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ABSTRACT

While many recent Physics-Informed Neural Networks (PINNs) variants have had
considerable success in solving Partial Differential Equations, the empirical ben-
efits of feature mapping drawn from the broader Neural Representations research
have been largely overlooked. We highlight the limitations of widely used Fourier-
based feature mapping in certain situations and suggest the use of the condition-
ally positive definite Radial Basis Function. The empirical findings demonstrate
the effectiveness of our approach across a variety of forward and inverse prob-
lem cases. Our method can be seamlessly integrated into coordinate-based input
neural networks and contribute to the wider field of PINNs research.

1 INTRODUCTION

Many scientific phenomena can be described by sets of differential equations (DEs). The prior
physics knowledge is then formulated as regularisers that can be embedded in modern machine
learning algorithms supported by the Universal Approximation Theorem Hornik et al. (1989).
Physics-Informed Machine Learning (PIML) Karniadakis et al. (2021) is a learning paradigm that
combines data-driven models with physical laws and domain knowledge to solve complex problems
in science and engineering. It has recently attained remarkable achievements in a wide range of
scientific research such as Electronics Smith et al. (2022); Hu et al. (2023); Nicoli et al. (2023),
Dynamical System Thangamuthu et al. (2022); Ni & Qureshi (2023), Meteorology Kashinath et al.
(2021); Giladi et al. (2021) and Medical Image Goyeneche et al. (2023); Salehi & Giannacopoulos
(2022); Pokkunuru et al. (2023). One of the leading methods is called Physics-Informed Neural Net-
works (PINNs) Raissi et al. (2019). By adding the DEs as penalty terms in the deep Neural Networks
(NN), it exploits the differentiability of NN to compute derivatives of the explicit functions and in-
troduces domain-specific regularisation during optimisation. Adhering to conventional solvers, the
PINNs formulation necessitates the specification of initial/boundary conditions (IC/BC) within a
confined spatial-temporal domain. Boundary sampling points and domain collocation points are
used to evaluate the residuals of the conditions and DEs via an overparameterised NN. The objec-
tive is to optimise the NN by minimising the residuals, resulting in a converged parameter space.
This parameter space can then serve as a surrogate model that accurately represents the solution
space of the DEs. The PINNs can be formulated as follows:
D[u(x, t;αi)] = F (x, t), t ∈ T [0, T ],∀x ∈ Ω and B[u(x, t)] = H(x, t), t ∈ T [0, T ], x ∈ ∂Ω. (1)

where D[·] is the differential operator and B[·] is the boundary operator, x and t are the independent
variables in spatial and temporal domains Ω and T , respectively. The αi are coefficients of the DE
system and remain wholly or partially unknown in Inverse Problems. For time-dependent PDEs, the
initial condition can be treated as a special type of BC. F and H are arbitrary functions.
PINNs are parameterised by θ, the solution space represented can give numerical solution ûθ at any
x and t within the domain. And the training loss functions are defined as follows:

L(θ;X(x,t)) =
λr

Nr

Nr∑
i=1

∣∣D[ûθ(x
i
r)]− F (xi

r)
∣∣2 + λbc

Nbc

Nbc∑
i=1

∣∣B[ûθ(x
i
bc)]−H(xi

bc)
∣∣2 (2)

where {xi
r}

Nr
i=1 and {xi

bc}
Nbc
i=1 are domain collocation points and boundary points, they are evaluated

by computing the mean squared error. λr and λbc are the corresponding weights of each term.

∗Correspondence Author. The full version of the paper can be found in arxiv.org/abs/2402.06955.
The code can be found in repo github.com/SimonZeng7108/RBF-PINN/tree/master.

1

arxiv.org/abs/2402.06955
github.com/SimonZeng7108/RBF-PINN/tree/master


Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Po
si

tio
n 

En
co

di
ng

R
ad

ia
l B

as
is

Absolute Error

(a) 2D Burgers' Equation

Even Sampling Uneven Sampling

(b) nD Poisson Equation

Solution

Figure 1: (a) Solutions using PINNs to solve Diffusion Equation with Positional Encoding (Top) and
Our RBF (Bottom) feature mappings ; (b) L2 error on nD Poisson equation from 1 to 10 dimensions.

Although significant advances have been achieved in prior research, there has been limited explo-
ration of feature mapping, with only a few studies Wang et al. (2021b); Wong et al. (2022) recog-
nising its potential within PINNs. Originally introduced in Natural Language Processing (NLP),
feature mapping aims to map the input to a higher-dimensional feature space for a better neural
representation. It was subsequently identified as an effective approach for mitigating spectral bias in
visual representations Tancik et al. (2020). Feature mapping is a broader term for positional encod-
ing that can involve either fixed encoding or trainable embedding. This simple one-layer projection
can map the spatio-temporal input x to a higher dimension feature space, Φ : x ∈ Rn → Rm, and
typically n ≪ m.
In PINNs, Wang et al. (2020) has leveraged the ‘Neural Tangent Kernel’ (NTK) theory that reveals
PINNs suffer from ‘Spectral Bias’ in the infinite-width limit. The NTK exhibits sensitivity to both
input and network parameters. Its trait is particularly contingent on factors such as the input gradient
of the model, the variance at each layer, and the nonlinear activations. Hence, the training dynamics
of PINNs are significantly influenced by the input before parameterised layers.
Our contribution in this paper can be summarised as: First, we show the limitations and short-
comings of the widely used Fourier-based feature mappings in some Partial Differential Equations
(PDEs) and thoroughly benchmark a wide range of feature mapping methods, including some which
have not been employed in PINNs before. Secondly, we present a framework for designing feature
mapping functions and introduce a conditional positive definite Radial Basis Function. This method
surpasses Fourier-based feature mapping in various forward and inverse tasks.

2 LIMITATION OF FOURIER FEATURES

Basic Fourier features can lead to undesired artifacts, as illustrated in Figure 1(a) (detailed equations
can be found in Appendix G). When applying Positional Encoding to address Burgers’ equations,
a notable prediction error is observed in the area approaching a jump solution. This phenomenon
is akin to the Gibbs phenomenon in signal processing, where the approximated function value by a
finite number of terms in its Fourier series tends to overshoot and oscillate around a discontinuity.
Another unexpected experimental result that shows poor performance is observed when utilising
Random Fourier Features Tancik et al. (2020) in high-dimensional problems, as depicted in Fig-
ure 1(b). Two cases are set up, one case with each dimension of evenly sampled points and another
with uneven sampling points, where the number of sampling points xr is set as 1

D . The latter exam-
ple resembles the unsteady Navier-Stokes equations for fluid dynamics, which have dense samples
in the spatial domains, but sparse sampling in the temporal dimension. Despite hyperparameter tun-
ing for the Fourier feature, including the arbitrary scale σ and the number of Fourier features, none
of the attempts reduce the elevated error in high-dimensional cases. The experiments are repeated
with 3 random seeds, and standard deviations are displayed in the highlighted area.

3 PROPOSED METHOD

In NTK theory, the multi-layer perceptions (MLPs) function is approximated by the convolution of
the stationary composed NTK function KCOMP = KNTK ◦KΦ with weighted Dirac delta over the
input x (background in Spectral Bias and Composed NTK are in Appendix C), we can formulate the
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KCOMP by:
KCOMP(x) = (KCOMP ∗ δx)(x)

=

∫
KCOMP(x

′)δ(x− x′)dx

≈
∫

KCOMP(x
′)KΦ(x− x′)dx

(3)

The accuracy of the continuous approximation can be analysed by Taylor series expansion:

KCOMP(x) =

∫
(KCOMP(x) +∇xKCOMP(x− x′)

+
1

2
(x− x′)∇2KCOMP(x− x′)

+O((x− x′)3))KΦ(x− x′)dx

= KCOMP(x)

∫
KΦ(x− x′)dx

+∇xKCOMP(x− x′)

∫
(x− x′)KΦ(x− x′)dx

+O((x− x′)2)

(4)

Ensuring the first-order accuracy of the composing kernel requires the term
∫
KΦ(x − x′)dx = 1,

and the second term in Equation 4 must be 0. This can be accomplished by normalising the feature
mapping function and ensuring that it satisfies a symmetry condition. We propose a positive definite
Radial Basis Function (RBF) for such a kernel, and its formulation is given by:

Φ(x) =

∑m
i wiφ(|x− ci|)∑m
i φ(|x− ci|)

(5)

where x ∈ Rn is the input data, c ∈ Rn×m are the centres of the RBFs and are trainable parameters
and w is the weight matrix for the feature mapping layer. A natural choice for the RBF can be

the Gaussian function, φ(x) = e−
|x−c|2

σ2 , where σ is a random initialised trainable parameter. If
we choose the same number of features as the input size (i.e. n = m), this method provides an
approximate computation of the desired function value through kernel regression. Unfortunately,
in the context of PINNs, the training input size is typically large, making it impractical to scale in
this manner. Through empirical study, we demonstrate that a few hundred RBFs prove sufficient
to outperform other types of feature mapping functions. During initialisation, c is sampled from a
standard Gaussian distribution.

3.1 CONDITIONALLY POSITIVE DEFINITE RBF

In the infinite-width limit, each layer of the Neural Network is treated as a linear system. To guar-
antee a unique solution, one approach involves introducing conditionally positive definite radial
functions by incorporating polynomial terms. The weights serve as Lagrange multipliers, enabling
constraints on the RBF coefficients in the parameter space Farazandeh & Mirzaei (2021). We denote
this method as RBF-P throughout the paper. Therefore, the feature mapping function is adjusted to:

Φ(x) =

∑m
i wm

i φ(|x− ci|)∑m
i φ(|x− ci|)

+

k∑
j

wk
jP (x) (6)

Where P is the polynomial function. In the feature mapping layer, it can be represented as: f1
...
fN

 =

φ(r11) . . . φ(rm1 ) | 1 x1 xk

...
. . .

... |
...

...
...

φ(r1N ) . . . φ(rmN ) | 1 xN xk
N


Wm

−
W k

 (7)

where r = x− c and P is the order of the polynomial term.
Based on empirical findings, we observe that the polynomial term is highly effective in nonlin-
ear function approximation, particularly in equations like the Burgers Equation and Navier-Stokes
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Equation, all while incurring minimal computational overhead.
By this principle, we can use many other types of RBF without too many restrictions. Other types
of RBF are shown in Appendix E Table 5.

4 EMPIRICAL RESULTS

Table 1: L2 error on varies of PDEs with different feature mapping. The best results are in Blue .
Full experimental results with standard deviations are shown in Appendix D.

PINN BE PE FF SF CT CG RBF RBF-P

Wave 3.73e-1 1.04e0 1.01e0 2.38e-3 7.93e-3 1.11e0 1.04e0 2.81e-2 2.36e-2
Diffusion 1.43e-4 1.58e-1 1.60e-1 2.33e-3 3.47e-4 1.86e0 2.72e-2 3.07e-4 3.50e-5
Heat 4.73e-3 6.49e-3 7.57e-3 2.19e-3 3.96e-3 4.52e-1 2.63e-1 1.16e-3 4.10e-4
Poisson 3.62e-3 4.96e-1 4.91e-1 7.59e-4 9.08e-4 6.35e-1 2.33e-1 5.26e-4 8.94e-4
Burgers 1.86e-3 5.59e-1 5.36e-1 7.49e-2 1.30e-3 9.94e-1 7.52e-1 2.95e-3 3.16e-4
NS 5.26e-1 7.14e-1 6.33e-1 6.94e-1 3.77e-1 5.46e-1 4.87e-1 2.99e-1 2.57e-1

Table 2: L2 error of the Inverse Problems. * denotes added noises. Full results are in Appendix D.
FF SF RBF RBF-P

I-Burgers 2.39e-2 2.43e-2 1.74e-2 1.57e-2
I-Lorenz 6.51e-3 6.39e-3 6.08e-3 5.99e-3
I-Burgers* 2.50e-2 2.91e-2 1.99e-2 1.75e-2
I-Lorenz* 7.93e-3 6.85e-3 6.69e-3 6.34e-3

Time-dependent PDEs. Our solution in the Diffusion equation demonstrates superior performance
compared to other methods by an order of magnitude. Boundary errors are notably more perceptible
in Fourier-based methods, as illustrated in Appendix H, Figure 7.
The RBFs demonstrate enhanced capability in addressing multiscale problems, as illustrated in the
Heat equation G.3. In the Heat equation formulation, there exists a substantial contrast in coeffi-
cients: 1

500π2 for the x-direction and 1
π2 for the y-direction. Figure 8 illustrates that the RBF method

effectively preserves the details of the solution at each time step.
Non-linear PDEs. We assess the methods using two classic non-linear PDEs: the Burgers equation
and the Navier-Stokes equation. Figure 10 illustrates that RBFs with polynomial terms are better in
addressing the discontinuity at x = 0 in the Burgers equation.
Inverse Problems. A major application of the PINNs is able to solve Inverse Problems. The un-
known coefficients in the differential equations can be discovered by a small amount of data points.
our methods have shown their efficacy in two Inverse Problems, shown in 2
Another experiment aimed to test the robustness of feature mapping functions to noise. 1% Gaus-
sian noises are added to the inverse Burgers problem and 0.5% to the Lorenze system data. The
results presented in Table 2 reveal that the four tested feature mapping methods indicate a degree of
immunity to noise. Furthermore, RBF-P stands out as the most resilient feature mapping function to
noise.
All benchmarked method can be found in Appendix B.

4.1 ABLATION STUDY

We carried out ablation studies on the number of RBFs in the feature mapping layer, the number of
polynomials for RBF-P and different types of RBFs. Generally, a higher number of RBFs perform
better but requires high computation resources. For different cases, the number of polynomials terms
required varies. And among all test RBF functions, Gaussians present more stable results. The
complete results can be found in Appendix E. The complexity and scalability of different feature
mapping functions are included in Appendix F.
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5 CONCLUSION AND FUTURE WORK

In conclusion, we have introduced a framework for designing an effective feature mapping function
in PINNs and proposed Radial Basis Function-based approaches. Our method not only enhances
generalisation across a range of forward and inverse physics problems but also surpasses other fea-
ture mapping methods by a substantial margin. The RBF feature mapping has the potential to be
compatible with various other PINNs techniques, including novel activation functions and loss func-
tions or training strategies such as curriculum training or causal training. While the primary focus of
this work has been on solving Partial Differential Equations, the exploration of RBF feature mapping
extends to its application in other coordinate-based input neural networks for different tasks.
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A RELATED WORK

Coordinate Sampling. As a mesh-free method, PINNs are normally evaluated on scattered col-
location points both on the interior domain and IC/BC. Therefore, the sampling strategy is crucial
to PINNs’ performance and efficiency. A poorly distributed initial sampling can lead to the PDE
system being ill-conditioned and NN training instability. The whole design of experiments on the
fixed input sampling is reviewed by Das & Tesfamariam (2022). Based on the study of uniform
sampling, Wu et al. (2023) proposed an adaptive sampling scheme that refines high residual area
during training. Similarly, Importance Sampling inspired by Monte Carlo approximation is inves-
tigated by Nabian et al. (2021); Yang et al. (2023). Daw et al. (2022) proposed a novel sampling
strategy that mitigates the ‘propagation failure’ of solutions from IC/BC to the PDE residual field.
Novel Activation. The activation function in the MLP has been found to play an important role
in the convergence of the PINNs. Popular activation ReLU is deficient for high-order PDEs since
its second-order derivative is 0. Apart from the standard Tanh activation Raissi et al. (2019), layer-
wise and neuron-wise adaptive activation are proven to be useful to accelerate the training Jagtap
& Karniadakis (2019); Jagtap et al. (2020). Another line of seminal work, SIREN Sitzmann et al.
(2020), which uses periodic activation function, has achieved remarkable results in Neural Repre-
sentation and tested on solving the Poisson equation. Gaussian Ramasinghe & Lucey (2022) and
Gabor Wavelet activations Saragadam et al. (2023) are proven to be effective alternatives.
Positional Embedding. Broadly speaking, PINNs can also be considered as a special type of Neu-
ral Fields Xie et al. (2021) in visual computing, which specifically feed coordinate-based input to
MLPs that represent continuous field quantity (e.g. velocity field in fluid mechanics) over arbitrary
spatial and temporal resolution. However, the PINNs community often ignores the fact both per-
spectives function the same way as Implicit Neural Representations. In the Neural Field, images
and 3D shapes are naturally high-frequency signals, whereas deep networks are inherently learning
towards the low-frequency components Rahaman et al. (2018). Feature mapping hence has become
a standard process in practice that maps the low-dimension coordinates to high-dimension space.
The pioneering work was conducted by Rahimi & Recht (2007), who used Fourier features to ap-
proximate any stationary kernel principled by Bochner’s theorem. the derivative works are done
such as Positional Encoding Mildenhall et al. (2020), Random Feature Tancik et al. (2020) and Si-
nusoidal Feature Sitzmann et al. (2020). Another concurrent work discusses non-periodic feature
mapping Zheng et al. (2022); Ramasinghe & Lucey (2021); Wang et al. (2021a). To the best of
our knowledge, feature mapping in PINNs has been largely uninvestigated. Only a few work pre-
liminarily adopted Fourier-feature-based methods in PINN Wang et al. (2021b; 2023); Wong et al.
(2022).

B BENCHMARKED FEATURE MAPPING METHODS

Basic Encoding: Mildenhall et al. (2020) φ(x) = [cos(2πσj/mx, sin(2πσj/mx]T for
j = 0, ..,m− 1.
Positional Encoding: Mildenhall et al. (2020) φ(x) = [cos(2πσj/mx, sin(2πσj/mx]T for
j = 0, ..,m− 1.
Random Fourier: Tancik et al. (2020) φ(x) = [cos(2πσBx), sin(2πσBx)]T , where B ∈ Rm×d is
sampled from N (0, 1) and σ is an arbitrary scaling factor varies case to case.
Sinusoidal Feature: Sitzmann et al. (2020) φ(x) = [sin(2πWx + b)]T , where W and b are
trainable parameters.
Complex Triangle: Zheng et al. (2022) φ(x) = [max(1 − |x1−t|

0.5d , 0),max(1 −
|x2−t|
0.5d , 0), · · · ,max(1− |xi−t|

0.5d , 0)]T , where t is uniformly sampled from 0 to 1.
Complex Gaussian: Zheng et al. (2022) φ(x) = [e−0.5(x1−τ/d)2/σ2 ⊗ · · ·

⊗
e−0.5(xd−τ/d)2/σ2

]T ,
where τ is uniformly sampled from [0, 1], and

⊗
is the Kronecker product.
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C SPECTRAL BIAS AND COMPOSED NTK

C.1 SPECTRAL BIAS

Normally PINNs are setup as a standard MLP model f(x; θ), and θ is optimized on the loss function
L(θ) = 1

2 |f(x; θ)− Y |2 = 1
2

∑N
i (f(xi; θ) − yi)

2, where X , Y and θ are training input, training
ground truth and model parameters. For an easier formulation, we replace the conventional gradient
descent formulation θt+1 = θt − α∇θL(θt) to a gradient flow equation:

dθ

dt
= −α∇θL(θt) (8)

where α should be an infinitesimally small learning rate in the NTK setting.
Given PDE collocation data points{xi

r,D(ûθ(x
i
r))}

Nr
i=1, and boundary training

points{xi
bc,B(ûθ(x

i
bc))}

Nbc
i=1 . The gradient flow can be formulated as Wang et al. (2020):[

du(xb,θt)
dt

dLu(xr,θt)
dt

]
= −

[
Kt

uu Kt
ur

Kt
ru Kt

rr

]
·
[

u (xb, θt)− B(ûθ(xbc))
Lu (xr, θt)−D(ûθ(xr))

]
, (9)

where the Kernels K are:

(
Kt

uu

)
ij
=

〈
du

(
xi
b, θt

)
dθ

,
du

(
xj
b, θt

)
dθ

〉
(
Kt

rr

)
ij
=

〈
dL

(
xi
r, θt

)
dθ

,
dL

(
xj
r, θt

)
dθ

〉
(
Kt

ur

)
ij
=

(
Kt

ru

)
ij
=

〈
du

(
xi
b, θt

)
dθ

,
dLu

(
xj
r, θt

)
dθ

〉
(10)

Since K remains stationary, then Kt ≈ K0 as NN width tends to infinity, Equation 9 is rewritten
as: [

du(xb,θt)
dt

dLu(xr,θt)
dt

]
≈ −K0

[
u (xb, θt)− B(ûθ(xbc))
Lu (xr, θt)−D(ûθ(xr))

]
≈ (I − e−K0t) ·

[
B(ûθ(xbc)
D(ûθ(xr))

] (11)

By Schur product theorem, K0 is always Positive Semi-definite, hence it can be Eigen-decomposed
to QTΛQ, where Q is an orthogonal matrix and Λ is a diagonal matrix with eigenvalues λi in the
entries. We can rearrange the training error in the form of:[

du(xb,θt)
dt

dLu(xr,θt)
dt

]
−
[

B(ûθ(xbc)
D(ûθ(xr))

]
≈ (I − e−K0t) ·

[
B(ûθ(xbc)
D(ûθ(xr))

]
−

[
B(ûθ(xbc)
D(ûθ(xr))

]
≈ −QT e−ΛtQ ·

[
B(ûθ(xbc)
D(ûθ(xr))

] (12)

where e−Λt =

 e−λ1t

. . .
e−λN t

. This indicates the decrease of training error in each com-

ponent is exponentially proportional to the eigenvalues of the deterministic NTK, and the NN is
inherently biased to learn along larger eigenvalues entries of the K0.

9
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C.2 COMPOSED NTK

The Fourier feature layer is defined as:

φ(x) =
[
a1 cos

(
2πbT1 x

)
, a1 sin

(
2πbT

1 x
)
, . . . , am cos

(
2πbT

mx
)
, am sin

(
2πbT

mx
)]T

(13)

Hence the NTK is computed by:

KΦ (xi, xj) = φ(xi)
Tφ(xj)

=

[
Ak cos (2πbmxi)
Ak sin (2πbmxj)

]T
·
[

Ak cos (2πbmxi)
Ak sin (2πbmxj)

]
=

m∑
k=1

Ak cos
(
2πbTk xi

)
cos

(
2πbTk xj

)
+Ak sin

(
2πbTk xi

)
sin

(
2πbTk xj

)
Trigonometric Identities: cos(c− d) = cos c cos d+ sin c sin d

=

m∑
k=1

A2
k cos

(
2πbTk (xi − xj)

)
.

(14)

where A is the Fourier Series coefficients, b is randomly sampled from N (0, σ2) and σ is an arbi-
trary hyperparameter that controls the bandwidth. Thereafter, the feature space becomes the input of
the NTK which gives the identities: KNTK(xT

i xj) = KNTK(φ(xi)
Tφ(xj)) = KNTK(KΦ(xi −

xj)).

10
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D COMPLETE EXPERIMENTAL RESULTS FOR TABLE 1&2

D.1 COMPLETE RESULTS FOR TABLE 1

Table 3: Full PDEs benchmark results comparing different feature mapping methods in L2 error.
The best results are in Blue . Standard deviations are shown after ±.

PINN BE PE FF SF

Wave 3.73e-1±2.37e-2 1.04e0±3.55e-1 1.01e0±4.02e-1 2.38e-3±3.75e-4 7.93e-3±9.32e-4
Diffusion 1.43e-4±4.84e-5 1.58e-1±6.13e-2 1.60e-1±1.20e-2 2.33e-3±7.51e-4 3.47e-4±6.11e-5
Heat 4.73e-3±6.14e-5 6.49e-3±6.37e-4 7.57e-3±1.02e-4 2.19e-3±3.12e-4 3.96e-3±2.56e-4
Poisson 3.62e-3±1.24e-4 4.96e-1±2.15e-2 4.91e-1±1.08e-2 7.58e-4±9.01e-5 9.07e-4±1.02e-5
Burgers 1.86e-3±1.20e-4 5.58e-1±2.57e-2 5.36e-1±3.70e-2 7.50e-2±5.15e-3 1.30e-3±6.21e-4
Steady NS 5.26e-1±1.01e-2 7.14e-1±1.33e-2 6.33e-1±2.35e-2 6.94e-1±1.06e-3 3.77e-1±2.37e-2

CT CG RBF RBF-P

Wave 1.11e0±3.21e-2 1.03e0±1.05e-2 2.81e-2±3.67e-3 2.36e-2±1.59e-2
Diffusion 1.86e0±2.31e-2 2.72e-2±1.02e-1 3.06e-4±9.51e-6 3.49e-5±6.54e-6
Heat 4.52e-1±6.51e-2 2.62e-1±2.36e-2 1.15e-3±1.02e-4 4.09e-4±9.62e-6
Poisson 6.34e-1±3.04e-1 2.33e-1±5.47e-2 5.25e-4±6.24e-5 8.94e-4± 6.51e-5
Burgers 9.93e-1±4.51e-2 7.52e-1±3.24e-2 2.94e-3±2.35e-4 3.15e-4±2.14e-5
Steady NS 5.46e-1±2.35e-2 4.86e-1±3.65e-2 2.99e-1±6.51e-2 2.56e-1±6.21e-2

D.2 COMPLETE RESULTS FOR TABLE 2

Table 4: Full Benchmark results on the Inverse problems in L2 error. * indicates problems with
noises added to the data.

FF SF RBF RBF-P

I-Burgers 2.39e-2±9.64e-4 2.43e-2±4.678e-3 1.74e-2±6.57e-3 1.57e-2±9.36e-4
I-Lorenz 6.51e-3±7.65e-4 6.39e-3±6.21e-4 6.08e-3±3.69e-4 5.99e-3±2.31e-4
I-Burgers* 2.50e-2±6.32e-3 2.91e-2±2.69e-3 1.99e-2±3.62e-3 1.75e-2±5.63e-3
I-Lorenz* 7.93e-3±8.65e-4 6.85e-3±6.36e-4 6.69e-3±5.20e-4 6.34e-3±8.61e-4

11
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E ABLATION STUDY

In this section, we show some additional experiments on our RBF feature mapping including inves-
tigations on the Number of RBFs, Number of Polynomials and different RBF types.

E.1 NUMBER OF RBFS

Figure 2 has shown generally more RBFs (256) yield better results. It however does demand a higher
memory and can be slow in some cases. It shows in the Diffusion equation, with 256 RBFs, the error
reduces quite significantly. Otherwise, it only has limited improvements because the error is already
very low. We use 128 RBFs in general case for a better performance-speed tradeoff.

Wave Diffusion Heat Poisson Burgers N-S
PDEs

10 4

10 3

10 2

10 1

lo
g 

L2

RBFs = 64
RBFs = 128
RBFs = 256

Figure 2: Ablation study on different number of RBFs

E.2 NUMBER OF POLYNOMIALS

Figure 3 shows an ablation study of how the number of polynomials in feature mappings influences
performance in PDEs. It has shown RBF feature mapping with 20 polynomials has achieved best
results in the Diffusion equation, Poisson equation and N-S equation. And 10 polynomial terms
are better in Heat equation and Burgers equation, thought its performance is matching with only 5
polynomials.

Wave Diffusion Heat Poisson Burgers N-S
PDEs

10 4

10 3

10 2

10 1

lo
g 

L2

P = 5
P = 10
P = 15
P = 20

Figure 3: Ablation study on different number of polynomials
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E.3 DIFFERENT TYPES OF RBFS

Following Table 5 are common positive definite Radial Basis Functions.

Table 5: Types of Radial Basis function and their formulation. x− c is shorten as r.
Type Radial function
Cubic r3

TPS(Thin Plate Spline) r2log(r)

GA(Gaussian) e−r2/σ2

MQ(Multiquadric)
√
1 + r2

IMQ(Inverse MQ) 1/
√
1 + r2

Wave Diffusion Heat Poisson Burgers N-S
PDEs

10 4

10 3

10 2

10 1

lo
g 

L2

Cubic
TPS
MQ
IQ
Gaussian

Figure 4: Ablation study on different types of RBFs

The Figure 4 has shown Gaussian RBF is dominating all types of PDEs. However other types of
RBF are in similar performance. We generally prefer Gaussian RBF in all cases due to its nice
properties.

F COMPLEXITY AND SCALABILITY ANALYSIS

The comparison of complexity and scalability of feature mapping methods are shown in this section.

Although all feature mapping methods are similar in computational complexity, for completeness,
we include the complexity of the feature layers that map 128 features and 4 fully connected layers
with 50 neurons each.

Table 6: Computational complexity

FF SF RBF-I RBF-P-5 RBF-P-10 RBF-P-15 RBF-P-20
FLOPs 139.5M 142.1M 139.5M 142.5M 145.0M 147.5M 150.0M
Params 14.2k 14.3k 14.2k 14.5k 14.7k 14.9k 15.2k

Due to software optimisation and package compatibility, the feature mapping methods can have very
different computational efficiency in training. To demonstrate, we run the above models on different
numbers of sample points on Diffusion equation for 3 times in different random seeds.RBF-COM
stands for compact support RBF, and RBF-P uses 20 polynomials.
The time consumed by Fourier Features is noticeably higher than other methods. All methods have
similar runtime for sample points less than 1e4, that is because all sample points computed are
within a GPU parallelisation capacity.

13
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1e1 1e2 1e3 1e4 1e5
Sample Points

1

2

3

4

Ti
m

e(
s)

RBF-P
RBF
FF
SF

Figure 5: Time consumption on different numbers of sample points with different feature mapping
methods

G BENCHMARK PDES AND BOUNDARY CONDITIONS

G.1 WAVE EQUATION

The one-dimensional Wave Equation is given by:

utt − 4uxx = 0. (15)

In the domain of:
(x, t) ∈ Ω× T = [−1, 1]× [0, 1]. (16)

Boundary condition:
u(0, t) = u(1, t) = 0. (17)

Initial condition:

u(x, 0) = sin(πx) +
1

2
sin(4πx) (18)

ut = 0 (19)
(20)

The analytical solution of the equation is:

u(x, t) = sin(πx)cos(2πt) +
1

2
sin(4πx)cos(8πt). (21)

G.2 DIFFUSION EQUATION

The one-dimensional Diffusion Equation is given by:

ut − uxx + e−t(sin(πx) + π2sin(πx)) = 0 (22)

In the domain of:
(x, t) ∈ Ω× T = [−1, 1]× [0, 1]. (23)

Boundary condition:
u(−1, t) = u(1, t) = 0 (24)

Initial condition:

u(x, 0) = sin(πx) (25)

The analytical solution of the equation is:

u(x, t) = etsin(πx) (26)

where α = 0.4, L = 1, n = 1

14
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G.3 HEAT EQUATION

The two-dimensional Heat Equation is given by:

ut −
1

(500π)2
uxx − 1

π2
uyy = 0. (27)

In the domain of:
(x, t) ∈ Ω× T = [0, 1]2 × [0, 5]. (28)

Boundary condition:
u(x, y, t) = 0. (29)

Initial condition:

u(x, y, 0) = sin(20πx) sin(πy). (30)

G.4 POISSON EQUATION

The two-dimensional Poisson Equation is given by:

−∆u = 0 (31)

In the domain of:
x ∈ Ω = Ωrec\Ri. (32)

where

Ωrec = [−0.5, 0.5]2, (33)

R1 = [(x, y) : (x− 0.3)2 + (y − 0.3)2 ≤ 0.12], (34)

R2 = [(x, y) : (x+ 0.3)2 + (y − 0.3)2 ≤ 0.12], (35)

R3 = [(x, y) : (x− 0.3)2 + (y + 0.3)2 ≤ 0.12], (36)

R4 = [(x, y) : (x+ 0.3)2 + (y + 0.3)2 ≤ 0.12]. (37)

Boundary condition:

u = 0, x ∈ ∂Ri, (38)
u = 1, x ∈ ∂Ωrec. (39)

G.5 BURGERS EQUATION

The one-dimensional Burgers Equation is given by:

ut + uux = νuxx (40)

In the domain of:
(x, t) ∈ Ω = [−1, 1]× [0, 1]. (41)

Boundary condition:
u(−1, t) = u(1, t) = 0. (42)

Initial condition:

u(x, 0) = − sinπx (43)

where ν = 0.01
π

15
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G.6 STEADY NS

The steady incompressible Navier Stokes Equation is given by:
∇ · u = 0, (44)

u · ∇u+∇p− 1

Re
∆u = 0. (45)

(46)

In the domain(back step flow) of:
x ∈ Ω = [0, 4]× [0, 2]\ ([0, 2]× [1, 2] ∪Ri) (47)

Boundary condition:
no-slip condition: u = 0. (48)

inlet: ux = 4y(1− y), uy = 0. (49)
outlet: p = 0. (50)

where Re = 100

G.7 ND POISSON EQUATION

The nth-dimensional Poisson Equation is given by:

−∆u =
π2

4

n∑
i=1

sin
(π
2
xi

)
(51)

In the domain of:
x ∈ Ω = [0, 1]n (52)

Boundary condition:
u = 0 (53)

The analytical solution of the equation is:

u =

n∑
i=1

sin
(π
2
xi

)
(54)

G.8 INVERSE BURGERS EQUATION

The one-dimensional Inverse Burgers Equation is given by:
ut + µ1uux = µ2uxx (55)

In the domain of:
(x, t) ∈ Ω = [−1, 1]× [0, 1]. (56)

Boundary condition:
u(−1, t) = u(1, t) = 0. (57)

Initial condition:
u(x, 0) = − sinπx (58)

where µ1 = 1 and µ2 = 0.01
π

G.9 INVERSE LORENZ EQUATION

The 1st-order three-dimensional Lorenz Equation is given by:
dx

dt
= α(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz,

(59)

where α = 10, β = 8
3 , ρ = 15 and the initial points are x0 = 0, y0 = 1, z0 = 1.05.
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H VISUALISATIONS OF PDES SOLUTION
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Figure 6: Wave equation
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Figure 7: Diffusion equation
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Figure 8: Heat equation
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Figure 9: Poisson equation
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Figure 10: Burgers equation

21



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Solution
A

bsolute Error

Fo
ur

ie
r F

ea
tu

re
Si

nu
so

id
al

 F
ea

tu
re

R
B

F-
IN

T

3459.79 pt

R
B

F-
PO

L
8062.17 pt

Solution
A

bsolute Error
Solution

A
bsolute Error

Solution
A

bsolute Error

Figure 11: Navier-Stokes equation
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