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Abstract

Next-generation particle physics experiments require unprecedented machine learn-
ing capabilities to achieve their science goals. We propose generating 10 million
particle detector events, the first dataset providing raw sensor waveforms paired
with 3D ground truth at scale, enabled by GPU-accelerated JAX simulations achiev-
ing two orders of magnitude speedup over traditional CPU-based tools. This dataset
will enable large-scale self-supervised training of foundation models for complex
inverse problems in the particle physics and beyond.

1 AI Task Definition

Next-generation neutrino experiments such as the Deep Underground Neutrino Experiment (DUNE)
[1] require machine learning models capable of achieving percent-level measurement precision on
complex physics processes. The fundamental challenge involves a multi-level inverse problem that
progresses through several stages of increasing complexity.

The forward process begins when particles interact in the detector, depositing energy and leaving trails
of ionization electrons as they traverse the medium. In these detectors [4], ionization patterns drift
through an electric field and detected using sensor arrays, recording projected 2D images where one
spatial dimension becomes encoded in arrival time. This creates complex tomographic projections
where 3D spatial information gets compressed into 2D sensor readings. Simultaneously, optical
photons produced from the same energy depositions are collected using photosensors, providing
complementary temporal and spatial information through a different physical mechanism.

The machine learning challenge requires inverting this entire process: starting from these 2D sensor
projections and light signals, we must reconstruct the original 3D view of particle trajectories and
extract the underlying physics. This reconstruction spans multiple scales, from sub-millimeter track
features to meter-scale event topologies. The multi-modal nature adds complexity, as charge and light
signals must be combined despite having different temporal resolutions and noise characteristics.
Calibration of detector physics models represents another critical challenge where models must learn
detector response patterns directly from data, accounting for variations in electronics and detector
conditions.

Foundation models [5] trained through self-supervised learning on this data would learn robust
representations of detector physics that can be adapted through transfer learning to specific experi-
mental configurations. Such models could demonstrate scaling laws in scientific domains, showing
how performance improves with data quantity and model size. We will create specialty datasets
targeting specific physics challenges in collaboration with domain experts, ensuring these address
real experimental needs such as challenging event topologies or particular background conditions.
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2 Dataset Rationale

Current machine learning approaches in neutrino physics face a fundamental bottleneck: existing
simulations run on CPU farms, taking approximately 50 seconds per event, making large-scale dataset
generation computationally prohibitive. Our complete simulation rewrite in JAX [3] leverages GPU
parallelization and optimized memory-compute tradeoffs, reducing computation from 50 seconds on
CPU to sub-0.5 seconds per event on A100 GPUs. This 100× acceleration through vectorized physics
calculations transforms previously intractable dataset generation into achievable goals.

The dataset will contain 10 million particle events with randomly sampled particle types and kinemat-
ics to ensure unbiased coverage of the physics phase space. Each event includes complete ground
truth hierarchy from initial particles through energy depositions to final sensor responses. The dual
representation provides both the true 3D point clouds of ionization with sub-millimeter resolution
spanning meter-scale volumes, and the corresponding 2D projections as waveform arrays with ap-
proximately 1500-2000 wire channels across time (see Appendix A for the complete data pipeline
and visualization). Time-series light sensor data provides the complementary modality, capturing
nanosecond-scale timing information across distributed photosensors. Rich labels include particle
types, energies, interaction vertices, and detailed physics processes at each stage.

Using sparse data structures, each event requires approximately 20 MB of storage, totaling 200 TB for
the complete dataset. At 10 million events, we exceed prior datasets like PILArNet [2] (300k events)
by 30× while uniquely providing raw waveforms and optical signals that enable self-supervised
learning approaches previously limited by data availability. We will generate this data on the NERSC
supercomputing cluster, which has sufficient GPU resources for this scale of simulation.

3 Acceleration Potential

The immediate impact centers on enabling foundation models for particle physics, where a single
model trained on this comprehensive dataset can be fine-tuned for specific experimental config-
urations, preventing the current redundant development where each experiment builds machine
learning solutions from scratch. Appendix B details specific data challenges including tomographic
reconstruction, 3D pattern recognition, and foundation model development that will drive algorithm
advancement. This efficiency gain becomes critical as experiments prepare for data-taking, allowing
teams to focus on experiment-specific optimizations rather than rebuilding basic capabilities.

This dataset provides an opportunity to advance spatially sparse 3D architectures, addressing the
challenge of data that is globally sparse but locally information-dense. The inverse problem techniques
developed here, reconstructing 3D structures from complex 2D projections, represent fundamental
challenges that appear across scientific computing. The multi-modal aspects, where different sensor
types capture complementary physics information with varying characteristics, push the boundaries
of how neural networks can integrate heterogeneous data streams.

Beyond particle physics, this dataset provides a testbed for techniques applicable to sparse 3D recon-
struction challenges across scientific domains. The core problem of tomographic reconstruction from
incomplete data appears throughout medical imaging, where similar inverse problems require recov-
ering 3D structures from limited projections. Architectures and optimization strategies developed for
our extremely sparse data (under 2% active pixels with locally dense information) address challenges
similar to those in autonomous driving where LiDAR produces inherently sparse 3D point clouds.
While the underlying physics differs across applications, the 10 million event scale enables rigorous
testing of whether neural architectures and optimization techniques generalize, providing empirical
evidence about transferability that smaller datasets may not easily provide.

The infrastructure surrounding the dataset ensures lasting impact: open-source JAX simulations will
be released alongside the data, enabling researchers to generate custom variants or extend to new
detector configurations. A public data portal will host the datasets, trained models, and evaluation
metrics, lowering barriers to entry for new researchers. Regular Data Olympics competitions will
drive continuous algorithm development, providing structured challenges that advance the state of
the art while building community engagement. Success will be measured through concrete metrics:
establishment of state-of-the-art baseline models that future work must exceed, and documented
adoption by particle physics experiments for their machine learning pipelines.
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A Dataset Structure and Visualization

Our dataset captures the complete simulation pipeline from initial particle interactions through
detector physics to final sensor readouts. The unique challenge stems from the detector’s dual-
readout geometry: particles drift toward two independent readout planes separated by a central
cathode, with each side containing three wire planes at different orientations. This creates six distinct
2D projections of each 3D event, a richer but more complex reconstruction problem than typical
tomographic imaging

(a) (b)

Figure 1: 3D Ground Truth. Left: Ionization charge density. Right: Particle type labels (red: proton, orange:
muon, green: pion, blue: electron).

Figure 1 shows the 3D ground truth that models must reconstruct from 2D projections. The data
consists of 0.1 mm segments spanning the full 4.32 m³ detector volume, with each segment containing
rich physics information: unique segment identifiers, parent particle IDs, interaction types, and
complete particle ancestry trees. This hierarchical labeling enables models to learn not just particle
classification but also the causal physics relationships between primary interactions and secondary
particle production. The extreme density variations, from isolated tracks to dense overlapping
cascades, require architectures that can handle sparse global structure with locally complex features.

The transformation from 3D truth to 2D projections involves multiple physics processes. Each readout
wire extends across the detector plane and produces a signal whenever charge drifts past any point
along its length. This collapses one spatial dimension entirely: a wire cannot distinguish where along
its length the charge passed, only when it arrived. The three wire planes on each side are oriented at
different angles to provide complementary projections that together enable 3D reconstruction, though
the coverage remains incomplete compared to full tomographic imaging. During drift, electron clouds
undergo diffusion, transforming sharp energy deposits into broader distributions that vary with drift
distance.

Figure 2 shows the charge distribution after drift and diffusion effects. The electron clouds have
spread from their original positions, with the amount of diffusion depending on the drift distance.
The detector’s central cathode splits the volume in half, with particles drifting either east or west
depending on their position. Each side’s three wire planes capture only the charge that drifts to that
side, meaning the six projections come from two separate drift volumes rather than being complete
views of the same space. This intermediate stage represents the charge as it arrives at the wire planes
before any response effects are applied.

Figure 3 shows what the detector actually records after the complete response simulation. The two
induction planes (U, V) record induced signals as charge drifts past, while the collection planes (Y)
directly collect the arriving charge. This stage incorporates the complex detector response, including
field variations and electronics shaping. While noise sources are included in the full simulation, they
are omitted from this visualization for clarity. This is the raw data that any reconstruction algorithm

4



Figure 2: Diffused Charge Projections. Six 2D detector views of the same 3D event after electron drift and
diffusion. Top row: three wire plane projections from the west detector side. Bottom row: three projections from
the east side. Each plane captures the event at a different angle (U: +60°, V:-60°, Y: 0°), with axes showing wire
channel number vs. drift time in microseconds.

Figure 3: Final Detector Readout. The same six views after full detector simulation including field response
and electronics effects. This represents the actual sensor data that reconstruction algorithms must process.
Induction planes (U, V) show induced signals while collection planes (Y) show collected charge.

receives as input, requiring models to work backwards through multiple layers of physics to recover
the original 3D particle information.

The reconstruction challenge is hierarchical. At the signal level, algorithms must process noisy,
shaped waveforms. At the geometric level, they must solve the tomographic reconstruction from
limited angular projections, complicated by the fact that the two detector sides see different 3D
volumes due to the finite drift length. At the semantic level, models must identify particle types and
interaction topologies from the reconstructed patterns.
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Data Component Dimensions Storage

3D Segments On the order of 105-106 segments per event ∼5 MB
0.1 mm spatial resolution

2D Wire Projections 6 total planes ∼10 MB
Induction (U) 2 planes × 1970 channels × 2700 time samples 5 MB waveforms
Induction (V) 2 planes × 1970 channels × 2700 time samples 5 MB 2D truth
Collection (Y) 2 planes × 1440 channels × 2700 time samples

3 mm wire spacing, 0.5 µs time sampling
Extreme sparsity with <2% of the images active

Optical Signals 162 photosensors × 12,960,000 time samples <5 MB
1 ns time resolution, can be reduced greatly by sparsification

Total per Event ∼20 MB
Table 1: Dataset dimensions per event. The combination of high-resolution 3D segments and multiple
2D projections provides rich supervision for learning detector physics.

B Targeted Data Challenges

There are three classes of data challenges and AI research opportunities associated with this dataset,
including tomographic reconstruction, 3D pattern recognition, and foundation models (FMs).

B.1 Tomographic Reconstruction

The task is to infer the 3D scene of particle trajectories (point cloud) from three projected 2D images
with different projection angles. The quality is measured by comparing against the labels, the 3D
point clouds of energy depositions (i.e. input to the detector simulation). The geometric distance
between the inferred and label points is a primary metric for evaluating quality. Secondly, for all pairs
of matched between inferred and label points, a difference in the estimated energy deposition is also
used as an equally crucial metric as the geometric distance. Third, inference speed and scalability is
an important metric to ensure the developed techniques can be used for a larger detector such as the
DUNE far detector.

For this challenge, we plan to provide a subset of 10M images with labels. The size of the subset is
to be determined. For a reference, the machine (deep) learning models used in the community are
typically trained using O(100k) images, and we plan to publicize the labels for no more than 200k
subset until the data challenge is over.

B.2 3D Pattern Recognition

There are multiple inference tasks. Machine lerning models for these tasks may be optimized via
supervised learning. The labels will be provided for the same subset of data described for the
tomographic reconstruction.

Keypoint detection: A particle travels along the recorded trajectory of the particle. Knowing the
start and end points is crucial to infer the direction of travel of the particles and their correlations
with other particles. The metrics are computed for every matched pair of label and inferred points.
The matching is produced based on the geometric distance. The metrics include the mean distance
between all of the label and inferred points, 50%, and 90% quantile.

Panoptic Segmentation: Pixels must be partitioned to infer the semantic types at three different
levels of fidelity. The lowest level fidelity is a semantic segmentation for different particle types. The
second level distinguishes individual particle instances. The highest level is concerns the interactions
which represents a group of particle instances that share the same creation physics origin. The quality
is measured for those three levels of semantic fidelity separately using the Adjusted Rand Index (ARI)
as a common metric for clustering.

Particle Flow: Within each inferred interaction, directed relation of particle instances must be
inferred. There may be multiple primary particles that are created simultaneously at the interaction
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origin. Some particles may be decay products of other particles. Such parent-child relationship can
be described in a directed graph, and the metrics will compare the similarity of the label and inferred
graphs.

B.3 Foundation Models

The scale (10M images) of the dataset will critically enable the development of the FMs. Techniques
for effective representation learning is crucial knowledge yet to be mastered for the subject detector
technology. The challenge task is to develop an effective representation learning for pre-training.
The model will be then tested against the tomographic and pattern recognition challenge tasks to
demonstrate how well the pre-training worked to extract general features. This challenge can utilize
all dataset, and fine-tuning may be done using a subset of labeled datasets.
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