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This is a text supplementary material for “Timeline and Bound-
ary Guided Diffusion Network for Video Shadow Detection". The
outline in this text material is:

• Sec 1 More Details of Our Approach.
• Sec 2 More Implement Details.
• Sec 3 More Experiments.

1 MORE DETAILS OF OUR APPROACH
1.1 Workflow of our pipeline
Here, we give more details about the workflow of our method.
To begin with, our TBGDiff follows the previous video shadow
detection paradigm [2, 4, 5] in which we detect all the shadow
masks by the given frame sequence. That is to say, our workflow is
based on clipped video level and each batch will contain a video
clip. Empirically, we have 5 frames for each sequence as reported
in our manuscript.

We encode all the frames by encoder 𝐸 such that the DSA can
aggregate all the timeline features. Then the aggregated features
are used to produce pseudo masks and boundary masks. For a
specific frame, it could be individually and parallelly decoded by
the Diffusion. For each frame, we use the timeline (past and feature)
guidance to guide the Diffusion model.

In terms of the Diffusion model, we detail it with training and
inference stage. For training process, we use bit analog [1] to serial-
ize the discrete masks and embed it into the latent features which
is controlled by a scale weight. Then we use Guidance Encoder
(GE) to yield space-time guidance by inputting the pseudo masks
and timeline frames. Last, the decoder predicts the mask of current
frame with the guidance. With respect to the sampling stage, the
logic is similar to the training stage. To accelerate the inference, we
use DDIM [7] strategy to sample. We display the pseudo codes of
our TBGDiff including the training (Algorithm 1) and inference
(Algorithm 2) stages and only one frame is shown for simplicity.
We can implement the process parallelly for faster speed.

1.2 Details of the DSA
We illustrate the short-term and long-term frames in Fig. 1. We use
the interval frames as the long-range frames to conduct residual
affinity and use adjacent frames to apply vanilla affinity. Dual scale
temporal frames are in consideration. For the first and last one, we
copy itself as the adjacent frame. See the computation of the affinity
in our manuscript.

1.3 Details of the Guidance Injection
The frames of the guidance from past and future are various. Hence,
we concatenate the timeline guidance (𝑔𝑓 and 𝑔𝑝 ) and current fea-
ture, and send them to a residual block to fuse the space-time
guidance. Fig. 2 shows the details.

def train_one_frame(frames, gts):
    # frames: flattened frames [b*t,3,h,w]
    # gts: flattened labels [b*t,3,h,w]
    fea_all = encoder(frames)
    ## dual scale aggregation, DSA
    fea_all = DSA(fea_all)
    boundary_masks, pseudo_masks = aux_head(fea_all) 
    ## shadow boundary-aware attention, SBAA 
    fea_all = SBAA(fea_all, boundary_masks) 
    # diffusion part
    t, eps = uniform(0, 1), normal(mean=0, std=1)

## encode gt via bit analog strategy
    gt_enc = bit_analog(gts[now_idx])
    gt_enc = (sigmoid(gt_enc) * 2 - 1) * weight_scale
    gt_crpt = sqrt(alpha_cumprod(t)) * gt_enc
    +sqrt(1 - alpha_cumprod(t)) * eps
    ## guidance
    pseudo_mask = decoder(fea_all, t)
    past_pairs = concat(frames[past_idx], 
                   pseudo_masks[past_idx])
    future_pairs = concat(frames[future_idx], 
                          pseudo_mask[future_idx])
    ## produce guidance via Space-Time Embedding
    g_past = GE(past_pairs)
    g_future = GE(future_pairs) 
    fea = inject(fea_all[now_idx], g_future, g_past)
    ## fuse corrupted gt and fea, zip the channel
    crpt_fea = _zip(concat(gts_crpt, fea))
    pred = decoder(crpt_fea, t) # [b,1,h,w]
    return loss_func(pred, gts[now_idx])

Algorithm 1 : Training

def sample_one_frame(frames, steps, td=1):
    # frames: flattened frames [b*t,3,h,w]
    # steps: sampling steps
    # td: time difference 
    fea_all = encoder(frames)
    ## dual scale aggregation, DSA
    fea_all = DSA(fea_all)
    boundary_masks, pseudo_masks = aux_head(fea_all) 
    ## shadow boundary-aware attention, SBAA 
    fea_all = SBAA(fea_all, boundary_masks) 
    ## pred of t step, initialize with gaussian noise         
    pred_t = normal(0, 1) # [b,1,h,w]
    # diffusion part
    for step in range(steps):
        t_now = 1 - step / steps
        t_next = max(1 - (step + 1 + td) / steps, 0)
  ## guidance
        past_pairs = concat(frames[past_idx],                 

                    pseudo_mask[past_idx])
  future_pairs = concat(frames[future_idx],                                

                        pseudo_mask[future_idx])
     g_past = GE(past_pairs) 
     g_future = GE(future_pairs)
     fea = inject(fea_all[now_idx], g_future, g_past)
     ## fuse corrupted gt and fea, zip the channel
     crpt_fea = _zip(concat(pred_t, fea))
        pred = decoder(crpt_fea, t_now) 
  pred_t = ddim(pred_t, pred, t_now, t_next)
    return pred

Algorithm 2 : Sampling
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Figure 1: Definition of the long-term and short-term frames.

Table 1: Ablation studies on inputting different frames.

frames IoU ↑ BER ↓ F𝛽 ↑ MAE ↓
4 0.611 12.33 0.768 0.030
5 0.667 8.58 0.797 0.023
6 0.660 9.32 0.772 0.026
7 0.649 9.57 0.784 0.024

2 MORE IMPLEMENT DETAILS
Here, we list more setup details about our experiments. We take
use of mixed-precision strategy to accelerate the training and test-
ing, and the total of the training epoch is set as 20. To ensure the
reproduction, we utilize a fixed random seed 42 to conduct all the
experiments. Following [5], basic data augmentation techniques
are adopted, e.g., random flip horizontally and vertically. The code
is supported by Pytorch.

As indicated in the manuscript, we adopt hierarchical trans-
former backbone MiT-B3 [8] to obtain the multi-scale features. For
DSA, we only conduct the top-level features (i.e., R512×

𝐻
32 ×

𝑊
32 ) for

aggregating the temporal semantics, since applying it for all of the
levels is redundant and extremely time-consuming due to matrix
multiplication [3]. For the Guidance Encoder (GE), we only utilize
a light-weight backbone MiT-B1 [8] to encode the timeline frames
and pseudo masks jointly.

3 MORE EXPERIMENTS
3.1 Input Different Number of Frames
We add the ablation studies for the number of input frames, where
the results are shown in Tab. 1. Apparently, when inputting 5 frames
our model can produce the best results.

3.2 More Visual Comparisons
We provide more visual comparisons with state-of-the-art methods.
Fig. 3 presents the qualitative results on one clipped video. It can be
observed that our method can better localize the shadow areas. For

Figure 2: Guidance Injection. A residual block is used to fuse
the feature and guidance. In the final 3×3 convolutional layer,
we zip the channels.

the video comparison demos, please refer to our Supplementary
Video to check the comparisons. We present 3 complete cases to
compare the video shadow detection result, and each video contains
100 frames in 10 FPS speed.

REFERENCES
[1] Ting Chen, Lala Li, Saurabh Saxena, Geoffrey Hinton, and David J Fleet. 2023. A

generalist framework for panoptic segmentation of images and videos. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision. 909–919.

[2] Zhihao Chen, Liang Wan, Lei Zhu, Jia Shen, Huazhu Fu, Wennan Liu, and Jing
Qin. 2021. Triple-cooperative video shadow detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 2715–2724.

[3] Ho Kei Cheng, Yu-Wing Tai, and Chi-Keung Tang. 2021. Rethinking space-time
networks with improved memory coverage for efficient video object segmentation.
Advances in Neural Information Processing Systems 34 (2021), 11781–11794.

[4] Xinpeng Ding, Jingwen Yang, Xiaowei Hu, and Xiaomeng Li. 2022. Learning
shadow correspondence for video shadow detection. In European Conference on
Computer Vision. Springer, 705–722.

[5] Lihao Liu, Jean Prost, Lei Zhu, Nicolas Papadakis, Pietro Liö, Carola-Bibiane
Schönlieb, and Angelica I Aviles-Rivero. 2023. SCOTCH and SODA: A Transformer
Video Shadow Detection Framework. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 10449–10458.

[6] Xiao Lu, Yihong Cao, Sheng Liu, Chengjiang Long, Zipei Chen, Xuanyu Zhou,
Yimin Yang, and Chunxia Xiao. 2022. Video shadow detection via spatio-temporal
interpolation consistency training. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition. 3116–3125.

[7] Jiaming Song, Chenlin Meng, and Stefano Ermon. 2020. Denoising Diffusion
Implicit Models. In International Conference on Learning Representations.

[8] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and
Ping Luo. 2021. SegFormer: Simple and efficient design for semantic segmentation
with transformers. Advances in Neural Information Processing Systems 34 (2021),
12077–12090.



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Supplementary Materials: Timeline and Boundary Guided Diffusion Network for Video Shadow Detection ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Image GT Ours SILT ShadowSAM TVSD STICT SC-Cor Scotch&SODA

t

Figure 3: Visual comparisons on one clipped video.
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