
9 Supplementary Material

9.1 Filters

The measured angle is ltered with a Kalman lter to smooth the results. However, it was found that
the Kalman lter introduces inconsistent delay to the angular velocity, hence the angular velocity is
instead directly computed from the Kalman ltered angle. This angular velocity is then smoothed
using a non-causal lter, with a triangular window of size 9. This lter was found to produce the
smoothest results, without adding any delay.

Following the conventions from [4], the kinematics model used was xt+1 = Axt + wt and the
measurement model used was zt = Cxt+ vt. Here the process noise wt and the measurement noise
vt are assumed to be 0 mean with covariance matricesQ andR respectively. The Kalman lter aims
to estimate xt = [α,ω]ᵀ using the measurements zt. The initial state x0 is taken to be [z0, 0]

ᵀ with
covariance Σ0. The parameters used are listed in Table 3.

Parameter Value

A

[

1 1

60

0 1

]

C


1 0


Q

[

3.25× 10−6 6.5× 10−5

6.5× 10−5 1.3× 10−3

]

R 1× 10−5

Σ0

[

1× 10−5 0

0 1× 10−5

]

Table 3: Kalman lter parameters

9.2 Data Collection Methodology

Each object starts at rest on a horizontal plane. The gripper approaches the object at a global yaw
angle (αapproach) chosen from a set of angles Aapproach. The object is then grasped by closing the
gripper to a xed width for each object. This width manually is chosen such that the objects remain
stationary inside the gripper while being lifted. The object is then lifted to a xed height above the
table, where an end effector yaw angle perturbation is chosen from the set of angles Aperturb. The
recording of both tactile measurements and the images is started after the object has been lifted.
The object is held stationary for 0.5s. The gripper width is then loosened to start the gravitational
pivoting. One of the two methodologies for gripper control will then be used. Once the object has
nished rotating, another xed delay of 1s occurs, where the object is held stationary in its steady-
state position. The data recording is then nished. For ‘Angle Goal’, each parameter combination
was run twice to increase the amount of data collected.

9.3 Parameters

9.3.1 Data Collection

Rotate to stop:

• Aapproach = {−30°,−15°, 0°, 15°, 30°}
• Aperturb = {−45°, 0°, 15°, 30°, 45°, 60°}

Angle Goal

• Aapproach = {−15°, 0°}
• Aperturb = {0°, 30°, 45°, 60°}
• Astop = {15°, 30°, 45°}.

9.3.2 Experiments

• Aapproach = {−30°, 0°, 30°}
• Aperturb = {0°}
• Astop = {30°, 45°, 60°}
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9.3.3 Controller

The controller was hand-tuned to maximise the performance of the system with theOracle baseline.
The other controllers were directly transferred using the same parameters, listed in Table 4.

Parameter Value

α 1°

ωmin 20°/s

twait 0.75s

d 0.83s
Table 4: Controller Parameters

9.4 Unseen Class Experiment

We investigate the ability of the model to generalize between different classes of objects. To do this,
we train and test on different classes of objects (boxes vs cylinders). The results of this training are
displayed in Table 5. When training and testing on a single class, the performance of the networks is
similar to training on both classes. This suggests that the network can generalize between objects of
the same class. However, the performance of both the LSTM and MLP are decreased when testing
on an unseen class. This is likely due to different shapes causing a large change in the resultant
tactile information.

Angular Error (°) Velocity Error (°/s)

Methods Train Test IS DR SS IS DR SS

MLP Box Box 1.94 10.53 20.42 5.24 36.36 5.78

LSTM Box Box 0.32 4.02 8.35 1.54 26.27 0.95

MLP Box Cyl 3.98 15.42 35.06 5.13 46.61 8.24

LSTM Box Cyl 3.38 11.99 18.83 2.949 44.46 0.72

MLP Cyl Cyl 1.27 7.69 14.86 8.86 41.31 7.93

LSTM Cyl Cyl 0.34 3.29 5.23 1.86 34.71 3.12

MLP Cyl Box 18.65 27.8 54.55 3.69 63.2 8.27

LSTM Cyl Box 10.17 24.43 26.59 4.35 73.17 3.08

Table 5: Results on training on an unseen class. IS, DR, SS represent the three sections of motion,
Initial State, Dynamic Range and Steady State, respectively.

9.5 Network Details and Training Details

All models are trained using the ADAM optimizer, using the sum of both L1 and L2 functions for
both ω and α as the loss function. We normalized the target values of ω and α to be close to the
range [0,1] so each component of the overall loss was given equal weighting. This was found to
produce the smoothest result. While training the model, data is batched by cropping sequences to
be the same length as the shortest sequence in the batch. The hyperparameters, including number
of layers, of both models were found using a sweep and are reported in Table 6. The best model
determined by the sweep was used for all experiments. All models are trained for 100 epochs. We
report the accuracy of the model in terms of the mean absolute error (MAE).

9.6 Unseen Objects

The testing results on unseen objects are displayed in Table 7. The LSTM outperformed the MLP
for all metrics, however the results have degraded compared to seen objects. In particular, the MLP
failed to maintain a constant value close to 0 in the angle IS, angular velocity IS and angular velocity
SS sections. The LSTM still maintains predictions close to 0 for these sections, displaying the benet
of the stability of the LSTM compared to the MLP, which is much noisier with it’s predictions.

To improve the generalization to unseen objects, we believe that a larger and more diverse object
set will be required. This should consist of objects of a wide range of shapes, weights and surface
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LSTM Parameter Value

LSTM Input Size 142

LSM Hidden Size 500

LSTM Dropout 0.15

LSTM Number Layers 3

MLP Layers 2

MLP Hidden Size 500

Learning Rate 5× 10−4

Weight Decay 1× 10−6

MLP Parameter Value

Input Size 2130

Number Layers 4

Dropout 0.15

Activation Tanh

Learning Rate 5× 10−4

Weight Decay 1× 10−6

Window Size 15

Table 6: Hyperparameters used for the experiments

properties. We believe that this will allow the model to learn the effects of these properties on the
forces received from the tactile sensor and so better account for them.

Angular Error (°) Angular Velocity Error (°/s)

IS DR SS IS DR SS

LSTM 0.37±0.17 7.98±4.04 10.87±4.58 0.84±0.38 42.27±14.29 2.43±1.37

MLP 3.49±5.14 13.1±4.73 24.49±5.92 5.05±3.45 44.44±13.52 5.03±1.49

Table 7: Testing results on unseen objects. IS, DR, SS represent the three sections of motion, Initial
State, Dynamic Range and Steady State, respectively.

9.7 Finetuning on real robot

The netuning results on the training dataset are displayed in Table 8. Note that the netune training
is done following the unseen objects experiments. Although netuning has increased error in some
sections, the error within the critical ‘Dynamic Range’ section has decreased. This section is critical
in detecting when a target angle has been reached and so this decreased error reects the decreased
target error of the netuned models.

Angular Error (°) Angular Velocity Error (°/s)

IS DR SS IS DR SS

LSTM 0.54±0.18 4.84±2.11 13.75±6.00 3.01±3.06 33.54±20.12 2.99±2.45

MLP 3.08±3.89 7.78±3.51 26.32±10.25 4.83±4.91 31.36±22.30 5.41±3.46

Table 8: Results of training netuned models. IS, DR, SS represent the three sections of motion,
Initial State, Dynamic Range and Steady State, respectively.

9.8 Finetuned Real-World Tracking Results

Table 9 shows the results for real-world tracking. Again these results were measured on unseen
object models. While the error of real world tracking is similar to the training results, the variance is
higher. This contributes to the tracking error being much higher than the average errors, with models
failing at critical instances such as when the gripper width widens and the object begins to rotate
faster. Such spikes in error will be smoothed out by the longer periods of slow rotations but are still
present in the measurements of variance.

Angular Error (°) Angular Velocity Error (°/s)

IS DR SS IS DR SS

LSTM 0.69±0.61 4.61±4.15 14.74±11.82 3.46±3.49 14.51±16.59 5.09±14.72

MLP 1.76±3.07 10.15±8.92 31.23±27.21 4.51±2.71 11.47±6.17 5.55±7.43

Table 9: Results of netuned models with experimental setup. IS, DR, SS represent the three sections
of motion, Initial State, Dynamic Range and Steady State, respectively.
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9.9 Test Tracking Results

Figure 9 shows more examples of the LSTM performance on unseen data (as described in 6.3).
The LSTM can accurately track the object, especially when the object follows a smooth trajectory.
However, the LSTM also commonly suffers from steady state errors.

Figure 9: The LSTM tracking results on unseen data. The blue lines represent the ground truth
sequences, and the orange lines represent the LSTM prediction. The y-axis represents the angular
position. The scale of this axis varies between graphs.

9.10 MLP Window Size

Window Angular Error (°) Angular Velocity Error (°/s)

Size IS DR SS IS DR SS

5 1.03 11.34 19.89 1.8 49.59 4.64

15 1.15 10.47 18.84 1.75 40.45 4.23

30 0.94 10.65 20.77 1.82 43.78 3.52

60 1.34 11.65 20.66 1.83 48.04 6.72

90 0.7 12.03 18.59 12.86 52.13 7.85

Table 10: Ablation study on the window size used for the MLP. IS, DR, SS represent the three
sections of motion, Initial State, Dynamic Range and Steady State, respectively.

Table 10 shows the results for MLP models trained on an 80/20 random data split, comparing dif-
ferent window sizes. For Angular Error, we found that for a window size of 15, the error during
Dynamic Range was lowest and had a comparable error to a window size of 90 during Steady State.
We also found that a window size of 15 performed well in predicting velocity error, outpeforming
all other models during the Dynamic Range stage, which is the most important for our controller.

9.11 Other Recurrent Models with Unseen Objects

Table 11 shows the results when other recurrent model types are trained to generalize to unseen
objects. The GRU had identical hyperparameters to the LSTM and the RNN had the same hyperpa-
rameters expect for a dropout of 0. We found that the RNN model outperforms the MLP baseline
model consistently, but performed worse than both the LSTM and GRU models.

We also found that the LSTM and GRU models exhibit almost identical performance in all cases.
The slightly lower angular error the GRU displays compared to the LSTM in the DR and SS re-
gions comes entirely from the overperformance of the GRU on one object, Magnet. For all other
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objects there was minimal discrepancy between the models. We believe these models could be used
interchangeably for this task.

Angular Error (°) Angular Velocity Error (°/s)

IS DR SS IS DR SS

LSTM 0.37±0.17 7.98±4.04 10.87±4.58 0.84±0.38 42.27±14.29 2.43±1.37

GRU 0.42±0.25 7.38±3.21 10.69±4.31 1.32±0.56 39.51±11.87 3.94±1.10

RNN 1.80±1.87 10.75±4.26 15.47±4.30 2.88±1.06 46.24±11.69 5.85±4.63

Table 11: Testing other recurrent models on unseen objects. IS, DR, SS represent the three sections
of motion, Initial State, Dynamic Range and Steady State, respectively.

9.12 Object Details

Size [mm] Mass [g] Class 3D-Printed? Full? Deformable

Toothpaste 167 × 58 × 12 52 Box 4 4

Earbud 134 × 51 × 29 27 Box 4

Breadboard 167 × 58 × 12 84 Box 4

Magnet 181 × 68 × 40 29 Box

Deodorant 49 × 210 50 Cylinder

Spray2 41 × 158 135 Cylinder 4 4

Shampoo 50 × 157 96 Cylinder 4

Spray1 37 × 142 46 Cylinder 4

Pill 55 × 116 26 Cylinder

Toothbrush 217 × 29 × 21 33 Box 4

Table 12: Details of the object distributions used in our work. The dimensions of boxes are provided
in the form length×width×depth, while cylindrical objects are dimensioned as radius×height

Table 12 provides details on the properties of objects used in our work. All objects are required
to be long, to allow for gravitational pivoting. The 3D-printed objects are to provide a different
texture compared to the relatively smooth materials of the household objects. When objects that
are partially full undergo rotation, their contents will move around such that there will be a large
change in its centre of gravity. However, for this work, we only consider objects full such that the
centre of gravity is relatively stable during rotation. Deformable objects include objects which can
be squished such as the soft cardboard making up the toothpaste box. We tried to choose a range of
objects to increase the ability for our system to generalize.
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