive an optimal number of RAG examples of n* for a given number of ICL examples m
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as in Proposition E} These discussions leads to our first key result. Then, under the non-uniform retrieval noise, we will
prove the sample complexity under the distance-proportional noise (Theorem [2)) and distance-weighted mixture noise
(Theorem E]) and obtain our second key results above.

4.1 UNIFORM RETRIEVAL NOISE

Assumption 3 (Uniform Retrieval Noise). The RAG noise €., shares the same Gaussian distribution with variance

Ot e Vi€ [m+1,...,m4n], 0f, =00,

First, we present the assumption for uniform retrieval noise. In other words, all RAG examples are as helpful, and its
improvement on the actual prediction is determined by the retrieval distance.

Theorem 1 (Population Loss for ICL with RAG Examples). Under Assumption[I] 2} B] ¥ = I, the population loss of
the linear self-attention predictor {j; = w;'— WX Ty satisfies

Litirag(W) =E(Jg — E(§9))° +E(E (§,) —E () + 0? , and specifically, (11)
::crrvmiame(W) i=erThins (W) irreducible noise

errvariance(W) = [mO_Q + (1 + 62) no tI‘(WTW) + nUrag tr(WZ) + ngrag (W)2

ca )
erTpias (W) = Bk {I —(nO? +2n+m)(W + W) — 2ntr(W)I + M4} Bt

= BL[1 = (00 4+ 20+ m)(W + W) = 20 tx(W)I
+ [n% (2+0%) +n (m+6%)] (W2 T (WQ)T) +on(n+ ) WWT
+ [m2 4 mn (24 20%) +n2 (24207 +6%) +n (202 + 64) | W W
+ [0 (248%) 4 n (m+8%)] (W) (W +WT))
+ [02 4 0% (6r(W)? + tr (W) T+ [m+ 02+ (26% + 8%) ] o (WTW) 1] B

Here, we derive the exact bias-variance decomposition for ICL with RAG. The first line is the variance-induced error
formed by a weighted sum of noise from ICL examples and RAG examples. Because of the implicit scaling of W

2
as discussed in Lemma | the second order term in W will introduce an additional weight scaling of W when

adapting from the weight learned on m size context to m + n size context. Thus, larger n will let erryarance (W) — 0,
and the convergence rate is affected by §2. Larger retrieval distance leads to a slower convergence. The bias-induced
error is composed of all possible monomials of W up to the 2nd-order with tr operation. The complex dependency on
m,n, 62, d requires additional assumptions on W to further interpret. As a sanity check, when n = 0 (ICL-only), this
decomposition can exactly recover loss as in Lemma B.2 in (Gozeten et al., [2025)).

As a proof sketch, we first compute erryagiance(W) = E(a:;rWX Te)2 by splitting the calculation for ICL and RAG
examples based on X . Then, we compute erryio (W) = E[(z, (I — WX T X)f1)?]. The main technical challenge
lies in the dependency of X ;.5 on x4, and erryys has a 6th-order dependency on x, (2 from x4 and 4 from X). As

shown in Lemma , E [:cqa:;rAa:qa:qTququ] gives 15 new terms that include all the second order monomials of W
with tr. The calculation requires multiple careful applications of Isserlis’ theorem (Isserlis| [1918)), and the full proof
can be seen in Section B} Also, see Theorem [d]in the appendix for the full theorem with generic X.

Here, we present the finite sample bound for pretrained W* for better interpretation.
Proposition 1 (Finite Sample Generalization Bound). Under Assumption if? <1, =1,
2
dm o2 4 d’n d g n
(m+n)? (m+n)? m m+n

ﬁtt+rag(W*) = Om,n 0'2 + O'fag + ”ﬂtt”%

erTvariance(W*) erty (W)
Om(:riz 2 + m2 erg) = Om (%n) m — 0o, nﬁxed.
errV&TianCe(W*) = On( dzU + ﬁgrag) =0, (% n — 00, m fixed (12)
Om(dg-Q—‘,— pooy 1%ag)20m (%) m—)oo,n:@m(m)
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Om (Hﬂtt”%%) if m — oo, n is fixed
errpias(W*) = ¢ O, (Hﬁtt”%dQ) = if n — oo, m is fixed . (13)
Om (18]l (£ +d?)) = Co + On(IBul3L)  ifm — 00, n = O, (m)

Here, we assume 62 < 1 as the test time example x; has only a variance of I, and it is unrealistic to assume a higher
retrieval variance than the input variance. On the limit case where m — oo and n are fixed, we observe that both
variance-induced and bias-induced error decay at a rate of O (1/m), matching the results from the existing paper (Ahn
et al.,[2023; Zhang et al.,2024). When n — oo, the variance-induced error decays as O (1/n) matching the O(1/m)
rate. However, introducing the RAG is ineffective at reducing the bias-induced error. Even when m — oo, increasing n
will cause a loss plateau.

This effect can be explained by the underlying adaptive ability of transformers. In an online learning setup, we could
always use the mean of the queried data as the prediction. However, in the LSA setup, the pretrained W™ serves as
a proxy for E~* (X X ). In order to retain the adaptivity to the entire distribution of ¢, we cannot use the optimal
linear classifier (X X )TlX Ty or use the mean of the retrieved examples ad hoc. At the test stage, X ;.o only appears
in X Ty and not in W*. The difference between Drag(x4) and Dy directly leads to the increase of variance worsened
by the increase of n. See full proof in Section[B] Now, a natural question is whether we can find a balance of variance
and bias and obtain an optimal RAG example size n*.

Proposition 2. Under Assumption E] 6?2 < 1,% = I, and reasonable choice of o2, afag (o2, Ufag < ||Bet|13), the
optimal n* that minimizes the RAG loss follows:

=0 m (dZHBttng + dO—Q - dzUrQag) -0 d”ﬁtt”% + 02 - dUrQag (14)
" md2||5tt”% - d20r2ag " dHﬁttH%

and the improvement on loss from picking the optimal n* over n = 0 is given as:

* * 1
ACtt«krag(vv )|n:0 - Ett+rag<W )|n:n* = Om <Tf12> . (15)

In fact, the optimal n* does not scale with m omitting the lower-order terms. Note that for || B ||5 = Om (1), || Bte]|3 will
dominate the numerator for reasonable choices of 02 and o2 . A larger ICL noise o2 leads to a larger n*, i.e. requiring

rag-*
more RAG examples to compensate for the loss. A larger RAG noise crfag leads to a smaller n*, i.e. less efficiency on

RAG examples. And the improvement converges at (’)(#), diminishing for large m. See the full proof in Section [El
Several empirical works also observe a performance drop when increasing the number of retrieved examples (Wang
et al.| 2024a; Levy et al., [2025).

4.2 NON-UNIFORM RETRIEVAL NOISE

The uniform-noise setup in Section [4.1] relies on a retrieval pool of data with similar noise, so we could keep the
variance o’fag fixed. In open-domain retrieval, this assumption could collapse: many retrieved examples could contain
no answer or even a wrong answer. Empirically, people have observed that passages that are closer to the query vector
x, are more likely (Yang & Seo, 2020} Yoran et al., [2023}; |[Lewis et al., 2020b)) to contain the correct label. We want to

theoretically investigate if the following hypothesis still holds:

Closer to query &, == more likely to contain correct answer.

4.2.1 DISTANCE-PROPORTIONAL NOISE (DPN)

We first investigate the scenario where the retrieval noise is proportional to the retrieval distance. Since the ICL analysis
only applies to the mean-squared error loss, we study the effect of RAG under DPN on the correctness of the predictions.

Assumption 4 (Distance-Proportional Noise). There exists a constant ~y; > 0 such that, for every retrieved sample 1,

afagﬂ- = v10%62, i.e. the RAG noise variance grows linearly with the variance 5? that governs the retrieval distance.

Under the new data assumption, we denote the corresponding RAG loss, bias-induced error, and variance-induced error
for W to be Littrag (W), elTbias (W), and efTvariance(W).
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Theorem 2 (Finite Sample RAG Generalization Bound under DPN). Under Assumption Y = I,H| the population
loss is given as:

eiTyariance (W) = mo? tr (WTW) + Z 1162[(1 4 62) tr(W W) + tr(W?) + tr(W)?].

If the variance of the retrieval distance follows power law, i.e. Fy2 > 0,q > 0 s.t. 62 = 7219, then

N * * dn2atl 4+ n2at2
eirpias (W) = Opn <errhias(W )+ [18ec]l3 [(m—l—n)z}) (16)
and
et variance (W) = O dmao® + d(n*7)o” _[On (dn?1=16?)  ifn — 00, ¢ < 1/2 (17
variance n (m ¥ n)g diverges lf?’L 50, g > 1/2 .

Here, we derive the sample complexity under DPN. A second order dependency on §2 shows up in both the variance-
induced and bias-induced error (exact form seen in Sectlon' Thus, the 62 involved constant will dominate the other
constants. Specifically, it even leads to divergence for ¢ > 1/2 for the variance-induced error and ¢ > 0 for the
bias-induced error.

4.2.2 DISTANCE-WEIGHTED MIXTURE NOISE

In this section, we discuss the scenario where further RAG examples are less likely to contain the correct answers. We
use a pair of large and small noises to model the correct/incorrect examples.

Assumption 5 (Distance-Weighted Mixture Noise). We assume that the RAG noise is formed by a mixture of small and
large noise:

f(xrag 1) + €5 wW.p. Pi
x = ’
y( rag) {f(xrag,i) +e  wp. 1- Y23 ’

where €5 ~ N (0, cs0?) corresponds to the small noise and ¢, ~ N(0,c;0?) corresponds to the large noise, with
cy > cs > 0. The probablllty of sampling small noise p; follows an inverse power law of the variance of the retrieval
distance, i.e. p; = (14 62)79, G > 0.

Here, we choose the sampling probability (of small noise) p; to follow a polynomial decay and the constant 1 here is to
ensure p; = 0 when 67 = 0. Under the new data assumption, we denote the corresponding RAG loss, bias-induced

error, and variance-induced error for W to be Lit4rag(W), €IThias(W), and efTvariance (W).

Theorem 3 (Finite Sample RAG Bound under Distance-Weighted Mixture Noise). Under Assumption Y=
then ety (W) = elrpie(W), and

T variance (W) = ma tr(W ' W) + zn: (pio? + (1 — pi)o?) [(1+ 62) tr(W W) + tr(W?) + tr(W)?].
i=1

If the variance of the retrieval distance follows power law, i.e. Iy > 0,q > 0 s.t. 62 = ~2i9, then:

O, (cldn‘Z*IJ2 — (¢ - CS)Janq’lfq‘j) ifn—o00,¢<1
diverges ifn—o00,q¢>1

efrvariance (W*) = { (] 8)

The bias-induced error here is the same as in DPN, since we assume a polynomial dependency for §2 on 4 in both
settings and the bias-induced error is independent of the variance of noise. Even though the variance of small/large noise
is bounded, the dependency on the retrieval distance leads to the divergence at large g (¢ > 1). The large prediction
noise will dominate the variance-induced error, but a larger gap between large and small noise (¢; — ¢,) can mitigate the
error by a ratio of O, (n*qq). That is, the smaller ¢ and § are, the lower the error.

We note that the uniform noise scenario can also admit the mixture noise model by taking a constant p;, Vi, resulting in
a form similar to the standard uniform retrieval noise in Proposition
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5 EXPERIMENTS

We investigate the effect of RAG with three guiding questions: (Q1) Whether RAG data outperform randomly sampled
in-context examples? (Q2) What are the impacts of the RAG examples from training data and RAG passages from
external corpora? (Q3) With a fixed budget, what is the effect of varying the ratio between the two types of RAG data?
Our experiments provide the following findings: (A1) RAG data lead to better performance than in-context ones under
different data budgets. (A2) Interestingly, the first few RAG training examples significantly improve performance, but
later ones are harmful, because the first few are highly relevant but later ones are noise rather than signal. In contrast,
RAG passages from external corpora can slowly but monotonically improve the performance, because external corpora
are large enough to provide noisy but still relevant data. These are captured by different noise models in our theory.
(A3) The performance is not monotonic with the ratio, and the sweet spot depends on the data/model.

We use representative models ATLAS [Izacard et al.| (2022)) and RAVEN Huang et al.| (2024} on two standard open-
domain question answering benchmarks Natural Questions (NQ) Kwiatkowski et al.|(2019) and TriviaQA [Joshi et al.
(2017). For evaluation, the context consists of m in-context examples, and n RAG data points (including n; RAG
examples from the training data and no, RAG passages from external corpora like Wikipedia, so n = n; + ng). We
choose different m, ny, ny’s for our study purpose and report the standard exact match (EM) accuracy on the test set.
See Section [C] for further experiment setup details.

RAG v.s. In-Context For a budget ¢, we compare using RAG only (m = 0,n; = ny = ¢/2) and in-context examples
only (m = ¢,ny = ng = 0). The results in Figure[T|show that RAG consistently outperforms in-context examples, as
RAG provides query-relevant data with more signals to address the query, consistent with our analysis.
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Figure 1: We compare performance between the RAG-only (¢ = m) versus in-context-only methods (¢ = nj +nq,n; =
ns), where c is the total number of data, n; refers to retrieved examples and no to passages.
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Figure 2: We compare the performance of RAG using examples (¢ = n) versus passages (¢ = ns).
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Figure 3: Performance sensitivity to n; /c under total data points c. n; refers to retrieved examples and ns to passages.

RAG Examples v.s. RAG External Passages Next, we compare using RAG examples from training data only
(m = 0,n1 = ¢,n2 = 0) and RAG passages from external corpora only (m = 0,77 = 0,n2 = ¢). The results in
Figure [2| show interesting patterns. For RAG examples-only, with more examples, the performance first significantly
improves but later drops. This suggests that the first few examples are highly relevant but later ones contain more noise
than signal. In contrast, for RAG passages only, the performance increases more slowly but steadily for larger budgets.
This suggests the passages retrieved are noisy but still have relevant signals. This aligns with our noise modeling. When
n1 is small (< 20 for NQ and < 10 for TriviaQA), RAG examples resemble uniform noise due to the relevance of
retrieved examples. As ny increases, ny introduces more irrelevant or conflicting examples (i.e., non-uniform noise).
On the other hand, ny passages from external corpora resemble a uniform noise regime as the retrieval pool is broad
with relevant data but also noisy.

When the retrieval budget is small, retrieval from training examples yields higher accuracy than from passages, even
though both operate in the uniform-noise regime. This discrepancy follows from the mixture-noise effects: a passage
judged relevant may still lack any answer-bearing text, raising its effective noise level relative to examples. Furthermore,
the significant drop for the retrieval from examples as opposed to retrieval from passages can be explained by the size
difference for the training data and passages pool (i.e. Wikipedia). Since the passages provide a denser coverage of the
semantic space, more passages will remain relevant as opposed to examples. In all, our theory is consistent with both
practical data types and matches the empirical results.

Ratio between RAG Examples and Passages The different noise properties of the two kinds of RAG data imply that
we should find a proper ratio between them when the total budget c is fixed. Figure 3| (Figure 4] for RAVEN in Section[C))
shows that as the ratio n; /c increases, the performance initially improves—benefiting from signal information—but
eventually declines as low-quality examples dominate the context. The results demonstrate that performance initially
improves as more signal (examples) is added, but eventually declines due to increasing noise from low-quality examples.
This supports the theoretical perspective of balancing signal and noise in retrieval-augmented inputs.

6 CONCLUSION AND LIMITATIONS

We take an initial step by modeling RAG as query-dependent noisy in-context learning and deriving finite-sample error
bounds for linear regression that help isolate the roles of retrieval signal and noise; we also explore how these bounds
behave under different noise regimes and a simple test-time-training scenario. Experiments on Natural Questions and
TriviaQA with RAVEN and ATLAS show trends consistent with our theoretical predictions.

Regarding limitations, our work considers the case without RAG finetuning. In practice, RAG information could
also be used for finetuning, but our current work just focuses on the more common practice of using it as in-context
information. Furthermore, our bounds focus on the linear setting, opening avenues for future studies on nonlinear
methods like kernels and neural networks. While our framework accounts for common RAG noise models, new models
may be needed for other types of RAG data. A further direction is to combine RAG with test-time training, studying
how on-the-fly adaptation affects both theoretical guarantees and empirical performance. Our experiments feature
representative models and datasets, but future research can explore newer retrievers and more RAG applications.
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A TECHNICAL PRELIMINARIES

L lfl - j as Kronecker delta.

0 ifi#j

Lemma 1 (Adapt W to Different Context Size). Suppose W is the weight with context length m, then the induced W
when evaluating on context of length m’ is:

Additional Notations For two integer indices ¢ and j, we denote ;; = {

w="w
m

Proof. We note that W is the un-normalized weight, i.e. scaling with the inverse context size 1/m. Only the normalized
weight is preserved when applying to a sentence with a different context length.

Then, the prediction is given as:
qT WXy
:ZT WNormahzedX Y

1
= ac;r —mWXTy

!/

m
——
-w
Thus,
m
O
Lemma 2 (Expectation of Mixed 4th-Order Moment of Gaussian). Suppose © ~ N(0,1),r ~ N(0,621), then
1.
Elrr' W' aze Wrr'] = 20*W 'SW + 5% tr (WTEW> 1 (19)
=2*WTW + 5 te(W W) ifS =1
2.
Ejre " W zz War'] = (tr (WEWTE) Ftr(WEWE) + tr(WE) tr (WTZ)) 821
(20
= (r(W2) + 6 (WTW) 4 (W)*) 21 =1
3.
Elar W za Wra'] = 202SWW'S + 6% tr (WWTE) > o
=20°WW ' +82tr(W W)I iy =1
4.
Efre W aa Wra'] = §2 (WTEWZ TWEW S+ W’ tr(WZ)Z‘)
(22)
= §? (WTW +WWT W’ tr(W)) iFS =1
5.
Elrr' W'z Waa'| =Elra W' za " Wra| (23)
Proof. 1. We have
[rr "W zx " Wrr ] =E[rr "W T Werr']
=282 IW TSW T + tr(W T EW 1) 621 (24)

= 20'W ' ESW + 54 tr(W ' SW)I
=20'WTW + S te(WTW)I ifS =1
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where the first step follows from Equation (32)).

mm[racTWTacmTWalr:'r |= Iq[*ﬂl[ m[ TWTzcasTWw} }
(tr WTESWY) —l—tr(WZWZ)—i—tr(WZ)tr(WTZ)) 521 (25
= (r (W) +or (WTW) +tr(W)*) 61 ifx =1

where the first step follows from Equation (34).

Elzr W' azx Wra'] =E [a:E [tr ('rTWTa::cTWr)} mq

=E [:BE [tr (TTTWT:EwTW)} :):T}
=P Extr(W zax ' W)a"
=P Extr(z WW 'z)x’ (26)
=P Exx WW Tzx'
= 2 (22WWT2 + tr(WWTE)E)
=2°WW ' +82te(W W) ifx =1

where the first three steps follow from the cyclic property of trace and the last step follows from Equation (32).

Era " Waz " Wra'| =E [r(z' Wr) 2 Wz ]
—E [rrTWTxasTstcq
= 5°E [WTmTWmT}
— 2w’ (2 (W + WT> S+ tr (W) 2)
= §? (WTZWE TWIEW TS+ W tr(WZ)Z)
= 2 (WTW +WwT W’ tr(W)) Y =1

where the first step follows from a2 T Wr being scalar, and the third step follows from Equation .

5.
Elrr' W' ze Waa'| =Ejre Wer ' W Tza |
T T T 27)
=E[re Waxx Wra'|
It follows from changing the order and transposing a scalar.
O

Lemma 3 (Expectation of 6th-Order Gaussian Monomial). If & ~ N(0, I), then

Elzx " Azx Bxz'] = SAYBY. + SAXB 'Y + XATEBY + XATEBTY
+YB'SAY + XBTSATY + ¥BYAY + ¥BTATY
+tr(EB) (AL 4+ ATY) + tr(SA) (EBE + LB ')
+tr(ZA) tr(SB)S + tr (SASBT) £ + tr(SAXB)Y (28)
= AB+AB"+A'B+A'B" + BTA+BTAT + BA+BA"
+tr(B)A + tr(B)AT +tr(A)B + tr(A)B'
+tr(A) tr(B)I + tr (AB") I + tr(AB)I ifL =1
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Elzx' W aze Wea'] = Elzz" W Waa '
—2 (zwzwz FIWEWTS + SWTEWE + ZWTZWTZ)

+26(EW) (SWE+ W)

(29)
+ (tr(EW)2 Yt (SWEW) + tr (EWEWT)) s
—9 (W2 FWWT AW W+ WW +tr (W)W + tr (W) WT)
i (W) T+ tr (W2) T+ tr (WTW) I ifs=1
Proof. LetT :=E[xxz " Axx " Bzx"]. Then, let’s consider one scalar entry:
le =K Z LL’i,’EkAkZSL'gxmanxnxj = Z AkZan ‘E [l’ixkle‘mxnxj] (30)

k,l,m,n kJ4,mmn

We now need to compute the 6th-order central moment of standard normal variables. This can be computed using the
Isserlis’ Theorem (Isserlis, [1918)):

Elwy---as)= > ] Elwiz] (31)

pEPZ (i,5)€p

where P? stands for all distinct ways of partitioning {1,. .., s} into pairs 4, j (perfect matching), and the product is
over the pairs contained in p.

We note that the number of perfect matching for s examples is given as:

S'

#perfect matching = W

where 2%/2 is for ignoring the ordering inside pairs and (s/2)! is for ignoring the ordering between pairs.
‘We note that there are 236—'3, = 15 distinct partitions for the 6-th order product of Gaussian random variable. Suppose

(Ta, xp), (Tc, za), (e, T ) is a valid pairing, then:

E[maxb] ]E[xcxd] E[mexf] = Zab . ch . Zef
Here, we will discuss the result for all 15 distinct pairings:

L (i, k)(¢,m)(n, j)
Z Akéan Zikzémznj = [EAZBZ]

k,l,m,n

ij

2. (i, k)(£,n)(m, j)
Z At Brn LipXpnXm; = [EAEBTE}

k,4,m,n

ij

3. (i, k)(€, 7)(m,n)
Z AkeBun ik SejEmn = t1(XB) [SAY] y
k.4, m,n
4. (i, 0)(k,m)(n, j)
Z AkKan Eiezkmznj = [EATZBE}

k.4, m,n

ij
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5. (i,0)(k,n)(m, j)
Z Akamn Eifzknzm]’ - [EATEBTZ}

k,l,m,n

ij

6. (i,0)(k,j)(m,n)
> ApBrn SitSkj Y = tr(EB) [SATY]

k,4,m,n

j

7. (i,m)(k, £)(n, j)
> ApeBin SimSkeSn; = tr(SA) [SBTY)]

k.4, m,n

ij

8. (i,m)(k,n)(¢, j)
3" AkBuin SimSin Sy = [SBEAY]

k,£,m,n

ij

9. (i, m)(k, )(¢;n)
Z AkZan Eimzk,jzén = [EBZATE}

k.4, m,n

ij

10. (é,n)(k, £)(m, j)
3" AwBun SinZreEm; = tr(£A) [£BY]

k4, m,n

j

11 (i,n)(k,m)(¢, j)

k,l,m,n

ij

12. (i,n)(k,5)(£,m)
Z AkZB'rrm Einzkaém = [EBTZATE}

k.4, m,n

ij

13. (i, ) (k, £)(m,n)
> ApeBun i Sk Emn = tr(SA) tr(EB) 5y
k.4, m,n
14. (i, ) (k,m) (€, n)
> ApBrn XijSkm Sen = tr(SALB') By
k4,mn
15. (4, 5)(k, n) (¢, m)
> AkeBin XijSkn Sem = tr(SASB) 5

k,l,m,n

Summing up all of these 15 terms together and recombining the element-wise terms into the matrix form, we obtain

Eq. (28). Then, we plugin A = W, B = W', we obtain Eq. (9). O
Lemma 4 (Expectation of 4th-Order Gaussian Monomial). Let @, x1, ..., @, ~ N(0,1)and X = [z{;...;z,].

Then, we have
Exx Wzx' =% (W + WT) S4+tr (W)X

“W+ W (W) ifS=1 (32)
=2W + tr(W)I if W is also symmetric

16
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and

EX'XWX'X =m’SWE 4+ mEW 'S + tr(WE)2
=m®W +mW T +mtr(W)I ifS=1 (33)
=m(m+ L)W +mtr(W)I if W is also symmetric

Ex'Azxz' Bz = tr (AS (B+ B') %) + tr(AY) tr(BY) (34)
IFA=WT B=W, then

Ex' W'z We=Ez Wzz Wz
= tr(W SWE) 4 tr(WEWE) + tr(WE) tr(W ' %) (35)
=tr(W W) +tr(W?) +tr(W)? ifo=1

Proof. Equation follows from section 8.2.4 of (Petersen et al., 2008) by plugging in mean 0 and variance X..

EX'XWX'X =)z Waiz] +> za/ Waja]|
i i#£]
—m (2 (W + WT) S+ tr(WE)Z) +m(m—1)SWE

(36)
=m (W+ w’T +tr(W)I) Ymlm - D)W ifS=1
=m?*W +mW " +mtr(W)I if W is also symmetric
=m(m+ 1)W + mtr(W)I
where the second step follows from plugging in Equation (32).
Equation follows from section 8.2.4 of (Petersen et al., 2008) by plugging in mean 0 and variance .
O

B ADDITIONAL PROOF FOR RAG

Here, we provide an overview of the organization of the proof. First, we consider the uniform retrieval noise scenario,
and compute the population loss for generic W in Theorem [1} Then, we plug in the special case W* (isotropic
pretrained weight), and provide a closed-form loss in Proposition [3] Then, we analyze its finite sample complexity
in Proposition [I]and the optimal RAG examples in relation to ICL examples in Proposition 2]

Later on, we provide an finite sample complexity analysis for non-uniform retrieval noise, Theorem [2] for Distance
Proportional Noise, and Theorem [3] for Distance-Weighted Mixture Noise.

B.1 UNIFORM RETRIEVAL NOISE

Theorem 4 (Generalization of Theorem[I). Under Assumption[I} [2] 3] the population loss of the linear self-attention
predictor {jq = a:qTWX Ty satisfies

[ftr+mg(W) = E(E (gq) - ?)q)2‘HE(]E (@q) - ]E(yq))2+ o’ 37
=erTyariance (W) =ertps (W) irreducible noise

17
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For ¥ = I, we have
ITyariance(W) = [mo® + (1 + 6°) oy, tr(W W) + nop, tr(W?) + noy,, tr(W)?
ertpias (W) = By [1 — (6% +2n+m)(W + W) — 2ntr(W)I + M4] But
=Bt [I — (n6® +2n+m)(W + W) = 2ntx(W)I

n2 2) L (m + 52 2 2\ T nin 4 62 T
+ [n* (2+6%) +n( +5)}<W +(W?) )+2( + ) WW

i=cC2

+ [m? +m+mn (24 26%) +n? (2+ 202 +6*) +n (202 + 6| WW (38)
+ [0 (24 0%) + 0 (m+ )] (W) (W + W 7))

i=c4, C4=cC1

+ [02 4 00%] (6r(W)2 + tr (W2)) T+ [m+ 02 +n (2% + 6")] o (WTW) I| B
———

I=Cs I=C¢

For general S, we have
O yariance(W) = (n02, +mo?) tr (WTEWE)
+no?, [tr(WZWZ) + (W) tr (WT ) + 62t (WTZW)}
erTias (W) = B [2 — (m + 2n)% (W + WT> 5 — no? (EW + WTE) _ntr(WE)T + M4] Bes
My =m(m+1)SWTWE +m tr(WTWE> S+ (202 4 2nm) SWTEWE
+ (2n% + nm) (EWTEWTE + ZWEWE) 22 SWEW TS
+ (202 + nm) tr(SW) (EWZ + ZWTZ> +n? (tr(EW)2 +te(EWEW) + tr(EWTEW)) 5
+ 62 ((n2 +n+nm) (WTEWE + EWTEW> + (n? +n) (WTEWTE + ZWEW)>
+ 62 ( n? +n) tr(SW) (WTZ + ZW) + MWW S 41 tr(WTZW)Z)
+ 62 ( (tr (EWTEW) + tr(EWEW) + tr(EW) )I)
((

+6* (2 +n)WTEW 4 n tr(WTEW) )
(39
Proof. For computational convenience, I will define the following quantities for Gram matrix: Gy = X LX icls
G;:=(zg+r)(xy+7;)",and G := Gy + Yiem Gi
We write down the error explicitly:
Yg — :chWXT =z, Bu+e—x, WX Xpy—az, WX '€
x, (B — WGBy) —x, WX Te+¢, (40)
qT (I-WG)By —x) WX "e+e¢

Therefore, the population loss is equal to:

2
Litrrag(W) = [(qu (I-WGQ) By — quWXTe) ] + o2

E
(2q,9q),(X,y).€

18
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We note that both €;c; and €,,, are independent of x4, X (including ), and E[e] = 0.

E {72 (@] (I - WG)Bu) (m;rWXTe)} ~0

And therefore, we have the following loss decomposition:

xq,X € T4,

Lomg(W) = E [(w;WXTe)?—i— E [(a:j (I—WG)BM)Q}—FUQ 1)

Then, we compute the mean of the prediction and the label:
Ey, =E (w;—Btt +eg) = w;ﬁtt
€q €q
Ej,=Ez, WXy
€
=Ez] WX (XBy +€)

=E w;r WGBtt
And further, we have

2
2
E(yq_qu> :EE(-’B;rﬁtt‘FGq—fﬂqTﬁtt) =£E€§ =0’

2 2 2
(50— Eda) = (2 WX (XBi+€)— 2] WX XB,) = (2] WX e) 42)
2
N 2 2
(QE(yq) - IEZUq) = (%—Irﬂtt - w;rWGﬂtt) = (qu(I - WG)Btt)
If we plug Equation (#2) into the loss decomposition Equation (1), we have

LumgW) = E {(quWXTe)ﬂnL E [(@] (1-WG)B.)"| +0°

xy,X € Tq,
2 ’ ’ 43
=E (IeE (9q) _.@q) +E <£E (q) _Ig(yq)) +E (yq _EEyq> (43)
q q
‘=€ITvariance (W) :=errbias(W) _0_2

(irreduab]e noise)

and we can obtain the bias-variance tradeoff as given in Equation (37).

2
Compute B, x [(w;WXTe) } First, we let

m—+n
zZ = a:qTWXTe = Z quWmi - €
i=1
Then,
m+n m—+n
T
2% = Z (w;rwwi)(x;W$j)€i6j = Z (:B;FW wq)(w;erj)eiej
4,j=1 i,j=1
Taking expectation:
m—+n
2 Ty T T
BE) = 3 (@] Wa))(eg We,) Bl
5=

Because the noise terms are independent and zero-mean, we have:

2

o, 1=3<m
E[qu] = O'rgag, t=47>m
0, i#]

19
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So only the diagonal terms survive:

m m-+n
E[2?] = 202 E [(w;—Wa:z)ﬂ + Z arzag -E [(w;—W(a:q + ri,m))2]
i=1 i=m-+1

* ICL Term: Since x4, x; ~ N (0, ) and are independent,
]E[(a:ZWwZ)Q] =E {w;rWT:cqw;rW:vi}
=FE [tr (Wqua:qTWwia:iTﬂ
= tr(W'SWY)
=tr(W'W) ifx=1

(44)

where the first step follows from the cyclic property of trace, the last step follows from the symmetry of W.

= ICL contribution = m - 02 - tr(W ' SWE) =m-o? - tr(W W) ifL =1 (45)
* RAG Term:
Each row in RAG has the form x4 + 7, s0:
a:qTW(wq +r;) = w;rWa:q + ac;'—Wri
Then, we plug in Equation into the RAG term:

3+ QE[w;—W:cq . w;—Wri]

’]

.
q q )
w;W(Bq)Q] + E[(w;r Wr,;)

(46)
where the second step follows from E[r;] = 0, the third step follows from the cyclic property of trace
and Lemma 4]

rag

=  RAG contribution = 1 - 02, - {tr(WEWTE) Fte(WEWE) + tr(WE) tr (W S) + 62 - tr(WTEW)]

=n- ar2ag : {(1 + 02 tr(W W) + tr(W?) + tr(W)2] ifX=1
Thus, we can combine the two terms above and obtain the following:

E {(quWXTe)z] = (no2y +ma?) tr (W SWE)

rag

+nol, [tr(WEWE) +te (W) tr (WTE) 462ty (WTEW)] 47)

= [mo? + (1 + 6%) nol,] tt(W W) + nol, tr(W?) + noZ, tr(W)? ifS =1

rag rag rag

Compute ., x [(a:;r (I = WG)B)?] First, we can expand the expectation and decompose the inner terms into 4
terms:

E [(1 W)z (I- WG)}

E E (1 - GWT> z,3] (I - WG)

xq,X
E wqa:;r —-E :cqac;WG —-E GWquw;— +E GWquSC;WG “48)
—

=M, =Mo> :=Ms3 =My

20
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We denote the four pieces M, My, M3, M, in order. First, we note that:
M, =E [z, ] =%

Then, we expand out the terms in Mo:

n
E z,w, WG = ( E mqsch> WG, + E z iz, W Z(wq + 1) (g + 1)

Lq,T i—1
=YXWGo+ E x :cTWZ(:B + 7)) (g + 1)
oo P1Ta q a

i=1

=SWGo+ E o, WY (zgx] +ria]) (49)
Farl i=1

_ T\ T 52

=YXWGo+ E zz, WZ(mqwq +6°1)

=1
= SWGy + nd’SW +n (z (W + WT) S+ tr(WZ)Z)
=YWGy +n(l+6OW +nW ' +ntr(W)I

where the first step follows from the independence between X and x,, the second step follows from Er; = 0, Vi € [n],
the third step follows from the expectation of 7;7;] = §21, and the last step follows from Equation . Then,

My = mEWS +n6?SW 40 (3 (W + W) S+ w(WE)5)
=2 ((m+n)W +nWT) Z +nd*W + ntr(W)I) (50)
=2+ n+mW +nW ' +nte(W)I ifL =1
Similarly, M3 = 1\42T , and we have

My — My — My =% — (m + 2n)% (W n WT) S — no? (EW + WTE) 2 tr(WE)Z

61y
=T —(m+2n+n0?) (W+WT) —2nte(W)I ifS=1
Now, we perform similar expansion for My:
My= E [GWTacq:chWG]
xg,X
= E [{Got+ D Gi|Wiaa W |Go+ ) G
e 1€[n] i€[n]
= E_|GoW @, WG+ GoW Ty W ) Git Y GiW 'xgz] WG
@ L i€[n] 1€[n]
+ ZGiWT:I:qm;WGi + Z G,»WTa:qquWGj (52)

i€n ijen,itj

= E GOWquw;—WGO +n GOWquCB;WGi +n GiWTacqw;r WGy

Tq,

i€[n) i€[n]

+n GiWTa:qquWGi +n(n—1) GiWququWG]‘

i€[n] i,jE€[n]i#]
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First, we can compute that:

My = wEX[Gomeqw}WGO] =E ([GoW "W Gy
=m(m+1)EW W +mtr(W' WE)S (53)
=m(m+1)W'W +mtr(W W) ifS=1

where the last line follows from Equation and symmetry of W ' W. Then, Vi € [n] and %, we have:

Myy = EX G()WTCL‘qIB;rWGi = E GOWT:cqa:;rW (g + 1) (g + ri)T
:l:q,

Tq,

E GOWT:I:qm;rW (:quL';r + rﬂ';r)

Tq,

E_GoW' (W T W 4 (W) + W52> (54)

m (WTW TWTWT (W)W + 52WTW)

=m ((1 LEROWTW AW W+ tr(W)WT)

where the first steps follows from E[r;] = 0, the second step follows from Equation (32).

For general Y, we can use a similar derivation and obtain:

M42 = E G()WT.’B,IZC(—IFW (.’Bqﬁc(—; + Tﬂ”‘;r)

Lq,

(55)
—msw T (z (W + WT) S+ tr (W) 2) +mEW T SW 2T

Moreover, we note that Vi € [n]:

M= E GiWTa:q:chWGi = (xq + 1) (g + m)TWququW(:Bq +ri) (g + 1)

wq7X7T1
_ T T T TN T T T T T
= (zgx, + iz, +T4r; +1i7 )W 2y, W(T4T, +Ti, +T47; + 17T

_ Tw Ty T T T T T T
=z, W zgxz, Waegz, +rivr; Wz, Wrir

g

0 order in 7; 4th-order in r;
T T T T T T
+ (riz, +xr; )Wz, W(riz, +x,7;)

2nd-order in 7;

Ty T T T Ty T T T
+rir, W Tyx, W;cq:vq + x4z, w Tqx, Wrr

i

2nd-order in 7;
(56)
It worth noting that given Gaussian vector r;, then its monomial of odd order has 0 expectation according to Isserlis’
Theorem (Isserlis,|1918). And we can thus obtain the third line by keeping only the even order monomials of r;.

22
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By adding up Lemma[3]and all the terms above, we obtain that for ¥ = I:

T T
].l)if,'r'i GzW a:q:cq WGZ

xg,

2 (W2 +WHT LW WL WW ' 4 tr (W) (W + WT))

Oth-order in r;, Lemma[3|
+tr (W) T+ tr (W) T+ tr (WTW) I

+20°WTW + 54 te(W T W) T
4th-order in 7;, Equation

+ o2 {tr (W) (WT + W) W2 (W2)T 4 QWTW}

Equation (23) and its transpose
+ (tr (W?) +tr (WTW) + tr (W)2) 61
Equation (Z0)
+28WW T+ 52 tr(W W)
Equation (T}
+ 62 [tr(W) (WT + W) + W2+ (W)T + QWTW}

(57)

Equation (Z2) and its transpose
= (2+282) [tr (W) (WT + W) T W24 (W2)T}
+Q2+4YWTW +2WW T
+ (1462 [tr (W)2 T +tr (W2) T +tr (WTW) I]
+20W W 4 5 e (W I W) 4 28°WW T 4+ 6% tr(W T W)I
= (2+282) [tr (W) (WT + W) T W24 (W2)T}
+ (24482 + 20HWTW + (2 + 202 ) WW T
+ (1462 (u«(W)2 Ftr (WQ)) I+ (14262 + 6% te(WTW)I

23
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For generic ¥, we can make a similar derivation:
E GW' 'z WG,

xg, X1

=2 (EWTEWZ FIWESWTY + SWEWY + EWEWTE>
+20(EW) (SWE + W 'S)
Ftr(SW)2S + tr (ZWTZWT) S+ tr (EWTEW) 2
+20WTEW + 6* tr(W T EW) T
+ (tr(WZWTE) Ftr(WEWE) + tr(WE) tr(WTz)) 821
+ 282 EWW 'S + 2 tr(WW 'E)8
+ 262 (WTEWZ TWIEsW s+ wT tr(WZ)E)

+202 (WISWS+ WISW s+ W' tr(WZ)Z)T 58)
=2 (SWTSWS + SW SW TS + SWEWS + SWEW ' 3)

+2t(SW) (zwz + zWTz)

+ (H(EW) +tr (SWTSW) + a(SWSW) ) 3

+ 20 WTSW + 64 tr (WTZ‘W) I

+ 62 (tr (EWTEW) F(SWEW) + tr(ZW)2> I

+02 (25WW TS+t (WTSW) %)

+ 262 (WTZWE +WESWTS + tr(ZW)WTZ)

+ 262 (EWTEW LESWEW + tr(EW)EW)

Also, we expand the cross-term out for Vi, j € [n],i # jand ¥ = I:
Myy = EGiWTacqw;—WGj =E(z, +7r;)(z, + Ti)TWTSEq:L’;W(IBq +ri) (g +r)"
= (wqw;— + ri’r;r) WTa:qw;—W (a:q:c;— + ’rjr;r)
= xqa:qTWTscqquWa:qach + TiriTWTa:qschWacqsch
+ xqquWT:cqquerro + ririTWqua:qTerro
—9 <W2 + (W) A WTW L WWT 4t (W)W + tr (W) WT)
(W) T tr (W) T+t (WIW) T
42 <W2 T (wA)T 4 2WTW) (W) W+ W) +6WW 5o
= (2462 (W2 + (W) 4t (W)W + & (W) WT)
+(2428)W W +2WW T
Ftr (W) T+t (W) T4t (WIW) I+ 5W W
= (2+6?) (W2 + (W) 4t (W)W + &2 (W) WT)
+ (24282 +HW'W 4 2WwwW T
e (W) T tr (W) T+t (WW) T

24
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where the first step follows from the independence of x4, 7;, 7, and the second step follows from applying Lemma 3]
and Equation (32).

Similarly, we can compute M4 for generic X,

Myy = azquWTa:q TWa:qa:T +rir] Wiax TWalr: a:;r

+zqz, WTa:q TWr]r +7r; rTWTazq Ter ;r

=2 (EWTEWE FIWTSWTS + SWEWS + EWEWTE)
+2t(SW) (zwz + EWTE)
Ftr(SW)2S + tr (EWTEWT) S+ tr (EWTEW) s
+ (52WT (2 (W + WT) S tr (W) 2))
+ (W (S (W W) S+ (W) 2))T (60)
+5'wTsw
=2 (SWTSWS + W SW TS + SWEWY + EWEWTE>
+2 tr(EW) (zwz + EWTE)
+ (tr(EW)2 Ft(SWEW) + tr(szEW)) >
+ 462 (WTEWE TWISW S+ SWEW + SWEW + tr(SW) (WTZ + EW))
+otwisw

Combining the above terms together, we have for ¥ = I:

My = My +n(Myz + M) +nMyz +n(n — 1) My

=m(m+1)W' W +mtr(W W)I +mn ((2 + 28 YWIW + W2+ (W)T + tr (W) (W + WT))
+ nMys +n(n — 1) My,

=2n(2n+0*) W?+2n (n+6*) WW '
+ [m? +m+ (4+20%)mn +n? (24 46% +6*) +n (26> + )| W'W
+ [n? (24 6%) 4 (m+ 6%)] (W) (W+ W)
+ (n® +n6%) (tr(W)? + tr(W?)) I + [m +n® +n (26 + 6*)] tr (WTW> I
= [n* (2+0%) +n(m+6%)] <W2 + (W) + (W) (W + WT))
+ [2n% + 208 WW T
+ [m? + m+mn (24 26%) +n (26% +6*) +n? (24202 +6) | W'W
+ [n? +nd?] (r(W)? +tr (W?)) I
+ [+ n? 40 (262 4 6)] o (WTW) 1L

(61)
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Similarly, for generic 3, we have:
My = My +n (Mag + MJ5) + nMas +n(n — 1) My
—m(m+ ) SWTWS +m tr(WTWS) £+ (202 + 20m) SWSWS
+ (20 + nm) (ZWTZWTZ + ZWEWE) F 22 SWEW Y
+ (202 + nm) tr(SW) (EWE + EWTE> +n? (tr(EW)2 +tr(SWEW) + tr(ZWTZW)) 2
462 ((n2 4+ nm) (WTEWE ¥ ZWTZW> + (02 +n) (WTEWTE n EWEW))
+ 62 ((n2 + ) tr(SW) (WTE + EW) FMEWW S 41 tr(WTEW)E)
+ 62 (n (tr(EWTEW) F(SWEW) + tr(ZW)2> I)

+ 64 ((n2 +n)W'SW +n tr(WTEW)I) .
In summary, combining all terms together, we have:

ﬁ(W) != €ITyariance T €IThias + 02
where the irreducible variance is o2, and the reducible variance (variance of ICL + RAG) is

Variance of ICL + Variance of RAG = [mo? + (1 + 6?) nog,] tr(W ' W) + noZ, tr(W?) + nol, tr(W)?

rag rag rag

And the err from the bias for ¥ = [ term is given as:

eTThias = By [M1 — My — Mz + My By
= BT [1 — (% +2n+m)(W + W) — 2nte(W)I + M4} Bt
=87 [I — (062 + 20+ m)(W + W) — 2ntr(W)I
+ [n? (2+6%) +n (m+6%)] <W2 + (WQ)T) +2n(n+ ) WW'
+ [m? + m+mn (24 26%) +n® (2+ 207 +6*) +n (20° +6) | WW
+ [n® (2+6%) +n(m+6%)] (tr(W) (W + WT))

+ [02 4 00?] (6r(W)? o+ tr (W) T+ [m+ 02 4+ (26% + 8%) | o (WTW) 1) By

And we can also derive the exact form of bias induced error for generic 3. O

The previous theorem gives the exact form the RAG population with general W. In the following proposition, we will
compute the population under special W in order to obtain a more fine-grained complexity analysis.

13

Proposition 3 (RAG Population loss under isotropic setting). Assuming W* = W{W

loss are given as:
£tt+rag(W*) = errvariance(W*) + errbias(W*) + 02
m3d 9 dm®n(2+62+d)
g (o2
[(m4+d+1)(m+n)? [(m+4+d+1)(m+n)]2 ™
2m (
(m+d+1)(m+n)

1. Then, the population

€ITyvariance (W* ) =

P(m,n,d,5)m?

erTpigs (W) = Hﬁttng 1- (m+d+1)2(m+n)?

n52—|—2n+m+nd)—|—

where
P(m,n,d,8) =6n2 + 4né® + m? + m + (4 + 252) mn

+n? (2446 4+ 6%) +n (26% + 6*) + 2dn® (24 6°) + 2dn (m + 6%)
+d(d+1) (n® + nd?) + dm + dn® + dn (2% + 6*)
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Proof. Plugging in the value of W*, we first compute the error from input variance.

2y dm?
(W) = G a2 m 7 )2
tr(W™) = dm

(m +d+1)(m +n)

erTyariance (W) = [mo? + (1 + 6%) nol,, ] tr (WTW) + nafag tr (W?) + nofag tr(W)?

rag
dm?[ma® + (1 4 6°)nog, 9 dm? 9 d*m?
= +n0ra + Nnop,
(m4+d+1)2(m + n)? E(m+d+1)2(m +n)? E(m+d+1)2(m + n)?
B m3d 9 dm?n(2+ 6% +d)

T imrdr Dm+nE’ T [mtd+ Dimtn)2

Then, we proceed to plug in the value and compute the error from the estimation bias.

2

2m(né? + 2n +m) 2ndm m
i ) = 21— —
erThias (W) = | Brel2 it mtdtl) mEmmidsD)  mrdr )imrnE
P(m,n,d,s)
2m P(m,n,d,5)m?

2 2
= 1-— 0° 42 d
1Bscllz (m+d+1)(m+n) (nd” + n+m+n)+(m+d+1)2(m+n)2

where
P(m,n,d,8) = (2¢1 + o + ¢3) + 2dey 4 (d* + d)es + deg

=2(n*(2+6) +n(m+6%) +2n(n+46?)
+ [m® +m+mn (2+26%) +n? (2+26% +6%) + n (26% +6%)]
+ 2d[n?(2 + 62) + n(m + 6%)] + (d? + d)(n® + nd?) + d[m + n* + n(26% + §%)]

= 6n% +4nd% +m? +m + (4+252)mn
+n? (2+46% 4+ 6%) +n (26% + 6*) + 2dn® (2 4 6°) + 2dn (m + 6%)
+d(d + 1) (n* + nd®) + dm + dn® + dn (26 + 6*)

O
B.1.1 FINITE SAMPLE COMPLEXITY OF RAG
Proposition (Restatement of Proposition . Under Assumption ifé? < 1,
Livirag(W*) = O 2y _dm o I o sz L e (=2 ’
Ta, - m.n ag g Ura —
th+rag ’ (m+n)? (m+4n)2 ™8 2y m4+n
erTyariance (W*) TThias (W)
Om(La? + %Ufag) =O0n (L) m— oo, n fixed.
eITvariance (W) = On(%’a2 + %Ugag) =0, (%) n — oo, m fixed (62)
2
(’)m(%a2 + %afag) =0, (%) m — 00, n = 60,,(m)
Om (Hﬂtt”%%) if m — oo, n is fixed
errpias(W*) =< O, (||ﬁtt||§d2) =C] if n — oo, m is fixed (63)

Om (H/Btt”% (% + d2)) =Csy + Om(”ﬂt':”%%) lfm —7 00, n = G)m(m)

Proof. We will bound the variance-induced error and the bias-induced error separately.

27



Under review as a conference paper at ICLR 2026

Variance-Induced Error First, we try to bound erryaiance(W™):

dm3 dm®n(2 + 6% + d)
varian W* = ’ 2
eITvariance (W) (m—i—d—l—l)?(m—l—n)?U (m+d+1)2(m+n)20rag

- dm3 )2 dm?n(d + 6% + 2) o2

< 2 m 1) () e

dm o, d2+8+d)n ,
= 20’ 2 Jrag
(m +n) (m+n) (64)

dm d*n
= Omn ((m R ”ég)
On(L0? + 62 ) = O (L) m — o0, n fixed.
= On(%GZ—FdT:Gig):O 1) n — oo, m fixed
Om(%a2 + d%arzag) =0, (i) m,n — 00, n = O(m)
where thz second line follows from (m + d + 1) > m and the fourth line follows from the fact that §2 is small relative
tom,n,d.

Bias-Induced Error We will expand out the term

Q(m,n;d, 6%)
(m+d+1)2(m+n)?

et (W*) = || Bue 12 65)

where
Q(m,n;d,6%) = (m+n)* (m+d+1)% = 2m(m +n)(m + d+ 1)(né* + 2n +m + nd) + m*P(m, n,d, §?)
= (d+ 1)m® + (d* 4 2d6* + 4d + 6* + 26% 4 5) m*n?

=K22

+ (d?6% — 2d* + d6* + 3d6* — 4d + 5* + 46% — 2) m®n

I=K21

— (2d* + 2d6” + 4d + 26% + 2) mn® + (d* + 2d + 1)(m + n)?

I=R12

(d 4 1)m® + kgam?®n? + |ka1|m?n 4 lower-order terms

< (d+ 1)m3 + koam?®n? + ko1 |m*n + (d 4 1)%*(m + n)?

(66)
where the last line follows from k15 < 0.
Note that we assume 62 < 1. Now, we can bound each of the term in @ divided individually:
¢ Cubic term:
d+1)m® d+1 2 d+1
(d+1)m _d+ m < + 67)
m2(m +n)? m \m+n m
e Skew-cubic term:
|ka1| m2n
= 68
m2(m + n)? | 21|(er B _|I€21\( )2 (68)
¢ Quartic term:
K22m2n2 n 2 (69)
A ? bl
m2(m +n)? 2\ m+n
e Jast term:
1 d?
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Combining Equation (66), Equation (67), Equation (68)), Equation (69), we can obtain that

N dm n? d?
extas (W) = Opn (IIBmII% { p + D

(m+n)? (m+n)?2 ' m?
Om (1B:13:2) if m — oo, n is fixed (70)
= O, ([IBull3d?) = C4 if n — oo, m is fixed

Om (18ecl3 (5 + ) = Co+ Om([1Buell35) i m — 00, n = O (m)

where the third step follows from plugging in the highest order monomial of d from ka1, Ka2.

B.1.2 OPTIMALITY OF NUMBER OF RAG EXAMPLES

Proposition (Restatement of Proposition . Under Under Assumption EI 6% < 1, and reasonable choice of 5°, 07,
(02,00, < ||Becll3), the optimal n* that minimizes the RAG loss follows:

m (d? 24+do? —d%02 d 24+ 02 —do?
n* = O, ( ||62tt||2 . — rag) -0, ”ﬂttHQ . rag (71)
md?|| B |5 — d*o d|| Bs |5

rag

and the improvement on loss from picking the optimal n* over n = 0 is given as:

* " 1
En+mg(W )|n:0 - Ett+rag(W )‘n:n* = Om (777/2) (72)

Proof. First, we define several constants that can lead to a cleaner calculation. Let wy := d, wo := d?. Then,

dm?3 dm?n(2 + 62 + d)
varianc W) = ’ 2
€ITyaria e( ) (m +d+ 1)2(m + n)za + (m Td+ 1)2(m + n)? Orag
3 2
~ m W10'2 + = w202

rag

T (m+d+1)2(m +n)? (m +d+1)2(m +n)?

where the last line follows from 62 < 1. Let Q(m, n, d, §2) := C""‘*"‘(W*)(ﬁ+ﬁjl)2(m+")2 as in Equation . Then,
ot |5

Q(m,n;d,6%) = (m+n)*(m+d+1)* = 2m(m 4+ n)(m + d + 1)(né? + 2n +m + nd) + m*P(m,n, d, §°)
= (d+ 1)m> 4 (d* + 2d6* + 4d + §* + 26 + 5)m?n?
+ (d?6% — 2d* + do* + 3d6* — 4d + 6* + 46% — 2)m*n
— (2d® + 2d6* + 4d + 26 + 2) mn® + (d® + 2d + 1)(m? + n?)

~ d m3+_d> m*n®—2d>m*n —2d*>mn® + _d* (m?+n?)
~~— N~~~ N—— N—— S~~~
‘=730 T22 =T21 I=T12 =T2

3 2.2 2 2 2 2
= T3om” + Toom"n* + Toymn + Tamn” + 1o(m* 4+ n-)

(73)
Now, we want to find the optimal n* W.r.t. L. That is, we want to minimize
1
[m3w102 4 mz’l’LOJQO'rQag +11Bec I3 (7’30m3 + Toom?n? + Torm®n + Tomn? + 1 (m2 + 712))] (m+n)2(m+d+ 1)
(74)

where all 7, w are positive except that 715 is negative. First, we take out the terms that does not depend on n, and we
equivalently minimize

1

L(n) := [m3w102 + anwgofag + || Bec I3 (730m3 + T9om®n® + Toym®n + Tiamn® + 1 (m2 + n2))] W

A = mPwi0? + || Bee || Prsom® + || B || ram?,
B =m? (wgafag + Hﬁtt”27—21) ) (75)

C = ||6tt”2 (722m2 “+ T19m + T2) .
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Then,
L(n) = (A+ Bn+ Cn*)/(m +n)?

Then, by the rule for derivative of quotient,

O (Lirrag(W™)) (B +2Cn)(m + n)? —2(m +n) (A + Bn + C’n2)

on (m+n)*
(B+2Cn)(m+n) —2(A+ Bn+ Cn?)
B (m +n)3
Bm + Bn 4+ 2Cmn + 2Cn? — 2A — 2Bn — 2Cn?
- (m +n)?
Bm — Bn +2Cmn — 2A
- (m +n)?

Set the derivative to be zero, we have

Bm —Bn+2Cmn—-2A=0

and
. Bm —2A

~ B-2Cm
(2 (@307 + 1B l721)) = 20 + |l Prsom® + |l ram?)

(m? (wgafag + HﬁttHQT?l)) - 2m(||ﬂtt”2 (Toam? + Ti2am + T2))

_ m (2] BullBdm + 2| Bw|3d + 2[|Bee[|3m — dmog, + 2mo?)
d (2[[BullBm? = 2[[Bull3m + 2] Bul3 — mo2,)
md (2| Bws|l3dm — dma,, + 2mo?)

T & (2||BttH%m2 = 2|Beell3m + 2[| Beel|3 — mUrQag)
md (2|| By |3dm — dmo, 4+ 2mo?)

o ( d? (2| Be||I3m? — moly) )

rag

n

md?||B||3 — d?o7,

_ Om (dHﬁttI% + 0% — da?ag)

o (m (@2|Bucl|3 + do? — dQJfag)>

d||Be 3

where the third step follows from upper bounding the numerator, and the fourth step follows from lower bounding the
denominator.

n* as Global Minimizer Now, we will show that the stationary point is the global minimizer. The second order
derivative is give as:

0 (Liag(WT)) 2 (C’m2 —2Cmn — 2Bm + Bn + 3A)

= 76
on (m+n)4 (76)
Plug in Bm — Bn* + 2Cmn* — 2A = 0, we have
* 2 2_A
on (m—n)(m-+n)3 —
Since n* = O(1), we have m > n* for large m. Also, we have Cm? > A for large m, thus we have
% |n=n* > 0, and n* is the local minimum. Now, we check the first order derivative of n > n*,

Bm — Bn+2Cmn —2A = Bm — Bn+ 2Cmn — 2A — (Bm — Bn* + 2Cmn* — 2A)
=—-B(n—-n")+2Cm(n—n") >0

where it follows from B < 0, C' > 0. Similarly, we can show that Bm — Bn + 2Cmn — 2A <0, Vn < n*. Thus,
we have n* to be the global minimum of the loss.
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Improvement from n* Here, we plug in n = n* and n = 0 into Equation (74). We have
A+ Bn* +C(n*)?
(m+n*)2(m+d+1)2
4
m2(m+d+1)>2

ACtt+rag |n:n* (W* ) =

(78)
£ll+rag ‘ n=0 (W* ) =

Then, the improvement is give as

A(m +n*)?2 —m?(A+ Bn* + C(n*)?)
m2(m+n*)2(m+d+1)2
(n*)2(2Cm — B)

2m? (m +n*) (m+d + 1)2

cor(®)
g

o 2d2||/3tt||2m)

~ 00 (3)

where the second step step follows from Bm — Bn* 4+ 2C'mn* — 2A = 0 and the third step follows from n* = O(1),
and the four step follows from B < 0 and | B| = O(C). It finishes the proof. O

Ett+rag|n:O(W*) - £tl+rag|n:n* (W*) =

3

B.2 NON-UNIFORM RETRIEVAL NOISE
Now, we proceed to the proof for non-uniform retrieval noise.
B.2.1 DISTANCE-PROPORTIONAL NOISE

Theorem (Restatement of Theorem[2). Under Assumption[l} 2| ) the population loss is given as:

e yariance(W) = mo® te(WTW) + > 71 87[(1 4 67) tr(W W) + tr(W?) + tr(W)?]
i=1

If the variance of the retrieval distance follows power law, i.e. 3y > 0,q > 0 s.t. §2 = 7219, then

. . . dn2q+1 + n2q+2
errbias(W ) = Om,n (errbias(W ) + ||6ttHg [M]> (80)
and
eftygriance(W*) = O dmo? +d(n* o\ _ [0, (dn®17'0?) ifn — 00, ¢ <1/2 81)
rarance " (m+n)? diverges ifn—o00,q>1/2
Proof. We first write down the error explicitly similar to Equation (40).
Yq — :c,;rWXTy = :13:1r I —-WGQG) By — (B;—WXTE +eq
And we can break down the population loss as
~ 2 2
LonsW)= B (@] (1= W) B + (2] wxTe) 402 (82)
Variance-Induced Error . .
e Tvariance (W) = E(z, WX €)?
m-+n
(83)
= > (& Wia,)(x] Wa;) E(ee;)
i,j=1
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Because the noise are independent and zero-mean, we have

2

o°, 1=35<m
E[€j€j] = o-rzag,i’ i=j>m
0, i#j
Then,
m m4+n
LHS =) o’ E[(x, Wz:)’| + > 0 im - Elzg Wi, +ri_m)’]
=1 1=m-+1

Thus, the ICL contribution remains the same as Theorem/[l] i.e.

m
Z o? E[(quWa:i)Z] =mo?tr(W'TW)
i=1
To compute the RAG contribution, we evaluate the formula similar to Equation (46).
E (2] Wiz, +7:))°| = El(@] Wa,)? + El(x] Wr.)?] + 2Ele] Wa, - @, Wr] o)
= tr(W' W) + tr(W?) + 62 tr(W W) + tr(W)?

And thus, the RAG error contribution is

m—+n n
Z Jrag i—m :B W(mq + i m)Q] - Z rag z[(l + 52) tI‘(WT W) + tI‘(WQ) + tI‘(W)Q]
1=m-+1 =1
Plug in O’rag ; = 7102, and combining all terms together, we have

T yariance (W) = mo tr(W W) + 271(52 +62) tr(W W) + tr(W?) + tr(W)?]

Now, if we further assume 5? = 919, and plug in the value of

€T yariance (W) = mo? tr ((W*)TW*) + Z’ngiq[(l + y219) tr ((W*)TW*) +tr (W)?) + tr(W*)?]

m2

 (m+d+1)2(m+n)?

dmo® + Y172

o Yo g
(2d+d*) Y i%% + dyp Y i% 2]

i=1 i=1

2

m ndtl  pg n2a+1 n
= dmo? 21(2d +d*) O, — | +d%0, | —— + —
(m+d+1>2<m+n)2{mo + 71720 [( +d*) O 1Tt Y20 21T

~0, (dm02 + qu“))

(m +mn)?
O, (dnzq_102) ifn — o00,q<1/2
=<0, (daQ) ifn —o00,q=1/2
diverges ifn —o00,q¢>1/2

where the second step follows from the Euler—Maclaurin expansion of the power sum.

Bias-Induced Error From Equation (61)), we note that

ertyias (W) = B | My — My — My + My + Y (Mag+ MB) + > Mazs+ Y M| Bu
i=1 i=1 i#5,1,5€[n]
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Specifically,

E [(1 W) wea] (- WG)} - E (1 - GWT) z.x] (I - WGQ)
~Ez,a] —~Eza] WG-EGW T2z +EGW Tzl wa &)

2:M1 2:A{2 ::]\/[3 ::]\/[4

To avoid the repeated computation, we will highlight the calculation that involves J;, omit some calculation steps given
in the standard case and discuss its bound after allowing for non-uniform offset. We will only compute 67 1nv01v1ng
term and use . .. to denote the rest terms, since we assume 62 < 1 in proving Theoreml 1| The final bound w1ll be given

as

eiTpias (W) = errpias (W) 4 62-involved terms

M, = E [@,x, | = I and remains the same. Let s5 :== Y, 07, S5 := >_,(67)°.

Then, we expand out the terms in Ms:

My= E wgxi WG = (E T, )WGO—I— E zx, WZ xy+ri) (g + 1)’

Lq,T Lq,T
i=1

=WG,+ IE L TaTq WZ:cq:c +rir))
— (86)

=WG)+ IE LT TWZ z,T, T 4+6%0)
i=1

Similarly, M3 = M, =---+ s5 W . Now, we perform similar expansion for My.

First, we note that My; = Eg, x [GOW Tyx TWG'O} is independent of §2.

Z My = Z E GoWT:L’ wTWG
i€[n) iefn]
= Z EGW 'z W (z,+7;) (24 +7)"

i)
= Z IEXGOWT:B T W(:Bqa: + 77, )

icm) " (87)
=Y E GwW' (W FWT 4 tr(W) + W52)

i€n] "
-3 m (WTW +WWT W)W + 52WTW)

i€[n]

ce m55WTW
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Following the derivation of the 6th-order and 4th-order moments as in Lemma[3]and Lemma 2] we have

;} Mys = Z[:] mq,I)E(,m GiWT:cqachWGi
1€(n 1€[n

2 (W2 WO+ W W+ WWT +tr (W) (W + WT))
- Oth-order in r;, Lemma[3|
e (W) T tr (W) T+t (WTW) T
+ 20} W W 4 6} tr(W TW)I

4th-order in r;, Equation (T9)

+ 62 [tr (W) (WT + W) W2 (W2)T 4 2WTW}

Equation @3) and its transpose

+ (0 (W) + 0 (WTW) + 10 (W)?) 621

Equation 20)
+2WW T+ 52 tr(W W)
Equation 2T))
88
+ 02 [tr(W) (WT+W) +W2+(W2)T+2WTW] (8%)
Equation @ and its transpose
= 3 (24262 [m« (W) (WT + W) F W24 (W2)T}
i€[n]
+Y @+aHWw W+ Y 2ww T
i€[n] i€[n]
+3a+) [tr (W) I+t (W2) I+t (WTW) I}
1€[n]
+3 (26§WTW + 6 e (W T W)+ 282WW T + 62 tr(WTW)I)
1€[n]
— 4255 [tr(W) (WT + W) W2 (W2)T}
+ (455 + 2S5)W W + 25;WW '
+ 56 (tr (W)? + tr (Wz)) I+ (255 + Ss) tr(WTW)I
Also, we expand the cross-term out for Vi, j € [n], i # j:
> My =) EGW za] WG,
i+ i#5
= Z (mq:chWTa;qa:qTqua:;r + ririTWququWa:qqu>
i#]
+ Z (mqquWququerro + ririTWququerro)
i#] (89)
=y e (W2+WTW+tr(W)W)
i
+Y 62 ((W2)T FWTW + (W) WT>
i
+Y GEWIW
i#]
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In the non-uniform noise scenario, 4th-order term in §; will dominate the 2nd-order term in ;. Thus, we will plug

2 -q * m : .
07 =y, W™ = T 1)) IO erThiag:

erThias (W) = ertias (W) + O | By |2D (G2 WH)TW* 3= G55 (W) W™+ (6) te(W*) T W)I | By

i#j,i€[n],j€n]
= eIThias (W) 4+ Oy (Bey [dn® T (W) TW™ + n2P2(WH) TW™] By
. dn2q+1 + n2q+2
= eITpias(W™) + Omn <ﬂtTt {(m—l—n)z} tt)
It finishes the proof. O

B.2.2 DISTANCE-WEIGHTED PROBABILISTIC NOISE

Theorem (Restatement of Theorem[3). Under Assumption|]| then ety (W) = eitpias(W), and
ettyariance (W) = mo® te(W W) + > (pio? + (1 = pi)at) [(1+467) tr(W W) + tr(W?) + tr(W)?]

i=1

If the variance of the retrieval distance follows power law, i.e. 3y3 > 0,q > 0 s.t. 6? = 7219, then:

O, (cldn”?’1 2 —(a— cS)JZdnq’lqu) ifn—o00,¢<1

0
diverges ifn—00,qg>1 ©0)

efrvariunce(W*) = {

2

1ag and depend on the same set of

Proof. First, we note that eIy, (W) = efrpias (W), since both are independent of o
Vi, 62.
We write down error explicitly similar to Equation (40) and break down the population loss as:
~ 9 2
Lom(W)= B (2] (I-WG)A) + (2iwxTe) 402 o1)
®q,Yq),(X,y).€7

We note that eTTiys (W) = erryias (W), since the error from bias does not depend on the sample complexity.
I Tyariance (W) = ]E(-T:Ir ‘/‘/ZXT 6)2

m—+n
= Z (w?Wqu)(m;ij) E(e;e;) 2)

3,7=1
Because the noise are independent and zero-mean, we have
o, 1=73<m
o, 1=j>m, Wp.p
012, t=73>m,wp.1—p
0, 1#7]

Thus, the ICL contribution remains the same as Theorem[I] i.e.

Eleje;] =

i& E[(z] Wx;)?] = mo” tr(W' W)
i=1
To compute the RAG contribution, we evaluate the formula similar to Equation (46).
E (2] Wiz, +7:))°| = El(@] Wa,)?] + El(x] Wr.)?] + 2Ele] Wa, - @, Wr o)
=tr(W' W) + tr(W?) + 62 tr(W W) + tr(W)?

And thus, the RAG error contribution is

En: (pio? + (1 — pi)od) [(1 + 62) tr(W W) + tr(W?) + tr(W)?]

i=1
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Plug in 07, ; = 7167, and combining all terms together, we have
Cttvariance (W) = mo? (W W)+ (pio + (1= pi)oi) [(1+67) te(W T W) + tr(W?) + tx(W)?]
i=1

2

Now we further assume p; = (1 +62)~9, ¢ > 0, and plug in the value of W*. Let B := W’fw

T yariance (W) = mo? tr(WTW) + Z (piof +(1- pi)alQ) [(1+ (55) tr(WTW) + tr(WQ) + tr(W)Q]
i=1

=B |dmo®+ Y (ao® — (1+6) (e, — ci)o?) [(1+67) - d+ d+ d?]
L i=1

~ B |dmo® + ¢0? Y (d67 +d®) — (a1 — eo)o? > (d(1 +67)' T+ d*(1+67)~ )]
=1

=1

~ B dmaQ—l—cladeéiz —(a —cS)UQZd(l—i—ég)l_q
L i=1 ;

_ B [dmo? + ¢io?dnitt — (¢ — ¢;)o*dlog(n)]  ifG=1+1/q

B [dmo? + ¢jo?dni™ — (¢ — ¢;)o%dnT1797]  else

where the second line follows from omitting the lower order term.

If § = 1+ 1/q, we note that the middle term will dominate the error. And combining all cases, we could obtain

O, (clalnq*1 2 (¢ — cs)azdanl’q‘i) ifn—o00,¢<1
T yariance (W) = diverges ifn—+o00,¢g>1
O, (cldnq’lo2+(cl —cs)d2%02) ifn—o00,§=1+4+1/q

C MORE DETAILS FOR THE EXPERIMENTS

For Natural Questions (NQ), the retrieval index is constructed from the December 2018 Wikipedia dump. For TriviaQA,
we use the December 2021 version. To accommodate hardware limitations, we randomly subsample 10% of the full

index for both datasets. This reduces retrieval cost and memory usage, allowing all experiments to be conducted on a
single NVIDIA A100 or L40 GPU.
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RAVEN on NQ dataset RAVEN on TriviaQA dataset

=x= total number of data points c=10 =)= total number of data points c=10
«=®= total number of data points c=16 «=@®= total number of data points c=16

~
o
~
o

9_\0, 60 =@= total number of data points c=22 3\0/ 60 =@= total number of data points c=22
9 9
8 50 & 50
> 3
;d 40 g 40
D .
530 —_——x o 30
© ©
E 20 E 20
1%} o
© ©
310 3510
0
0.1 02 03 04 05 06 07 08 09 0.1 02 03 04 05 06 07 08 09
Fraction of Retrieved Examples nl/c Fraction of Retrieved Examples nl/c
(a) RAVEN Performance as a function of n1 /c under different (b) RAVEN Performance as a function of n1 /c under different
data points c on NQ. data points c on TriviaQA.

Figure 4: Performance sensitivity to the ratio n1 /n under different data points ¢, where n; refers to retrieved examples
and ny to passages.
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