Visual-Locomotion: Learning to Walk on Complex Terrains with Vision 1 6 Robotics at Google 2 Cr Georgia

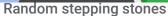
Wenhao Yu¹, Deepali Jain¹, Alejandro Escontrela^{1,3}, Atil Iscen¹, Peng Xu¹, Erwin Coumans¹, Sehoon Ha^{1,2}, Jie Tan¹, Tingnan Zhang¹ {magicmelon, jaindeepali, aescontrela, atil, pengxu, erwincoumans, sehoonha, jietan, tingnan}@google.com

Introduction

- Enabling legged robot to acquire agile, animal-like visual-locomotion skills is a key milestone towards applying them to real-world tasks.
- We propose a learning-based algorithm to train real quadruped robots to traverse challenging uneven environments.

Experiments

• We train our policy to traverse a variety of challenging terrains with different gaits.



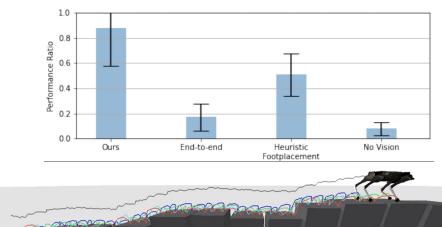
Stairs

Ouincuncial Piles (trot)

Uneven Terrain

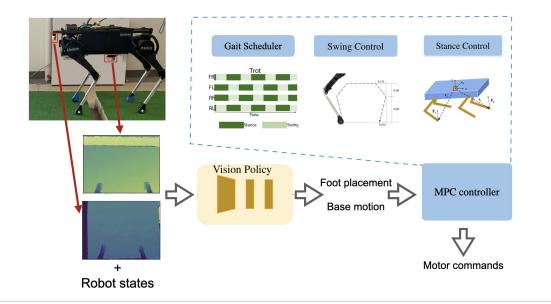
Baselines

- We compare our method to baseline on the uneven terrain (see below).
- Our method is able to walk 60% farther than alternative methods.



Method

- We use hierarchical structure for our visual-locomotion controller.
- High-level vision policy (RL):
 - input: vision and proprioception data 0
 - output: target foot placement, desired CoM pose and velocity 0
- Low-level motion policy (Optimal Control):
 - input: desired foot placement, CoM pose and velocity, robot states
 - output: target joint position for swing legs, joint torques for stance legs 0



Moving platforms

Real-World Results

Sim-to-real Transfer

- We develop a post-processing procedure to bridge the gap in simulated and real-world camera images.
- We apply Dynamics Randomization to bridge the gap in dynamics.

Parameter	Minimal value	Maximum value
Mass	90%	110%
Inertial	90%	110%
Ground Friction	0.45	0.55
Motor Position Gain	200	220
Motor Velocity Gain	3.6	4.8

Inpaint Downsample

Acknowledgement

• We would like to thank Gus Kouretas, Thinh Nguyen, Noah Brown, Satoshi Kataoka, and the Operations team at Robotics at Google for the help in setting up the testing environment, debugging robot hardware and camera issues. We would also like to thank Ken Caluwaerts, Krzysztof Choromanski, Kuang-Huei Lee, Daniel Ho, Yuxiang Yang, and the anonymous reviewers for valuable discussion and suggestions