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1 Pseudocode of the Proposed Method for Inlier-based Outlier Detection

The pseudocode of the proposed method for inlier-based outlier detection is illustrated in Algorithm
1. We slightly modify the sampling procedure (Lines 2–5) for inlier-based outlier detection. For
each iteration, we randomly sample one dataset that consists of normal and unlabeled instances (Line
2). From the dataset, we randomly select normal and unlabeled support instances S = Snor ∪ Sun

and query instances Q = Qnu ∪Qde (Lines 3–5). We then calculate the relative density-ratio with
support instances (Line 6). Using the learned relative density-ratio, we calculate loss J̃α(Q;S) with
the query instances (Line 7). Lastly, the parameters of our model are updated with the gradient of
the loss (Line 8). In the inlier-based outlier detection experiments, the number of unlabeled support
instances Nun

S was set to 100 during training with source datasets.

2 Details of Benchmark Data for Inlier-based Outlier Detection

We used three real-world benchmark data: IoT1, Landmine2, and School3. These benchmark data are
commonly used in outlier detection studies [14, 9].

IoT is real network traffic data, which are gathered from nine IoT devices (datasets) infected by
malware. Each dataset has normal and malicious traffic instances, and each instance is represented by
a 115-dimensional vector. For each dataset, we randomly used 475 normal and 25 malicious (outlier)
instances. We normalized each feature vector by `2-normalization.

Landmine consists of 29 datasets, and each instance is a nine-dimensional vector extracted from a
radar image that captures a region of a minefield. Each dataset has 513 instances on average. We
normalized each feature vector by `2-normalization.

School contains the examination scores of students from 139 schools (datasets). We picked schools
with 100 or more students, ending up with 74 datasets. We used binary features only resulting in
M = 26. We created outlier/normal instances on the basis of whether the examination score was 35
or more. The average outlier rates in a dataset of IoT, Landmine, and School are 0.05, 0.06, and 0.15,
respectively.

For IoT, we randomly chose one target, one validation, and seven source datasets. For Landmine, we
randomly chose 3 target, 3 validation, and 23 source datasets. For School, we randomly chose 10
target, 10 validation, and 54 source datasets. For each source/validation dataset in IoT, Landmine, and

1https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT
2http://people.ee.duke.edu/ lcarin/LandmineData.zip
3http://multilevel.ioe.ac.uk/intro/datasets.html
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Algorithm 1 Training procedure of our model for inlier-based outlier detection.

Require: Datasets X = {Xd}Dd=1 = {Xnor
d ∪ Xun

d }Dd=1, normal support instance size Nnor
S ,

unlabeled support instance size Nun
S , query instance size NQ, relative parameter α

Ensure: Parameters of our model Θ
1: repeat
2: Sample one dataset d from {1, . . . , D}
3: Select normal support instances Snor with size Nnor

S from Xnor
d

4: Select unlabeled support instances Sun with size Nun
S from Xun

d
5: Select query instances Qnu and Qde with size NQ from Xnor

d and Xun
d , respectively

6: Calculate linear weights w̃ with the support sets by Eq. (5) to obtain the relative density-ratio
Eq. (6)

7: Calculate the loss J̃α(Q;S) in Eq. (8) with the query instances
8: Update parameters with the gradients of the loss J̃α(Q;S)
9: until End condition is satisfied;

School, we chose 200, 200, and 50 instances, respectively, as normal and the remaining as unlabeled
instances. For each target dataset, we used all instances except for target normal support instances
as unlabeled instances (test instances). For each benchmark data, we randomly created 10 different
splits of target/validation/source datasets and evaluated the mean test AUC on the target datasets.

3 Details of Comparison Methods for Inlier-based Outlier Detection

We compare the proposed method with 13 outlier detection methods: RuLSIF, uLSIF [7], D3RE
[11], local outlier factor (LOF) [2], isolation forest (IF) [15], autoencoder (AE) [19], deep support
vector description (SD) [18], AE-S, SD-S, fine-tuning methods for AE and SD (AE-FT and SD-FT),
RuLSIF-FT, and D3RE-FT.

LOF and IF use only target unlabeled instances to find outliers. For LOF, the number of neighbors
was chosen from {10, 20, 30, 40, 50}. For IF, the number of base estimators was chosen from
{10, 50, 100, 200}. For both methods, the best test AUCs were reported.

AE and SD use target normal instances for training. AE-S and SD-S use source normal instances for
training. For AE and AE-S, we used two four-layered feed-forward networks for the encoder and de-
coder, respectively. The output dimension of the encoder was chosen from {4, 8, 16, 32, 64, 128, 256}.
For SD and SD-S, we used the same neural network architectures as the proposed method, i.e., four-
layered feed-forward neural networks. The output dimension of neural networks was chosen from
{4, 8, 16, 32, 64, 128, 256}. For AE, AE-S, SD, and SD-S, these hyperparameters were determined
on the basis of outlier scores on validation normal data. AE-FT and SD-FT fine-tune models trained
by AE-S and SD-S with target normal instances, respectively. For both methods, the number of
iterations for fine-tuning was chosen from {1, 5, 10, 20, 30, 40, 50, 100, 200, 300, 400, 500}, and the
best test AUCs were reported. Note that although AE and SD-based methods can use unlabeled
instances as well as normal instances for training, they performed worse than them trained with only
normal instances. Thus, we used only normal instances for training.

RuLSIF, uLSIF, and D3RE use target normal and unlabeled instances. RuLSIF-FT and D3RE-FT use
source normal and unlabeled instances as well as target normal and unlabeled instances. Note that no
methods use any information of outliers for training.

4 Intuitive Explanation of Why the Proposed Method Works Well

The meta-learning methods including the proposed method learn how to learn from small data using
various datasets [8, 24]. Specifically, they directly maximize the expected test performance of a
model after it has been trained on small data by using various datasets. To retain the knowledge of
how to learn, representative meta-learning methods such as MAML [3], neural processes [4, 5], and
prototypical networks [21] use shared neural networks across datasets. The proposed method also
use shared neural networks f , g, and h. Although each dataset has potentially small instances, the
total number of instances over all datasets would be sufficiently large to train such neural networks
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without overfitting. The high expressive capabilities of neural networks enable the model to store
the knowledge. In fact, many studies have reported that these methods empirically work well
[3, 4, 5, 21, 17, 10]. This is an intuitive explanation of the meta-learning methods including the
proposed method.

5 Details of the Variants of Our Model

We explain the variants of our model (NoLatent, NoSadapt, and NoSadapt-FT) used in the ablation
studies in detail.

NoLatent is our model without latent vectors for datasets z. Specifically, this method uses r̂α(x) :=
w>h(x) as the relative DRE model. Although the parameters of neural network h are dataset-
invariant, datasets-specific linear weights w can be obtained with support instances by Eq. (5) while
fixing h. Therefore, NoLatent can perform relative DRE by using the target dataset (support instances)
information.

NoSadapt is our model without adapting to support instances with the closed-form solution ŵ in
Eq. (5). This method uses r̂α(x) := w>h([x, znu, zde]) as the relative DRE model. Here, both linear
weights w and neural network parameters of h are dataset-invariant, i.e., they are usual trainable
parameters and are trained with source datasets. Latent vectors znu and zde are used to treat support
instance information. NoSadapt performs relative DRE on target datasets only by inferring znu and
zde from the target support instances. However, it might be difficult to perform accurate relative DRE
since it does not explicitly minimize the squared error of relative DRE on the target support instances
Eq. (3).

NoSadapt-FT further fine-tunes linear weights w of the learned model of NoSadapt by minimizing
the squared error of relative DRE on the target support instances to improve the estimation perfor-
mance. As a result, we obtain Eq. (5). However, it might be also difficult to improve the performance
since the learned model with source datasets is not designed to be fine-tuned.

Our method directly improves the expected test performance of the fine-tuning with support
instances using the meta-learning framework. Specifically, the fine-tuned model with support
instances (Eq. 6) is evaluated on query instances (Eq. 8) in source datasets, and its loss can be
backpropagated with standard gradient descent methods to improve the expected test performance.
This can be performed since closed-form solution ŵ is differentiable w.r.t. the neural network
parameters. Our method performs relative DRE on target datasets by both estimating latent vectors of
datasets and adapting linear weights to the target datasets. For another perspective, we can regard ŵ
as a neural network layer, and all the neural networks including this special differentiable layer are
trained by minimizing the loss on query instances (Eq. 8) as standard neural network training.

6 Other Applications

In this section, we explain several potential applications of the proposed method.

6.1 Covariate Shift Adaptation

We consider a situation where training and test data follow different feature distributions but the label
distribution given the features is constant, which is called “covariate shift” [20]. To learn a model that
fits on the test distribution, (relative) density-ratio of the training and test feature distributions can
be used for reweighting labeled training instances [20]. By learning our model with various source
datasets, our model can accurately estimate the relative density-ratio of new training and test feature
distributions even if a few instances that follow the new distributions are available.

6.2 Change Point Detection

The objective of change-point detection is to find abrupt changes lying behind time-series data. By
comparing the probability distributions of subsequences of the time-series over past and present
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Table 1: Comparison between relative DRE and DRE for dataset comparison. Average test AUCs
[%] over different target support instance sizes.

Data Ours Ours for DRE
Mnist-r 92.88 60.80
Isolet 98.56 74.79
Avg. 95.72 67.80

Table 2: Investigation of effects of trainable relative parameter. Values in relative DRE represent
average test squared errors ignoring constant terms over different target support instance sizes and
all benchmark data. Values in dataset comparison and outlier detection represent average test AUCs
[%] over different target support instance sizes and all benchmark data. Our w/ train represents our
method with trainable relative parameter α for support set adaptation.

Problem Ours Ours w/ train
relative DRE -0.83 -0.83
dataset comparison 95.72 95.78
outlier detection 75.27 75.45

intervals, we can detect the changes. Relative PE divergence can be used for measuring the two
probability distributions, which is calculated based on the relative density-ratio [16]. By using
information in various source datasets, the proposed method can accurately perform change-point
detection even if a few subsequences are available in the past and/or present intervals.

6.3 Generative Adversarial Networks

Generative adversarial networks (GANs) are powerful generative models that consist of two compo-
nents: a generator and discriminator [6]. The generator produces instances with the same distribution
as training data and the discriminator aims to distinguish instances came from the training data and
that from the generator. GANs are formulated as a two-player minmax game, and the generator and
discriminator are optimized alternately. Training of the discriminator can be formulated as (relative)
DRE between the training data distribution and generated distribution and training of the generator
can be performed with the learned (relative) density-ratio [23]. Thus, by meta-learning with various
related datasets in advance, the proposed method might improve the performance of GANs even if
only a few training instances are available.

7 Additional Experimental Results

7.1 Comparison between Relative DRE and DRE in Our Framework

We investigated the DRE performance of the proposed method, i.e., the proposed method with α = 0,
with the dataset comparison problem. Table 1 shows the mean test AUCs over different target support
instance sizes. Ours, which makes relative DRE with α = 0.5, clearly performed better than Ours for
DRE. Since neural networks are flexible, our model for DRE tried to fit on extremely large values
of density-ratio, which led to the inaccurate performance. This result suggests that relative DRE is
useful in our framework.

7.2 Trainable Relative Parameter α for Support Set Adaptation

We investigated the performance of the proposed method that uses trainable relative parameter α
for adaptation to support instances. Although the proposed method in the main paper uses the same
relative parameter (hyperparameter) in Eqs. (3) and (8) for simplicity, we can use different relative
parameters and treat the relative parameter in Eq. (3) as a trainable parameter. Table 2 shows the
mean test squared errors without the constant term for the relative DRE problems and the mean test
AUCs for the dataset comparison and outlier detection problems. We fixed α = 0.5 in Eq. (8) for
both methods. We can see that although Ours w/ train tended to perform slightly better than Ours (the
proposed method without the trainable relative parameter), there are no big differences between them.
Therefore, in practice, we can use both methods.
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Table 3: Investigation of effects of using deeper neural networks in the proposed method. Average
test squared errors for relative DRE without the constant term for the relative DRE problems and
average test AUCs [%] for the dataset comparison and outlier detection problems. DeepOurs uses a
deeper neural network for h than Ours.

Problem Ours DeepOurs RuLSIF
relative DRE -0.83 -0.78 -0.63
dataset comparison 95.72 91.20 85.27
outlier detection 75.27 72.40 68.77

Table 4: Additional comparisons with several DRE methods. Values in relative DRE represent
average test squared errors ignoring constant terms over different target support instance sizes and all
benchmark data. Values in dataset comparison and outlier detection represent average test AUCs [%]
over different target support instance sizes and all benchmark data.

Problem Data Ours PC KNN LRuSIF PC-FT
relative DRE Mnist-r -0.754 -0.725 -0.633 -0.610 -0.565

Isolet -0.895 -0.873 -0.776 -0.613 -0.568
dataset comparison Mnist-r 92.88 86.22 80.08 84.35 78.81

Isolet 98.56 97.06 86.51 45.20 82.66
outlier detection IoT 96.94 76.72 50.72 89.37 85.05

Landmine 65.31 50.47 50.19 42.17 53.19
School 63.55 54.29 52.86 53.73 54.38

Table 5: Additional comparisons in the outlier detection problem. Average test AUCs [%] over
different target support instance sizes.

Data Ours KL nnPU
IoT 96.94 94.79 91.18
Landmine 65.31 54.80 51.60
School 63.55 58.27 54.15

7.3 Dependency of the Dimension of Latent Vectors

We investigated the dependency of the dimension of latent vectors z ∈ RK in the proposed method.
The latent vector z is used for reflecting datasets’ information to the embeddings of instances in the
datasets. Figure 1 shows the average test squared errors without the constant term when varying K
on the relative DRE problems. Figures 2 and 3 show the average test AUCs when varying L in the
dataset comparison and outlier detection problems, respectively. The proposed method constantly
outperformed RuLSIF over different K in all problems. These results show that the proposed method
is relatively robust against the dimension of latent vectors.

7.4 Deep Neural Network-based Implementation of the Proposed Method

We investigated the effect of using deeper neural networks in the proposed method. Table 3 shows
the results. DeepOurs uses a five-layered feed-forward neural network for h although Ours uses a
three-layered one, which is used in the main paper. Although DeepOurs consistently outperformed
RuLSIF, it performed worse than Ours for all problems. This result suggests that the neural network
used in the main paper is more appropriate for our problems.

7.5 Additional Comparison with Density-Ratio Estimation Methods

We additionally compared the proposed method with four DRE methods: the probabilistic
classification-based method with a logistic regression model (PC) [1], the nearest neighbour-based
method (KNN) [13], RuLSIF with a liner model r̂(x) := w>x (LRuLSIF), and a fine-tuning method
for PC (PC-FT) that uses a neural network model and fine-tunes the last layer of the learned model of
PC with source datasets by using target support instances. PC, KNN, and LRuSIF use only target
support instances. We note that a fine-tuning method for LRuLSIF was omitted since it is equivalent
to RuLSIF-FT in the main paper. Since these methods use simple DRE models, they are considered
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to be suitable for small instance problems. Therefore, we conducted this additional comparison.
Table 4 shows mean test AUCs over different target support sample sizes. The proposed method
clearly outperformed the other methods on all problems. This is because the proposed method is well
designed for few-shot relative DRE.

7.6 Additional Comparison for Inlier-based Outlier Detection

To further demonstrate the effectiveness of the proposed method, we additionally compared the
proposed method with two comparison methods: DRE method with unconstrained KL divergence
(KL) [22] and non-negative positive and unlabeled (PU) learning method (nnPU) [12]. KL used a
kernel model with the Gaussian kernel, where Gaussian width was calculated using the median trick.
nnPU is a neural network-based PU learning method that learns classifiers from only positive and
unlabeled data. This method is designed to mitigate overfitting to small data, and can be used for
inlier-based outlier detection by regarding normal data as positive data. We used the same neural
network architecture as the proposed method, i.e., the four-layered feed-forward neural network.
Since nnPU requires the class-prior probability as domain knowledge, we set it by calculating the
average outlier rate in a dataset for each benchmark data. We fixed hyperparameters β = 0 and γ = 1
as the original paper [12]. Both methods use target normal and unlabeled instances for training. Table
5 shows mean test AUCs over different target support sample sizes. The proposed method clearly
outperformed the others. nnPU did not perform well since there are too small normal instances to
train its neural network.

7.7 RuLSIF with Meta-Learned Initial Parameters

To further investigate the effectiveness of our formulation, we considered a meta-learning extension
of RuLSIF, in which initial parameters of the kernel model in RuLSIF are meta-learned with source
datasets like MAML [3]. We call this method Meta-RuLSIF. We conducted relative DRE experiments
with the synthetic data used in the main paper. The mean squared errors without the constant terms
of the proposed method and Meta-RuLSIF were -0.613 and -0.498, respectively (lower is better).
The reason for the bad result of Meta-RuLSIF is that it has less expressive capability than our neural
network-based embedding extractors and it learns the single initialization for all datasets even though
good initialization would be different across datasets.

8 Potential Negative Social Impacts

The proposed method can be used for various real-world applications as described in Section 1.
However, the proposed method has some potential risks to be addressed when it is deployed to
real-world applications. First, although we experimentally demonstrated the proposed method
outperformed existing methods, it is not perfect; that is, it may estimate incorrect relative density-
ratio, which may lead to wrong decision making in some cases. To mitigate this, people can use the
proposed method as a support tool for their decision making. Second, the proposed method needs to
access datasets obtained from multiple sources like almost all transfer/meta-learning methods. When
each dataset is provided from different owners such as companies, sensitive information in the dataset
risks being stolen and abused by malicious people that use the proposed method. To evade this risk,
we suggest promoting research for developing meta-learning methods without accessing raw datasets.
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Figure 1: Average and standard errors of test squared errors without the constant term when varying
the number of dimension of latent vectors K on relative-density ratio estimation problems.
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