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Algorithm 1: The pseudo code of in DI-MML.

Input: Input data D = {xil,

encoders ¢1, ¢2, classifiers 1//1, lﬁz, and ¢/*, and fusion

module y/. Hyper-parameters A, Ap, epoch number
E, warmup epoch number E,,, fusion epoch E.

xiz, yi}i:l 5 N initialized

1 int e=0;

2 Encoder training;:

3 while e < E do

4 if e = E,;, then

5 Calculate the dimension-wise prediction using Eq. 4,
6 obtain effective and ineffective dimensions using Eq.
5 (can perform only once)

7 end

8 foreach mini-batch data B; in D at step t do

9 if e < E;;, then

10 ‘ Calculate the loss £ = LiCE + Asﬁg’é

1 else

12 ‘ Calculate the final loss £ with Eq. 7

13 end

14 Update networks ¢, ¢2, ¢!, /2, * for different
modalities with L.

15 end

16 e=e+1;

17 end

18 Fusion module training:

19 while e < E¢ do

20 ‘ Freeze ¢!, ¢? and update Y/ according to LJCCE.
21 end

A BASELINES

In this paper, we compare our method with eight multimodal base-
lines and we give the description of them below.

Joint training: Joint training is the most basic multimodal training
framework with concatenation fusion on the extracted features
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Anon.

from different modalities and then input into a linear classifier
while the network is trained with the cross-entropy loss.

MSES: Modality-Specific Early Stop (MSES) [9] restrain the de-
crease in overall accuracy of the model by detecting the occurrence
of overfitting in each modality and individually controlling the
learning process. The detected overfitted modality will be stopped
first.

MSLR: Modality-Specific Learning Rate (MSLR) [41] uses different
learning rates for different modalities while training an additive
late-fusion model. It contains “Keep”, “Smooth” and “Dynamic”
strategies and in this paper we compare with its “Dynamic” strategy
because of its better performance.

OGM-GE: On-the-fly Gradient Modulation (OGM-GE) [22] dynam-
ically controls the optimization of each modality based on their
contribution to the learning objective. By monitoring and adapting
the gradients, the method aims to address the imbalance problem
without the need for additional neural modules.

PMR: Prototypical Modal Rebalance (PMR) [8] focuses on stimu-
lating the slow-learning modality without interference from other
modalities. Using prototypes could help to regulate the learning
directions and paces of modality-specific gradient.

UMT: Unimodal Teacher (UMT) [6] distills the pre-trained uni-
modal features to the corresponding parts in multi-modal networks
in multi-modal training. Uni-modal distillation happens before fu-
sion, so it’s suitable for late-fusion multi-modal architecture. The
pre-trained uni-modal features are generated by inputting the data
to the pre-trained uni-modal models.

MM CIf and Preds Avg: They are as described in Section 3.1.

B TRAINING SCHEME

The details of training scheme is shown here as well as the pseudo
code. The randomly initialized neural networks perform worse and
cannot be used to identify the informative dimensions. Therefore,
we perforn unimodal training independently with unimodal cross-
entropy loss for some warmup epochs (10 in our experiments). And
then, the shared classifier and DUC loss are applied for the left
encoder training epochs. After encoder training, we fix the param-
eters of encoders and train a linear fusion classifier by concating
multimodal features.
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