
Under review as a conference paper at ICLR 2023

Supplementary Material for
SKTformer: An Efficient Skeleton Transformer

for Long Sequence Data

A ALGORITHMS

Algorithm 1 Skeleton Attention

class Skeleton_Attention(nn.Module):

def __init__(self, num_head = 2, head_dim = 32,seq_len, left_rank = 8,right_rank = 8,

dropout = 0.1):

super(Skeleton_Attention, self).__init__()

self.num_head = num_head

self.head_dim = head_dim

self.seq_len = seq_len

self.left_rank = left_rank

self.right_rank = right_rank

self.ln_1 = nn.LayerNorm(self.num_head * self.head_dim)

self.ln_2 = nn.LayerNorm(self.num_head * self.head_dim)

self.drop_attn = torch.nn.Dropout(p=dropout)

self.index_set_right = torch.randperm(self.head_dim)

self.index_set_right = self.index_set_right[:self.right_rank]

self.index_set_left = torch.randperm(self.seq_len)

self.index_set_left = self.index_set_left[:self.left_rank]

def combine_heads(self, X):

X = X.transpose(1, 2)

X = X.reshape(X.size(0), X.size(1), self.num_head * self.head_dim)

return X

def split_heads(self, X):

X = X.reshape(X.size(0), X.size(1), self.num_head, self.head_dim)

X = X.transpose(1, 2)

return X

def forward(self,Q, K, V):

Row Attention

if self.left_rank <= self.seq_len:

K1 = K[:,:,self.index_set_left,:]

V1 = V[:,:,self.index_set_left,:]

else:

K1 = K

V1 = V

dots = Q @ K1.transpose(-1,-2)

dots = dots / math.sqrt(self.head_dim)

attn = nn.functional.softmax(dots,dim=-1)

attn = self.drop_attn(attn)

Column Attention

Q2 = Q.transpose(-1,-2)

if self.right_rank <= self.head_dim:

K2 = K[:,:,:,self.index_set_right]

V2 = V[:,:,:,self.index_set_right]

else:

K2 = K

V2 = V

dots_r = Q2 @ K2

dots_r = dots_r / math.sqrt(self.seq_len)

attn_r = nn.functional.softmax(dots_r,dim=-1).transpose(-1,-2)

attn_r = self.drop_attn(attn_r)

X = self.split_heads(self.ln_1(self.combine_heads(torch.matmul(attn,V1))))/2 + self.

split_heads(self.ln_2(self.combine_heads(torch.matmul(V2,attn_r))))/2

return X

14

Under review as a conference paper at ICLR 2023

Algorithm 2 Smoother component

class Smoother(nn.Module):

def __init__(self, hidden_size, seq_len, dropout = 0.5, num_head = 2,transformer_dim =

64, fold = 1):

super(Smoother, self).__init__()

self.hidden_size = hidden_size

self.seq_len = seq_len

self.dropout = dropout

self.num_head = num_head

self.dim = transformer_dim

self.fold = fold

self.weights_fft = nn.Parameter(torch.empty(self.seq_len//2+1, self.hidden_size,2))

nn.init.kaiming_normal_(self.weights_fft, mode=’fan_in’, nonlinearity=’relu’)

self.tiny_conv_linear = torch.nn.Conv1d(in_channels = self.hidden_size*2 ,

out_channels = self.hidden_size, kernel_size = 3, padding= 1, groups = 1)

self.dropout = torch.nn.Dropout(p=self.dropout)

self.bn_1 = nn.BatchNorm1d(self.seq_len)

def forward(self, x):

Compute Segment Average

B,S,H = x.shape

u = x.reshape(B,S,self.fold,H//self.fold)

u = torch.mean(u,dim = -1)

Fourier Convolution

fft_u = fft.rfft(u, n = self.seq_len, axis = -2)

fft_u = torch.view_as_real(fft_u)

fft_u = fft_u.repeat(1,1,H//self.fold,1)

self.weight_used = self.weights_fft.unsqueeze(0)

temp_real = fft_u[...,0]*self.weight_used[...,0] - fft_u[...,1]*self.weight_used

[...,1]

temp_imag = fft_u[...,0]*self.weight_used[...,1] + fft_u[...,1]*self.weight_used

[...,0]

out_ft = torch.cat([temp_real.unsqueeze(-1),temp_imag.unsqueeze(-1)],dim = -1)

out_ft = torch.view_as_complex(out_ft)

m = fft.irfft(out_ft, n = self.seq_len, axis = -2)

Convolution Stem

input_h = torch.cat((m, x), dim = -1)

h = self.tiny_conv_linear(input_h.permute(0,2,1)).permute(0,2,1)

h = self.dropout(F.relu(self.bn_1(h)))

return h

Algorithm 3 pseudo code for Time-Series Forecasting

def forward(self, x_in):

B1,H1,C1 = x_in.shape

for i in range(len(self.encoder)):

attn_layer = self.encoder[i]

#standardize the input data

if i == 0:

tmp_mean = torch.mean(x_in[:,:,:],dim = 1,keepdim = True)

tmp_std = torch.sqrt(torch.var(x_in[:,:,:],dim = 1,keepdim = True)+1e0)

x_in = (x_in - tmp_mean)/(tmp_std)

enc_out1 = self.enc_embedding(x_in)

enc_out1= attn_layer(enc_out1) + enc_out1

#decoder via Fourier Extrapolation

dec_out = self.fourierExtrapolation(post(enc_out1))

output = (dec_out.reshape(B1,-1,C1))*(tmp_std)+tmp_mean

return output

B PROOF OF LEMMA 1

A similar result, under a slightly different setting, can be found in (Cai et al., 2021). For the
completeness of the paper, we provide a proof here. Firstly, we go over the definite of matrix
incoherence, which is commonly used in many low-rank matrix applications.

15

Under review as a conference paper at ICLR 2023

Algorithm 4 Fourier Extrapolation

class fourierExtrapolation(nn.Module):

def __init__(self,inputSize,n_harm = 8,n_predict = 96):

super().__init__()

self.n = inputSize

self.n_harm = n_harm

self.f = torch.fft.fftfreq(self.n)

self.indexes = list(range(self.n))

sort indexes by frequency, lower -> higher

self.indexes.sort(key = lambda i: torch.absolute(self.f[i]))

self.indexes = self.indexes[:1 + self.n_harm * 2]

self.n_predict = n_predict

compute init phase

self.t = torch.arange(0, self.n + self.n_predict)

self.t1 = self.t.unsqueeze(0).unsqueeze(-1).float().to(’cuda’)

self.f = self.f.unsqueeze(0).unsqueeze(-1).to(’cuda’)

self.t = self.t.unsqueeze(0).unsqueeze(-1).unsqueeze(-1)to(’cuda’)

self.g = self.f[:,self.indexes,:].permute(0,2,1).unsqueeze(1)

self.phase_init = 2 * 3.1415 * self.g * self.t

def fourierExtrapolation(self,x):

x in frequency domain

x_freqdom = torch.fft.fft(x,dim = -2)

x_freqdom = torch.view_as_real(x_freqdom)

select importance frequencies

x_freqdom = x_freqdom[:,self.indexes ,:,:]

x_freqdom = torch.view_as_complex(x_freqdom)

ampli = torch.absolute(x_freqdom) / self.n # amplitude

phase = torch.angle(x_freqdom) # phase

ampli = ampli.permute(0,2,1).unsqueeze(1)

phase = phase.permute(0,2,1).unsqueeze(1)

self.restored_sig = ampli * torch.cos(self.phase_init + phase)

return torch.sum(self.restored_sig,dim = -1)

Definition 1 (µ-incoherence). Given a rank-r matrix X 2 Rn⇥d
. Let X = W⌃V >

be its compact

singular value decomposition. X is µ-incoherent if there exists a constant µ such that

max
i

ke>i W k

r
µr

n
and max

i
ke>i V k

r
µr

d
,

where ei denotes the i-th canonical basis vector.

Secondly, we resolve the sampling strategy. We consider a clear rank-r matrix X 2 Rn⇥d, i.e., no
additive noise and the rank is exact. Without loss of generality, we assume n � d. Provided X is
µ-incoherent, by (Chiu & Demanet, 2013, Theorem 1.1), Skeleton approximation recovers X exactly,
i.e.,

X = CUR,

with probability at least 1�O(n�2) if we uniformly sample O(µr log n) rows and columns to form
the submatrices C and R.

Thirdly, we resolve the error bound estimation. For the noisy matrix X + E, we directly apply
(Hamm & Huang, 2021, Corollary 4.3). Thus, we have

kX � ĈÛR̂k O

 r
nd

lC lR

!
kEk,

where Ĉ and R̂ are sampled from the noisy matrix, Û is the pseudo-inverse of their intersection, and
lC (resp. lR) is the number of columns (resp. rows) being sampled in Ĉ (resp. R̂).

Note that this error bound assumes good column and row sampling, i.e., the clear submatrices
corresponding to Ĉ and R̂ can recover X exactly. Therefore, by combining the above two results,
we show the claim in Lemma 1.

16

Under review as a conference paper at ICLR 2023

C PROOF OF LEMMA 2

As f(t) is the convolution function of {xt} and {lt}, from the definition of convolution for t =
1, 2, ..., n we have

f(t) =
tX

i=1

lt+1�ixi

and

f(t)� f(t� 1) =
t�1X

i=1

(li+1 � li)xi

| {z }
:=(at)

+l1xt. (9)

By Hoffelding inequality, term (a) satisfies the following inequality with " > 0.

(|(at)| � ") =

 �����

t�1X

i=1

(li+1 � li)xi

����� � "

!
 exp

✓
�

2"2

(t� 1)b2max ·
1
n2�

2

◆
(10)

Combine (10) with the union bound over t = 1, 2, ..., n and the following (10) holds with probability
at least 1� �/2:

max
t

|(at)| bmax�

s
1

2n
log

✓
2n

�

◆
(11)

Similarly, with probability 1� �/2, we have

max
t

|l1xt| amax�

s
1

2n2
log

✓
2

�

◆
. (12)

Therefore, via (11) and (12), with probability at least 1� �, we have

max
t

|f(t)� f(t� 1)| bmax�

s
1

2n
log

✓
2n

�

◆
+ amax�

s
1

2n2
log

✓
2

�

◆
(13)

D PROOF OF LEMMA 3

The proof contains two parts. In the first part, we view the data sequence as a function of index t and
construct the coefficients and orthogonal polynomials for function approximation. In the second part,
we show such coefficients can be computed with Fourier convolution i.e. (5)).

Function Approximation. We reformulate the matrix XS as follow:

XS = [x̄1e x̄2e · · · x̄re] ,

where e 2 R1⇥s is the one vector and x̄i 2 Rn⇥1 is the average from (s(i� 1) + 1)-th column to
(si)-th column of X .

Next, we focus on vector x̄j and view its t-th element as the output of a function h
j(t) = x̄jt. Via

analysis in (Gu et al., 2020, Appendixes C and D), we can form an approximation on h
j(t) as follow:

h
j
[xt](x) ⇡

X

i=1

c
j
i (t)gi(x), (14)

where {gi} is a sequence of orthogonal polynomial and [cj1(t), c
j
2(t), ..., c

j
s(t)] := cjt 2

1⇥s satisfy

d

dt
c(t)j =

1

t
c(t)jA0 +

1

ts log n
h(t)b0 (15)

17

Under review as a conference paper at ICLR 2023

where A0 2
s⇥s and b0 2

1⇥s are predefined matrix and vector respectively. Equation (15) is
corresponding to the case with �n = s log n in (Gu et al., 2020).

We then use Forward Euler approach to discretize it:

ĉ(t)j = ĉ(t� 1)j(
1

t
I +

1

t
A0) +

1

ts log n
h(t)b0, . (16)

Via standard error analysis of Forward Euler approach, we have

c(t+ 1)j = c(t)j +
1

t
c(t)jA0 +

1

ts log n
h(t)b0 +

d
2

dt2
c(t)j |t=⇠

= c(t)j +
1

t
c(t)jA0 +

1

ts log n
h(t)b0 +

1

⇠s log n
h(⇠)0b0

= c(t)j +
1

t
c(t)jA0 +

1

ts log n
h(t)b0 +O

✓
1

ts log n

◆
,

where ⇠ 2 [t, t+ 1].

It implies that for t = 1, 2, ..., n,

kĉ(t)j � c(t)jk O

✓
log t

s log n

◆
. (17)

Combine (17) with the similar proof procedure in (Gu et al., 2020, Proposition 6), if hj(x) is quadratic
spline interpolation on {x̄jt}, we obtain

kx̄jt �

sX

i=1

ĉi(t)gi(x)k O
�
t log n/

p
s
�
= O

✓
t log n

r
r

d

◆
. (18)

The desirable result in Lemma 3 is obtained by repeatedly using (18) with j = 1, 2, ..., r.

Coefficients via Fourier Convolution. The remaining task is to show that {ĉ(t)j} can be generated
via Fourier convolution. To simplify the notation, we denote A = 1

t I + 1
tA0 and b = 1

t lognb0 and
(16) becomes

ĉ(t)j = ĉ(t� 1)jA+ h(t)b. (19)

We then repeatedly use (19) from t = 1, 2, ... and one may verify

ĉjt =
t�1X

i=1

bAt�i
h(i) =

t�1X

i=1

bAt�ix̄ji

) Cj = Āj ⇤ (x̄je), (20)

where

Cj =

2

6664

ĉj1
ĉj2
...
ĉjn

3

7775
2 Rn⇥s

, and Āj =

2

664

b
bA

...
bAn�1

3

775 2 Rn⇥s
. (21)

Next we repeatedly use (20) from j = 1, 2, .., r, and one has
⇥
C1 C2

· · · Cr
⇤

| {z }
:=Xsmooth

=
⇥
Ā1 Ā2 · · · Ār

⇤
| {z }

:=L0

⇤ [x̄1e x̄2e · · · x̄re]| {z }
=XS

) Xsmooth = L0 ⇤XS

) Xsmooth = F
�1 (F(L0) · F(XS))

) Xsmooth = F
�1 (L · F(XS)) ,

where we use the fact that L is constructed in frequency domain in Fourier convolution in Eq. (5).

18

Under review as a conference paper at ICLR 2023

Table 7: Experimental results on varying r, s1 and s2. Best result is in boldface and second best is
underlined. And Ablation experiments for each components

(a) Experimental results on varying r parameter in
smoothing component.

r LisOps Text Retrieval Image Pathfinder Average

1 37.30 65.25 78.65 51.36 71.23 60.76
8 38.30 69.27 83.26 53.90 75.82 64.11
16 38.62 70.02 83.21 54.20 76.15 64.44

32 38.19 69.27 82.05 53.73 75.58 63.76
64 37.89 69.73 81.79 51.28 75.52 63.24

(b) Experimental results on varying s1 parameter
in Row Attention.

s1 LisOps Text Retrieval Image Pathfinder Average

8 38.30 69.27 83.26 53.90 75.82 64.11
32 38.44 70.85 83.41 54.92 77.97 65.12

64 37.88 70.53 83.02 51.22 78.02 64.33
128 37.33 69.24 81.58 49.08 78.12 63.07
256 37.02 65.72 79.30 46.24 78.14 61.29

(c) Experimental results on varying s2 param-
eter in Column Attention.

s2 LisOps Text Retrieval Image Pathfinder Average

1 37.32 55.28 57.37 40.97 66.25 51.44
4 37.82 52.05 72.58 46.74 73.17 57.47
8 38.30 69.27 83.26 53.90 75.82 64.11
16 37.77 70.24 83.42 54.11 77.92 64.73

32 37.62 68.32 80.11 51.66 78.18 62.98

(d) The SKT (r, s1, s2 = 8) is used as baseline.
The differences by removing each component from
the baseline model are reported.

Model LisOps Text Retrieval Image Pathfinder Average

Baseline 38.30 69.27 83.26 53.90 75.82 64.11

Fourier Conv. -0.47 -4.04 -13.98 -5.64 -6.59 -6.14
Conv Stem -0.13 -0.55 -1.51 -1.76 -9.47 -0.88
Column Attn. -1.16 -8.00 -9.16 -10.63 -12.45 -8.28
Row Attn. -0.38 -1.92 -1.97 -2.64 -2.56 -1.89

E MODEL PARAMETERS IMPACT

SKTformer introduces three extra hyperparameters, r, s1 and s2. We test the influence when varying
them and report results in Table 7. We use SKTformer (r, s1, s2 = 8) as the baseline model and other
parameters are reported in Table 10 in Appendix F.

Influence of r in Fourier Convolution. The r parameter is used to determine the number of
segment-averages to compute in (5). The smaller r leads the matrix with more duplicate columns,
and more details information is lost. On the other hand, according to Lemma 3, the larger r would
potently decrease the memorization ability and yield a high approximation error. In Table 7a, the
best performance is observed when r = 8 or r = 16. For the case with r = 1, the token matrix
is smoothed to rank one matrix, and the average accuracy drops 3.55 from the best setting. When
the r value goes larger than 16, the accuracy in all experiments slightly decreases. We believe it is
due to the over-fitting since the smoothed token matrix contains more flexibility and more irrelevant
information training dataset is learned.

Influence of sample number s1 in Row Attention. In Row Attention part, we randomly sample s1
from key and value tokens. Table 7b reports that the optimal sampling amounts are different among
tasks. In Pathfinder task, the optimal result is associated with s1 = 256, while the best performance
of other tasks the reached with s1 = 32. Pathfinder task requires learning extreme long-range
dependence (the connectivity between two circles far away from each other). The lack of enough
tokens leads to inaccurate long-range dependence estimation and damages the final results. For the
tasks like Image or Retrieval, the modest range dependence may already be enough to get promising
performance, and we thus could use fewer token samples.

Influence of sample number s2 in Column Attention. In Column Attention, s2 columns are
selected. The experiment results are shown in Table 7c. When setting s2 = 1, average performance
decreases by 13.24%. Similar behavior is also observed in the first row of Table 7a with r = 1. The
information loss due to lack of rankness limits the final performance. In an average sense, s2 = 16
gives the best result, and further increasing in s2 slightly harms the accuracy in all tasks except
Pathfinder.

F EXPERIMENT CONFIGURATIONS

In this section, we report the configurations for the experiments in Sections 4.1, 4.2, and 4.3.

19

Under review as a conference paper at ICLR 2023

Table 8: Experiment Configuration of SKTformer (r, s1, s2 = 8).

Parameters ListOps Text Retrieval Image Pathfinder

Epoch 5 30 15 60 100
Learning Rate 1e-4 1e-4 1e-4 1e-3 1e-4
Weight Decay 0 1e-2 1e-2 1e-2 1e-2
Batch Size 32 32 32 256 256
r, s1, s2 8,8,8 8,8,8 8,8,8 8,8,8 8,8,8
dropout in embedding 0 0.5 0.1 0.1 0
dropout in attention 0 0.1 0.1 0.1 0
dropout in smoother 0 0.5 0.1 0.5 0.5

Table 9: Experiment Configuration of SKTformer (best).

Parameters ListOps Text Retrieval Image Pathfinder

Epoch 10 30 15 60 100
Learning Rate 1e-4 1e-4 1e-4 1e-3 1e-4
Weight Decay 1-2 1e-2 1e-2 1e-2 1e-2
Batch Size 32 32 32 256 256
r, s1, s2 8,8,8 8,8,8 8,32,32 8,16,16 8,128,32
dropout in embedding 0 0.5 0.1 0.5 0.1
dropout in attention 0 0.1 0.1 0.1 0.1
dropout in smoother 0 0.5 0.1 0.5 0.5

Table 11: Experiment Configuration for Ablation.

Parameters ListOps Text Retrieval Image Pathfinder

Learning Rate 1e-4 1e-4 1e-4 1e-3 1e-4
Weight Decay 0 1e-2 1e-2 1e-2 1e-2
Batch Size 32 32 32 256 256
r, s1, s2 8,8,8 8,8,8 8,8,8 8,8,8 8,8,8
dropout in embedding 0 0.5 0.1 0.1 0
dropout in attention 0 0.1 0.1 0.1 0
dropout in smoother 0 0.5 0.1 0.5 0.5

G ADDITIONAL RESULTS ON LRA

We have already provided the average of 5 runs with different random seeds in Table 1. Here we also
provide the standard deviations for these experiments in Table 12.

Table 12: Accuracy on Long Range Arena (LRA) with standard errors shown in parenthesis. All
results are averages of 5 runs with different random seeds.

Model LisOps Text Retrieval Image Pathfinder

SKTformer (r, s1, s2 = 8) 38.30 (0.40) 69.27 (0.83) 83.26 (0.45) 53.90 (1.54) 75.82 (0.97)
SKTformer (best) 39.15 (0.48) 71.58 (0.95) 83.73 (0.61) 57.73 (1.83) 78.20 (1.32)

H DATASET AND IMPLEMENTATION DETAILS

In this subsection, we summarize the details of the datasets used in this paper as follows:

LRA datasets: ListOps(2K length mathematical expression task which investigates the parsing
ability); Text (up to 4K byte/character-level document classification task that tests capacity in
character compositionality); Retrieval (byte/character-level document matching task, which exams
the information compression ability with two 4K length sequence); Image (pixel-wise sequence
image classification based on the CIFAR-10 dataset); Pathfinder (long-range spatial dependency

20

Under review as a conference paper at ICLR 2023

Table 10: Experiment Configuration for Model Parameters Impact.

Parameters ListOps Text Retrieval Image Pathfinder

Epoch 5 30 15 60 100
Learning Rate 1e-4 1e-4 1e-4 1e-3 1e-4
Weight Decay 0 1e-2 1e-2 1e-2 1e-2
Batch Size 32 32 32 256 256
dropout in embedding 0 0.5 0.1 0.1 0
dropout in attention 0 0.1 0.1 0.1 0
dropout in smoother 0 0.5 0.1 0.5 0.5

Table 13: Details of time series benchmark datasets.

DATASET LENGTH DIMENSION FREQUENCY

ETTM2 69680 8 15 MIN
EXCHANGE 7588 9 1 DAY
WEATHER 52696 22 10 MIN
ELECTRICITY 26304 322 1H
ILI 966 8 7 DAYS
TRAFFIC 17544 863 1H

identification task. The input images contain two small points/circles and dash-line paths. The model
needs to identify whether two points/circles are connected);The LRA has several desirable advantages
that made us focus on it as the evaluation benchmark: generality (only requires the encoder part);
simplicity (data augmentation and pretraining are out of scope); challenging long inputs (difficulty
enough and room to improve); diversity aspects (tasks covering math, language, image, and spatial
modeling); and lightweight (run with low resource requirement).

Time series datasets:1) ETT (Zhou et al., 2021a) dataset contains two sub-dataset: ETT1 and ETT2,
collected from two separated counties. Each of them has two versions of sampling resolutions (15min
& 1h). ETT dataset contains multiple time series of electrical loads and one time sequence of oil
temperature. 2) Electricity3 dataset contains the electricity consumption for more than three hundred
clients with each column corresponding to one client. 3) Exchange (Lai et al., 2018) dataset contains
the current exchange of eight countries. 4) Traffic4 dataset contains the occupation rate of freeway
systems in California, USA. 5) Weather5 dataset contains 21 meteorological indicators for a range
of one year in Germany. 6) Illness6 dataset contains the influenza-like illness patients in the United
States. Table 13 summarizes all the features for the six benchmark datasets. They are all split into
the training set, validation set and test set by the ratio of 7:1:2 during modeling.

GLUE datasets: The GLUE benchmark covers various natural language understanding tasks and is
widely used in evaluating transfering ability. The tasks can be devided in to two types, single-sentence
tasks (SST-2 and CoLA), and sentence-pair tasks (MNLI, QQP,QNLI,STS-B,MRPC,RTE). Following
the same settings in (Devlin et al., 2018), we exclude WNLI task.

I EXPERIMENTS ON THE SMOOTHNESS EFFECT OF FOURIER CONVOLUTION

In this section, we verify Fourier convolution component in the Smoother block can reduce the
incoherence value in the early training stage. We use SKTformer with (r, s1, s2 = 8) as the test
model and test on an NLP dataset: Text, and a vision dataset: Pathfinder. We compute the µ-
incoherence value 7 of the token matrix before and after the Fourier convolution (denoted as µX

and µXsmooth , respectively) for each samples in the validation dataset. Since we do not explicitly

3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams 20112014
4http://pems.dot.ca.gov
5https://www.bgc-jena.mpg.de/wetter/
6https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
7Incoherence is defined by Definition 1 in Appendix B.

21

Under review as a conference paper at ICLR 2023

force the token matrix to be low-rank required by Definition 1, we report the incoherence value for
different rankness settings (rank = 16 and rank = 32) approximately, and the mean and standard
deviation of incoherence value can be found in Table 14. The average incoherence value reduced
30% after the Fourier convolution in both datasets. Moreover, We observe that the standard deviation
significantly decreases, which suggests the Fourier convolution may also potentially stabilize the
training procedure.

Table 14: The average incoherence parameters after 100 training steps with standard errors shown in
the parenthesis.

Dataset µX (rank = 32) µXsmooth (rank = 32) µX (rank = 16) µXsmooth (rank = 16)

Text 2.75 (0.027) 2.05 (0.007) 3.98 (0.046) 3.23 (0.038)
Pathfinder 3.83 (0.221) 1.99 (0.001) 4.88 (0.264) 3.48 (0.001)

J ILLUSTRATION ON EFFECT OF THE SMOOTHER AND SKELETON ATTENTION
IN TOKEN MATRIX

In this section, an illustration of the Smoother and Skeleton Attention part is shown in Figure 2. We
smooth the input token matrix to ensure the sampling in rows and columns containing more local
and/or global information. Thus, sampling several rows and columns from the smoothed token matrix
can be more effective than the samples from the original token matrix.

Figure 2: Illustration on effect of the Smoother and Skeleton Attention on Token Matrix.

K TRANSFER LEARNING

Table 15: The training configurations for Pretraining and GLUE tasks

Pre-training GLUE

Max Steps 1000K -
Max Epochs - [4,20]
Learning Rate 1e-4 [5e-5,1e-4]
Batch Size 256 [16,32]
Warm-up Steps 5000 -
Sequence Length 512 128
Learning Rate Decay - Linear
Clip - 1
Dropout - 0.1

22

