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ABSTRACT

Video Shadow Detection (VSD) aims to detect the shadow masks

with frame sequence. Existing works suffer from inefficient tem-

poral learning. Moreover, few works address the VSD problem by

considering the characteristic (i.e., boundary) of shadow. Motivated

by this, we propose a Timeline and Boundary Guided Diffusion

(TBGDiff) network for VSD where we take account of the past-

future temporal guidance and boundary information jointly. In

detail, we design a Dual Scale Aggregation (DSA) module for better

temporal understanding by rethinking the affinity of the long-term

and short-term frames for the clipped video. Next, we introduce

Shadow Boundary Aware Attention (SBAA) to utilize the edge con-

texts for capturing the characteristics of shadows. Moreover, we are

the first to introduce the Diffusion model for VSD in which we ex-

plore a Space-Time Encoded Embedding (STEE) to inject the tempo-

ral guidance for Diffusion to conduct shadow detection. Benefiting

from these designs, our model can not only capture the temporal

information but also the shadow property. Extensive experiments
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show that the performance of our approach overtakes the state-of-
the-art methods, verifying the effectiveness of our components. We

release the codes at https://github.com/haipengzhou856/TBGDiff.

CCS CONCEPTS

• Computing methodologies→ Video segmentation.

KEYWORDS

Diffusion Model, Temporal Guidance, Boundary Attention, Video

Shadow Detection

ACM Reference Format:

Haipeng Zhou, Honqiu Wang, Tian Ye, Zhaohu Xing, Jun Ma, Ping Li,

Qiong Wang, and Lei Zhu. 2024. Timeline and Boundary Guided Diffusion

Network for Video Shadow Detection. In Proceedings of the 32nd ACM
International Conference on Multimedia (MM ’24), October 28-November
1, 2024, Melbourne, VIC, Australia. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3664647.3681236

1 INTRODUCTION

Shadow detection is increasingly important in vision analysis and

applications. Vision tasks can suffer from the shadows, including

incorrect segmentation [52], inaccurate object detection [15, 25],

and flawed tracking [10, 37]. Hence, shadow detection has be-

come a highly focused area of research. Recently, one can wit-

ness significant progress in single Image Shadow Detection (ISD)

[11, 25, 26, 79, 80], whereas in the dynamic scenario, Video Shadow

Detection (VSD) is much more challenging.

Temporal correspondence information matters in video shadow

detection. For example, the SC-Cor [16] focuses on the relationship

between shadow and optical-flow. It relies on a contrastive loss to

explore the temporal correspondence for adjacent frames. However,

https://doi.org/10.1145/3664647.3681236
https://github.com/haipengzhou856/TBGDiff
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like other Unsupervised Video Object Segmentation (UVOS) [41,

43, 50, 56, 63, 73] methods, it still depends on additional clues (i.e.,
optical-flow) and lack of semantic correspondence. We point out

that the adjacent frames usually change slightly, leading the model

to focus on the consistent area while distracting on the deformation

region, which is more crucial for shadow detection.

In addition, few works notice the characteristic of shadow to

propose a task-specific model. We are attracted to recent shadow

removal works [19, 38], which use the boundary information to

guide the restoration model to remove shadows. This indicates

the boundary can provide potential clues to identify the shadows.

Meanwhile, the contexts of boundary often contain higher uncer-

tainty [59, 76, 78] making it difficult for the model to perform

accurate segmentation. These observations motivate us to explore

the boundary information in VSD. Moreover, the shadow detection

works are dominated by CNNs [10, 11, 14, 16, 25, 26, 35, 79, 80] and

Transformers [32, 34, 60, 69]. Advanced architectures can improve

performance. For instance, Scotch&SODA [32], equipped with a

Transformer-based backbone, surpasses other cutting-edge VSD

methods by a large margin. Recently, Diffusion models present re-

markable results in image generation [1, 4, 24, 44, 48] and semantic

segmentation [2, 7, 9, 27]. Whereas little effort has been made to

explore the temporal guidance of Diffusion model for Video. In

the scheme of conditional Diffusion, guidance matters since it can

instruct Diffusion to approach a distribution in a specific direc-

tion. Therefore, it is worth studying effective temporal guidance

for Diffusion models to enhance the performance in VSD.

To tackle the aforementioned problems, we propose Timeline

and Boundary Guided Diffusion (TBGDiff) for video shadow detec-

tion. To our best knowledge, this is the first work introducing
Diffusion model for shadow detection. The core idea of our

method is to utilize the temporal information in the clipped video

and explore the boundary contexts for the Diffusion network to

conduct VSD. In detail, (1) we design a Dual Scale Aggregation

(DSA) module which is plug-and-play to aggregate the temporal

features. Inspired by the residual operation in ResNet [22], we re-

think the affinity [13, 39] in video condition. We adopt the vanilla

affinity to capture the consistent context for short-term frames and

propose a residual affinity to encourage the model to focus on the

deformation area of shadows for long-term frames as well. (2) We

present a Shadow Boundary-Aware Attention (SBAA) to encourage

the model to represent the characteristics of shadows. We embed

the boundary position into the attention mechanism [51] to guide

the model to more accurately distinguish between shadow and non-

shadow areas. (3) We explore three different temporal guidance for

Diffusion model to detect shadows in video scenario. Via consider-

ing the timeline frames (i.e., the past and future frames), we develop

the best practice called Space-Time Encoded Embedding (STEE) to

inject the temporal guidance into the conditional Diffusion model.

Instead of using heavy U-Net [45] to predict noise, our TBGDiff

can progressively decode the mask via the reverse process.

In summary, our four-fold contributions are:

• We develop Timeline and Boundary Guided Diffusion (TBGD

-iff) for video shadow detection, which is the first work intro-

ducing Diffusion model to conduct shadow detection. Our

TBGDiff outperforms state-of-the-art methods by a large

margin, verifying the effectiveness of our approach.

• To guide the Diffusion to learn temporal information, we pro-

pose three different ways to produce guidance. The devised

Space-Time Encoded Embedding (STEE) enables our model

to capture the representation from a timeline sequence (past

and future frames), resulting in the best performance.

• We develop a Shadow Boundary-Aware Attention to help

the model understand the boundary context. Our model

can be further improved by benefiting from focusing on the

boundary-aware region.

• We introduce a plug-and-play method for video understand-

ing, Dual Scale Aggregation (DSA), to explore the affinity

in video sequence. Our DSA is able to conduct short-term

consistency context learning and long-term visiting.

2 RELATEDWORKS

2.1 Video Object Segmentation

Different from Semi-Supervised VideoObject Segmentation (SSVOS)

[12, 13, 29, 30, 39, 54] which provides the first frame mask to ini-

tialization during the testing stage, the Video Shadow Detection

(VSD) follows the paradigm of Unsupervised Video Object Segmen-

tation (UVOS) [28, 36, 41, 47, 50, 63] where we detect the shadow

without the ground truth in the initial frame. In VOS, it usually

deploys auxiliary encoder to extract temporal information, like

optical flow [41, 43, 50, 63], vanilla encoder [36, 55, 57], or salient

map [28, 47]. Recent studies [12, 13, 39, 54, 75] focus on the affinity

between the past and current frames such that one can build a

memory-bank, which aims to utilize the sequential information and

past prior for video understanding. Not only in the past, but we

also reconsider the information of future frames, i.e., in a timeline

sequence. We rethink the affinity in dual temporal scales to consider

timeline aggregation instead of a sequential way.

2.2 Shadow Detection

Previous shadow detection works [11, 20, 25, 58, 79, 80] focus on the

image shadow detection (ISD). For example, Zhu et al. [80] design
a bidirectional FPN [31] to extract local and global contexts for

detecting shadow. With respect to the dynamic scenarios, i.e., video
shadow detection, it encounters huger challenges on account of the

complexity of the real-world. Chen et al. [10] collect the first video
shadow detection dataset named ViSha, and introduce TVSD-Net to

apply collaborative training in different videos to learn the shadow

context. Similarly, STICT [35] deploys Teacher-Student model [23]

to achieve video consistency learning. Considering the temporal

correspondence, SC-Cor [16] enables the network to focus on the

anchor pixel of shadow via contrastive learning. In order to balance

temporal learning and contrastive learning, in Scotch&SODA [32]

the authors apply trajectory Transformer to conduct VSD and set a

new record on ViSha dataset. Differently, motivated by the shadow

removal works [19, 38, 68] which utilizes the boundary information

to guide the image restoration, we first design a specific shadow

boundary-aware attention to detect the characteristic of shadows.

2.3 Diffusion Model

Diffusion model has shown remarkable promise in visual gener-

ation [4, 24, 42, 44, 48], and it enlightens other tasks like object

detection [6], segmentation [2, 7, 9, 27] classification [21, 71]. For

segmentation tasks, the denoise process is not suitable [8, 27] since

the discrete signals undermine the segmentation. Bit Diffusion [7]
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Figure 1: Workflow of our 𝑇𝐵𝐺𝐷𝑖 𝑓 𝑓 . We first use an Encoder 𝐸 to represent all the frames, then the yielded features are sent to

𝐷𝑆𝐴 module to aggregate temporal features. The outputs of 𝐷𝑆𝐴 can be decoded as pseudo masks and boundary masks via

an 𝐴𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 𝐻𝑒𝑎𝑑 . For a frame from the sequence, we use 𝑆𝐵𝐴𝐴 to further explore the shadow boundary context with given

the boundary mask
ˆ𝑏𝑇 , pseudo mask ¤𝑦𝑇 , and aggregated feature 𝐹𝐷𝑆𝐴

𝑇
. Such that, the tokens produced by 𝑆𝐵𝐴𝐴 and timeline

guidance generated by 𝐺𝐸 can be used for Diffusion to conduct video shadow detection.

introduces a simple and generic way to embed and analog the dis-

crete mask into continuous signals, and it also presents a simple

concatenation strategy to process VOS. While there is still room to

improve the temporal guidance for Diffusion to tackle VOS. More-

over, the efficiency should be considered as well. Though several

works [4, 48, 49] dedicate to accelerate the inference, the conven-

tional Diffusion models [1, 4, 24, 40, 44, 48, 74, 77] use heavy U-Net

for noise estimation. Huge parameters make it hard to go on the

downstream works. Instead, we further explore the feasibility and

temporal understanding of the Diffusion model for VSD.

3 METHODOLOGY

3.1 Overview

Given 2𝑖 + 1 frames, our TBGDiff can simultaneously detect the

shadow for all clipped sequences. In brevity, we illustrate the work-

flow of the 𝑇 -th frame 𝑥𝑇 in Fig. 1. First, we take an encoder to

extract the temporal-agnostic features for all the frames, then the

features are sent to the Dual Scale Aggregation (DSA) module to

implement temporal aggregation. With an Auxiliary Head, these ag-

gregated features are used to produce pseudo masks and boundary

masks. Next, we input the 𝑇 -th aggregated feature 𝐹𝐷𝑆𝐴
𝑇

, pseudo

mask ¤𝑦𝑇 , and boundary
ˆ𝑏𝑇 to Shadow Boundary-Aware Attention

(SBAA) to further explore the characteristic of shadows. To utilize

the timeline temporal information for Diffusion, we use a guidance

encoder to yield Space-Time Encoded Embedding (STEE) via encod-

ing the past and future pairs (pseudo masks and images). Finally,

we adopt bit analog strategy [7] to embed noise and conduct the

denoise process to predict the final shadow masks.

3.2 Dual Scale Aggregation

When it comes to video-related works, the matching-based meth-

ods [13, 18, 39, 61, 62, 70, 72, 73, 75] usually adopt affinity to read and

visit the space-time correspondences. However, the vanilla affinity

will introduce the concern: it intends to give more weight to the ad-

jacent frames because the contexts of close-range sequences change

smoothly and slightly, and the interval frames gain less attention

due to time-shift. We argue that both of the temporal scales of

features should be considered, and to alleviate the temporal bias we

propose a Dual Scale Aggregation (DSA) module where we rethink

the affinity considering short-term and long-term scenarios jointly.

The core of affinity is to compute the similarity between the

query feature and the memory feature to retrieve the temporal

and spatial feature. Given the query feature 𝑄 ∈ R𝐶𝑄×𝐻𝑊
, the

memory key feature 𝐾 ∈ R𝐶𝐾 ×𝑁𝐻𝑊
, and memory value fea-

ture 𝑉 ∈ R𝐶𝑉 ×𝑁𝐻𝑊
(the 𝐻 and 𝑊 are the spatial dimensions,

the 𝐶{𝑄,𝐾,𝑉 } denote the channels, and 𝑁 represents the memory

length), the affinity𝑀 ∈ R𝑁𝐻𝑊 ×𝐻𝑊
is computed as:

𝑀(𝑎,𝑏 ) (𝑄,𝐾) =
𝑒𝑥𝑝 (𝑓 (𝑄 (𝑎) , 𝐾(𝑏 ) ))∑
𝑥 𝑒𝑥𝑝 (𝑓 (𝑄 (𝑥 ) , 𝐾(𝑏 ) ))

, (1)

where 𝑓 (·) is L2 similarity function [13]. Such that, we can readout

the aggregated feature 𝐹 ∈ R𝐶𝑉 ×𝐻𝑊
via the matrix multiplication:

𝐹 = 𝑉𝑀 (𝑄,𝐾) . (2)
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Figure 2: Illustration of our SBAA. By integrating the
ˆ𝑏𝑇

and 𝐹𝐷𝑆𝐴
𝑇

, we can obtain the boundary-aware embedded to-

kens serving as the query. We also use the pseudo mask to

weight the coarse shadow regions via element-wise multi-

plying these tokens to produce key and value. Such that, we

can implement attention mechanism and FFN to output the

boundary-aware and shadow-oriented features.

Such a vanilla affinity can be deployed for short-term aggrega-

tion. With the current frame feature 𝐹𝑇 as 𝑄 , and the concatenated

adjacent features {𝐹𝑇−1, 𝐹𝑇+1} as the 𝐾𝑠 and 𝑉 𝑠 (see Fig. 1), we

readout the short-term aggregated feature via the vanilla affinity:

𝐹𝑠𝑇 = 𝑉 𝑠𝑀𝑠 (𝑄,𝐾𝑠 ) . (3)

Considering the long-term visiting, Eq. 1 indicates that similar areas

among different frames occupy higher weight. This leads the model

to distract from the deformation region. To encourage the network

to focus on it, we propose residual affinity to enhance the weight

of deformation areas. Similarly, we have the query of 𝐹𝑇 , the key

and value 𝐾𝑙 = 𝑉 𝑙 = {𝐹 𝑙 } where 𝑙 ∈ [𝑇 − 𝑖, ...,𝑇 − 2,𝑇 + 2, ...,𝑇 + 𝑖],
and the long-term aggregated feature can be obtained by a residual

operation with the affinity matrix:

𝐹 𝑙𝑇 = 𝑉 𝑙𝑀𝑙 (𝑄,𝐾𝑙 ) = 𝑉 𝑙
(���𝑀𝑠𝑒𝑙 𝑓 (𝑄,𝑄 ′) −𝑀𝑙 (𝑄,𝐾𝑙 )

���) , (4)

where𝑀𝑠𝑒𝑙 𝑓
is a self-affinity anchored the consistent areas and the

𝑄 ′
is the broadcasting version of 𝑄 to match the size. An explana-

tion is that the close-range frames usually contain consistent area

leading to higher similarity, while the discrepancy area receives less

attention. Adopting a subtraction operation on the affinity matrix,

the residual area will reveal the difference region which is crucial

to track the shadow deformation. With 𝐹𝑠
𝑇
and 𝐹 𝑙

𝑇
, our DSA can

produce the dual scales aggregated features for 𝑇 -th frame via a

simple convolutional residual block:

𝐹𝐷𝑆𝐴𝑇 = 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (𝐹𝑇 , 𝐹𝑠𝑇 , 𝐹
𝑙
𝑇 ) . (5)

3.3 Shadow Boundary-Aware Attention

Considering the property of shadows, previous shadow removal

works [19, 38, 68] suggest that the marginal contexts of shadows in-

dicate crucial clues to identify the shadow and non-shadow regions.

Motivated by this, we design a Shadow Boundary-Aware Attention

(SBAA) for specializing in detecting the shadows.

First, we introduce an Auxiliary Head in which we input the ag-

gregated features 𝐹𝐷𝑆𝐴 to produce the pseudomask ¤𝑦 and boundary
mask

ˆ𝑏. Benefiting from this design, the pseudo mask can produce

the semantic guidance for our Diffusion (see Sec. 3.4), and the bound-

ary mask helps the model capture the characteristics of shadows.

Here, we use the auxiliary loss to supervise the production via:

𝐿𝑎𝑢𝑥 = 𝐿𝑏𝑐𝑒 (𝑏, ˆ𝑏) + 𝐿𝑏𝑐𝑒 (𝑦, ¤𝑦), (6)

where 𝑏 and 𝑦 are the ground truths of the boundary and shadow

masks, respectively. We adopt Binary Cross Entropy (𝐿𝑏𝑐𝑒 ) to com-

pute loss. Note that all the frames are conducted.

Then move to a specific frame at𝑇 , given the aggregated feature

𝐹𝐷𝑆𝐴
𝑇

∈ R𝐶×𝐻×𝑊
from DSA, the predicted boundary

ˆ𝑏𝑇 , and the

pseudo mask ¤𝑦𝑇 , we regard ˆ𝑏𝑇 as the position embedding such that

the boundary-aware embedded tokens can be obtained by:

𝐹 ′𝑇 = [𝑓 1

𝑇 E; 𝑓 2

𝑇 E; ...; 𝑓 𝑛𝑇 E] + E𝑏𝑝 , 𝑛 = 𝐻 ×𝑊, 𝑓 𝑖𝑇 ∈ 𝐹𝐷𝑆𝐴𝑇 , (7)

where E is a patch embedding projection [17], and we flatten the

boundary mask to obtain E𝑏𝑝 serving as the boundary-aware posi-

tion embedding. To highlight the shadow region, we propose the

SBAA which can be described as:

𝑞 = 𝐹 ′𝑇𝑊𝑞, 𝑘 = (𝐹 ′𝑇 · ¤𝑦𝑇 )𝑊𝑘 , 𝑣 = (𝐹 ′𝑇 · ¤𝑦𝑇 )𝑊𝑣, (8)

SBAA = Softmax(𝑞𝑘
𝑡𝑟

√
𝐶

)𝑣, (9)

where𝑊𝑞 ,𝑊𝑘 , and𝑊𝑣 are the learnable matrices, and𝐶 is the num-

ber of channel to scale. We implement broadcasting mechanism to

extend the channels of ¤𝑦𝑇 to match the size of 𝐹 ′
𝑇
, and ¤𝑦𝑇 can serve

as the weights of probability to emphasize the shadow-relevant

areas. A visual depiction of our SBAA can be found in Fig. 2.

By doing so, the boundary-aware query is able to better retrieve

the shadow regions. And based on the attention, we can deploy

feed-forward network (FFN) [51] (i.e., the MLP linear layer) on it to

produce the output feature which is used in our Diffusion process

to give the final prediction.

3.4 Space-Time Encoded Embedding Guidance

Recently, Diffusion Models have indicated powerful ability in seg-

mentation tasks [2, 7, 27, 65]. When it comes to VOS, Pix2Seq [7]

adopts a straightforward way that just concatenates the past pred-

icated masks into Diffusion as guidance to conduct VOS. While,

the potential of conditional Diffusion in VOS has yet to be further

explored. Motivated by this, we try to seek more effective temporal

guidance for Diffusion models and deploy it in VSD.

Briefly, Diffusion model [24, 48] contains a forward process 𝑞

and a reverse process 𝑝 . The 𝑞 aims to gradually add Gaussian noise

to corrupt the distribution of a mask 𝑦0
making it close to a normal

distribution, which can be illustrated as:

𝑞(𝑦𝑡 |𝑦0) =
√
𝛼𝑡𝑦0 +

√︁
(1 − 𝛼𝑡 )𝜖, 𝜖 ∼ N(0, 1) . (10)

The 𝑡 denotes the timestep, and 𝛼𝑡 is a noise scheduler which could

be adjusted by a cosine or linear style. And the reverse process 𝑝𝜃 is

parameterized by a network 𝜃 (𝑦𝑡 , 𝑔, 𝑥), which is used to predict 𝑦0
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Figure 3: Three different ways to produce guidance for condi-

tional Diffusion. (a) PCE simply concatenates the predicted

masks to current features as the temporal guidance. (b) PEE

adopts the past encoded embedding as guidance which is

more robust. (c) STEE encodes the pseudo masks and image

pairs in both past and future to guide the Diffusion.

from 𝑦𝑡 step by step based on the condition guidance 𝑔 and image

𝑥 . This Markov process can be written as:

𝑝𝜃 (𝑦0:𝑡 |𝑔, 𝑥) = 𝑝 (𝑦𝑡 )
∏

𝑝𝜃 (𝑦𝑡−1 |𝑦𝑡 , 𝑔, 𝑥) . (11)

Instead of predicting noise like conventional Diffusion models,

we predict the mask since the robust representation and bit analog

strategy [8, 27] controlled by a scale weight enable the model to

directly decode the mask rather than relying on the heavy U-Net.

The detail of the Diffusion’s operation are provided in Supplemen-
tary Material, and the ablation studies of the hyperparameters

(scale weight, noise scheduler, and sampling steps) are given later.

Here, we mainly discuss the importance of the guidance 𝑔.

In the scheme of Diffusion, the conditional guidance is usually

accessible (e.g., vectors of text or images). Considering the VOS,

Pix2Seq [7] introduces a loop to predict the masks frame by frame

such that the obtained predictions can serve as a temporal guidance

to promote the following segmentation. It simply downsamples

the masks and concatenates them with the latent features, and

we denote it as Past Concatenate Embedding (PCE, see Fig. 3(a)).

While, existing Latent Diffusion models [4, 44] have proved that

in latent space the Diffusion can perform better, which suggests

us rethink the embedding ways. Intuitively, we propose other two

methods to embed the guidance: Past Encoded Embedding (PEE, see

Fig. 3(b)) and Space-Time Encoded Embedding (STEE, see Fig. 3(c)).

We concatenate the masks with corresponding frames to form pairs,

then a light-weight guidance encoder is deployed to embed them.

Compared to PCE, the encoded guidances from PEE and STEE are

much more robust to visit the temporal information.

Here, we point out that the unidirectional embeddings (PCE &

PEE) are not the best solution. They bring the following concerns:

(1) The PCE and PEE access the guidance sequentially, leading

to lower efficiency. Since the embedding is conducted frame by

frame, they are restricted to real-time online shadow detection.

Moreover, the uncertainty can accumulate as well. (2) The future

prediction is agnostic, resulting in limited temporal guidance usage.

All the space-time clipped frames should be considered to provide a

temporal context. To address the aforementioned issues, we devise

STEE to use all the space-time information in an efficient way.

Instead of using the predicted masks, we take use of the pseudo

masks produced by an Auxiliary Head (see Fig. 1 and Sec. 3.3).

Because all the pseudo masks are available, we can execute the

guidance encoding in a parallel manner rather than wait for the

last prediction. As a result, our Diffusion can visit all the timeline

temporal information leading to better performance.

3.5 Objective Loss

As mentioned in the last section, we directly predict the masks

rather than the noise. Hence, the objective loss is similar to the

segmentation task. Here, we adopt the Binary Cross Entropy [66,

67] and lovasz-hinge loss [3] to restrict training. Considering the

auxiliary loss, the total term of our loss function is computed as:

L𝑠𝑒𝑔 = 𝐿𝑏𝑐𝑒 + 𝐿ℎ𝑖𝑛𝑔𝑒 + 𝐿𝑎𝑢𝑥 . (12)

4 EXPERIMENT

We use Video Shadow dataset (ViSha) [10] to conduct our experi-

ments and make comparisons with state-of-the-art methods. The

ViSha dataset contains 50 videos for training and 70 videos for test-

ing. Following previous studies [10, 16, 32, 35, 60], we deploy Mean

Absolute Error (MAE), Intersection over Union (IoU), F-measure

score (F𝛽 ), and Balance Error Rate (BER) as evaluation metrics for

quantitative comparisons. Regarding the BER, we also compute

the S-BER score at the shadow regions and the N-BER score at

non-shadow regions, respectively.

4.1 Implement details

We utilize AdamW optimizer [33] with a learning rate of 3e-5 to

train our model. The batch size is 4, and the clipped sequence is 5

frames. Four A6000 GPUs are used to conduct our experiments, and

a fixed random seed ensures the reproduction. For a fair comparison,

following Scotch&SODA [32], we use MiT-B3 [64] as our feature

extraction backbone, and all experiments are conducted with a

resolution of 512×512. Note that the boundary masks are obtained

by utilizing the canny operator on the shadow masks. More setup

details are provided in Supplementary Material.

4.2 Comparisons with State-of-the-art Methods

4.2.1 Compared Methods. We compare our network against 20

cutting-edge methods, including Image Object Segmentation (IOS)

[5, 27, 31, 64], Image Shadow Detection (ISD) [11, 14, 25, 69, 79, 80],

Video Object Segmentation (VOS) [7, 13, 36, 39, 53], and Video

Shadow Detection (VSD) [10, 16, 32, 35, 60]. Note that the Semi-

Supervised video segmentation methods like STM [39], STCN [13],

and ShadowSAM [60] are not given the label of the first frame

during testing, we reproduce them by predicting the initial frame

for fair comparisons in line with previous VSD methods and ours.
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Table 1: Quantitative comparisons with state-of-the-art methods. We compare with several methods from the Image Object

Segmentation (IOS), Image Shadow Detection (ISD), Video Object Segmentation (VOS), and Video Shadow Detection (VSD). The

† denotes the methods that require ground truth for initialization in testing, for fair comparisons we directly predict the first

frame instead of using the label. Bold indicates the best performances, and underline indicates the second-best performances.

Methods Metrics

Tasks Models Venues MAE ↓ F𝛽 ↑ IoU ↑ BER ↓ S-BER ↓ N-BER ↓

IOS

FPN [31] CVPR17 0.044 0.707 0.512 19.49 36.59 2.40

Deeplabv3+ [5] ECCV18 0.049 0.695 0.475 17.86 33.77 1.98

Segformer [64] NIPS21 0.030 0.773 0.601 11.56 21.39 1.73

DDP [27] ICCV23 0.038 0.771 0.608 10.74 18.90 2.57

ISD

BDRAR [80] ECCV18 0.050 0.695 0.484 21.29 40.28 2.31

DSD [79] CVPR19 0.043 0.702 0.518 19.88 37.89 1.88

MTMT [11] CVPR20 0.043 0.729 0.517 20.28 38.71 1.86

FSDNet [25] TIP21 0.057 0.671 0.486 20.57 38.06 3.06

SDDNet [14] MM23 0.040 0.754 0.548 14.05 26.10 1.61

SILT [69] ICCV23 0.031 0.796 0.606 12.80 24.29 1.29

VOS

COSNet [36] CVPR19 0.040 0.705 0.514 20.50 39.22 1.79

FEELVOS [53] CVPR19 0.043 0.710 0.512 19.76 37.27 2.26

†STM [39] ICCV19 0.064 0.639 0.447 23.77 43.88 3.65

†STCN [13] NIPS21 0.048 0.684 0.528 12.42 21.36 3.48

Pix2Seq [7] ICCV23 0.034 0.775 0.618 10.63 19.13 2.14

VSD

TVSD [10] CVPR21 0.033 0.757 0.567 17.70 33.97 1.45

STICT [35] CVPR22 0.046 0.702 0.545 16.60 29.58 3.59

SC-Cor [16] ECCV22 0.042 0.762 0.615 13.61 24.31 2.91

†ShadowSAM [60] TCSVT23 0.034 0.754 0.575 12.58 23.60 1.57

Scotch&SODA [32] CVPR23 0.029 0.793 0.640 9.07 16.26 1.44

Ours / 0.023 0.797 0.667 8.58 16.00 1.15

Table 2: Comparisons on the model size and speed of our

network and state-of-the-art video shadow detectors.

Methods Params (MB) FPS IoU↑ BER↓
TVSD [10] 243.3 3.56 0.567 17.70

STICIT [35] 104.7 8.54 0.545 16.60

SC-Cor [16] 232.6 5.44 0.615 13.61

SCOTCH&SODA [32] 211.8 12.60 0.640 9.07

ShadowSAM [60] 101.3 13.10 0.575 12.58

Ours (TBGDiff) 102.3 14.01 0.667 8.58

4.2.2 Quantitative Comparisons. We report the quantitative results

of our TBGDiff and compared methods in Tab.1. Among the 20

compared methods, Scotch&SODA [32] has the best MAE score of

0.029, the best IoU score of 0.640, the best BER score of 9.07, and

the best S-BER score of 16.26, while SILT [69] ranks the first place

in terms of 𝐹𝛽 (0.796) and N-BER (1.29). Our method outperforms

all of state-of-the-art methods considering all the metrics. In detail,

our TBGDiff improves the MAE score from 0.029 to 0.023, the 𝐹𝛽
score from 0.029 to 0.023, the IoU score from 0.796 to 0.797, the BER

score from 9.07 to 8.58, the S-BER score from 16.26 to 16.00, and

the N-BER score from 1.29 to 1.15, respectively.

4.2.3 Qualitative Comparisons. We demonstrate the visual com-

parisons of video shadow detection results of our network and

state-of-the-art methods in Fig. 4. It is obvious that our method

can not only better localize shadow regions but also identify the

shadow boundaries more accurately. In contrast, other methods

Table 3: Ablation study on our different modules. Here, the

Diffusion adopts STEE to obtain temporal guidance.

Setting Diffusion SBAA DSA

Metric

IoU ↑ BER↓ F𝛽 ↑ MAE↓

Baseline 0.636 9.42 0.779 0.028

M1 0.648 9.33 0.782 0.030

M2 0.654 8.72 0.783 0.024

Ours 0.667 8.58 0.797 0.023

either miss some shadow pixels or detect many non-shadow areas

in their results. For example, in the 1
𝑠𝑡

row of Fig. 4, other methods

tend to wrongly identify the black headphone as shadows, while

our method can alleviate such mistakes. In the 3
𝑟𝑑

and 5
𝑡ℎ

rows

of Fig. 4, compared methods fail to identify the complex shadow

regions, while our network can better detect these complex shad-

ows due to integrating the shadow boundaries. From these visual

depictions, we can conclude that our approach provides an effective

solution to address the challenging video shadow detection task.

See more visual comparisons in our Supplementary Material.

4.2.4 Efficiency Comparisons. We also compare the efficiency of

our method with other video shadow detection works in Tab. 2.

Though the parameters of our model (102.3MB) are slightly larger

than the smallest one (101.3MB), our approach takes the first rank in

terms of the FPS and performance metrics, indicating our solution

is much more effective and efficient for video shadow detection.
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(a) Input (b) GT (c) Ours (d) DDP (f) Pix2Seq(e) SILT (g) ShadowSAM (h) SC-Cor (j) Scotch&SODA
Figure 4: Visual comparisons with state-of-the-art methods. Apparently, our predicted masks show fewer noises and more

accurate boundary correlation to shadows. See more compared results in our Supplementary Material.

Table 4: Ablation study on different temporal scales of DSA

module. We conduct experiments on top of our TBGDiff.

Setting

DSA Metric

Short Long IoU ↑ BER↓ F𝛽 ↑ MAE↓

Ours w/o DSA (M1) 0.648 9.33 0.782 0.030

1○ 0.655 10.11 0.790 0.026

2○ 0.650 9.00 0.779 0.026

Ours 0.667 8.58 0.797 0.023

4.3 Ablation Studies

We first conduct an ablation study to evaluate the effectiveness

of our two modules (i.e., SBBA, and DSA) on the Diffusion model.

To do so, we build a “Baseline" by removing both SBBA and DSA

modules from our network. Then “M1” and “M2” are reconstructed

by adding the SBBA module and the DSA module into “Baseline”.

Tab. 3 reports the quantitative results of our network and three

constructed networks (“Baseline", “M1”, and “M2”).

4.3.1 Effectiveness of SBBA. In Tab. 3, we can find that “M1” achieves

an IoU improvement of +1.2%, a BER improvement of +9%, an 𝐹𝛽
improvement of 0.3%, and an MAE improvement of 0.2%, when

compared to “Baseline”. Moreover, “M2” encounters apparent degra-

dation without using SBAA compared to our final models. These

Table 5: Ablation study on different ways of producing tem-

poral guidance for Diffusion model.

Setting

Guidance Metric

PCE PEE STEE IoU ↑ BER↓ F𝛽 ↑ MAE↓

i 0.621 11.03 0.778 0.029

ii 0.644 10.31 0.789 0.027

Ours 0.667 8.58 0.797 0.023

quantitative results suggest our SBBA can effectively improve the

performance when considering the boundary information.

4.3.2 Effectiveness of DSA. By observing Tab. 3, with given DSA

module the configured models yield obvious improvements (Base-

line&M2, and M1&Ours). It indicates that the DSA module also

improves the video shadow detection performance of our network

by aggregating temporal features from input video frames. In addi-

tion, we report the ablation studies on different scales of temporal

aggregation in Tab. 4. From the results, it can be observed that

each scale of aggregation can improve the shadow detection perfor-

mance. By utilizing both long-term and short-term aggregation, our

approach achieves the best results. We also visualize the readout

results in Fig. 5, where we select the mid-frame (i.e., the third one

over five frames) for the best view. The long-term readout will

focus on the deformable areas in the second column. Though it
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Table 6: Ablation study on the hyperparameters of Diffusion configuration, including the (a) noise scheduler, (b) the scale

weight in bit analog strategy [7], and (c) the sampling steps in Diffusion.

(a) Noise Scheduler. Cosine does the best.

Scheduler IoU ↑ BER ↓ F𝛽 ↑
cosine (ours) 0.667 8.58 0.797

linear 0.641 9.87 0.777

(b) Scale weight. The best factor is 0.01.

Scale IoU ↑ BER ↓ F𝛽 ↑
0.1 0.619 10.33 0.762

0.01 (ours) 0.667 8.58 0.797

0.001 0.633 9.94 0.754

(c) Step. Sampling 20 steps is the best.

Step IoU ↑ BER ↓ F𝛽 ↑
10 0.639 9.40 0.779

20 (ours) 0.667 8.58 0.797

30 0.660 9.12 0.784

(a) Input (b) Long-term readout (c) Short-term readout

Figure 5: Grad-CAM [46] visualization of the readout when

conducting (b) long-term and (c) short-term aggregation

will introduce noises, it can still concentrate on the shadow areas.

As to the short-term, it encourages reading the consistent context

and semantics to further enhance the understanding of shadows as

shown in the third column.

4.3.3 Discussion on the Diffusion Guidance. As shown in Fig. 3, we

design three different ways (i.e., PCE, PEE, and STEE) to produce

the temporal guidance for conditional Diffusion. Tab. 5 reports

the quantitative results of our network with PCE, PEE, and STEE.

Compared to PCE, PEE enables our network to achieve a better

video shadow detection result. It indicates that taking features

extracted from the past and predicted masks can work better as

the Diffusion guidance when compared to simply concatenating

them. By further incorporating the future frames guidance (i.e.,
timeline), our network with STEE yield the best practice. It shows

that guidance produced by timeline frames enables our network to

achieve better results. Moreover, we provide the visual results with

PCE, PEE, and STEE in Fig. 6, which further proves that our network

with STEE has the best video shadow detection performance.

4.3.4 Diffusion hyperparameters. We also conduct the ablation

studies to discuss the aforementioned hyperparameters of Diffusion

Frames

PCE

GT

PEE

STEE

T-2 T+2 T+2T-2T T

Figure 6: The visual comparisons about Diffusion model

guided by different ways. PCE intends to predict the darker

area and lack of temporal perception. PEE can alleviate

this problem by providing more robust guidance. Our STEE

presents the best practice based on the timeline guidance.

model (see Sec. 3.4), including the noise scheduler, scale weight,

and the sampling step, and report the corresponding quantitative

results in Tab. 6. According to the numerical results, we find that our

network has the best video shadow detection performance when

using a cosine scheduler, a scale weight of 0.01, and a sampling step

of 20. Hence, we empirically adopt a cosine scheduler, 20 sampling

steps, and a scale weight of 0.01 in our experiments.

5 CONCLUSION

In this work, we propose a Timeline and Boundary Guided Diffusion

(TBGDiff) network which is the first work to use Diffusion model

for video shadow detection task. The main idea of our TBGDiff is to

extract temporal guidance for Diffusion and to utilize the boundary

information to capture the characteristics of shadows. In detail,

we propose a Dual Scale Aggregation (DSA) module to aggregate

the temporal signals by rethinking the discrepancy of the affinity

among short-term and long-term. We also devise an Auxiliary Head

to yield boundary masks and pseudo masks, which can be used for

extracting the boundary context of shadows by Shadow Boundary-

Aware Attention (SBAA) and producing timeline temporal guidance

via Space-Time Encoded Embedding (STEE) for Diffusion, respec-

tively. Experimental results show that the developed designs are

effective and our approach can outperform state-of-the-art methods.
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