
A Additional plots for PreActResNet18 experiments

In the main paper we compare N-FGSM with other single-step methods and multi-step methods
separately and remove clean accuracies for better visualization. In this section we present the curves
for all methods with both the clean and robust accuracy. The tendency in the three datasets is for
N-FGSM PGD-50-10 accuracy to be slightly above that of GradAlign, while the opposite happens to
the clean accuracy. We also observe that clean accuracy becomes significantly more noisy when CO
happens. Exact numbers for all the curves are in Appendix S.
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Figure 7: Comparison of all methods on CIFAR-10, CIFAR-100 and SVHN with PreactResNet18
over different perturbation radius (ϵ is divided by 255). We plot both the robust (solid line) and the
clean (dashed line) accuracy for each method. Our method, N-FGSM, is able to match or surpass the
state-of-the-art single-step method GradAlign while reducing the cost by a 3× factor. Adversarial
accuracy is based on PGD-50-10 and experiments are averaged over 3 seeds. Legend is shared among
all plots.

B Experiments with WideResNet28-10 architecture

In this section we present the plots of our experiments with WideResNet28-10. We report the results
in two figures. In Figure 8 we compare all single-step methods and we do not plot the clean accuracy
for better visualization. In Figure 9 we plot all methods, including multi-step methods, and report
the clean accuracy as well with dashed lines. Since we observed that our baseline, RandAlpha,
outperformed [15] in all settings for PreActResNet18, we only report RandAlpha for WideResNet.
As mentioned in the main paper, we observe that CO seems to be more difficult to prevent for
WideResNet. In particular, for GradAlign we observed the regularizer hyperparameter settings
proposed by [1] for CIFAR-10 (searched for a PreActResNet18) worked well. However, those
parameters led to CO for 6 ≤ ϵ ≤ 12 in CIFAR-100. Since ϵ = 14, 16 did not show CO, we
increased the GradAlign regularizer hyperparameter λ for CIFAR-100 so that each 6 ≤ ϵ ≤ 12 would
have the default value corresponding to ϵ+ 2, for instance, λ for ϵ = 6 would be the default λ in [1]
for ϵ = 8.
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Figure 8: Comparison of single-step methods on CIFAR-10, CIFAR-100 and SVHN with
WideResNet28-10 over different perturbation radius (ϵ is divided by 255). Our method, N-FGSM, is
able to match or surpass the state-of-the-art single-step method GradAlign while reducing the cost by
a 3× factor. Moreover, we could not find any competitive hyperparameter setting for GradAlign for
ϵ ≥ 6 in SVHN dataset. Adversarial accuracy is based on PGD-50-10 and experiments are averaged
over 3 seeds. Legend is shared among all plots.

For SVHN we observed that the default values for λ led to models close to a constant classifier for
ϵ ≥ 6. We tried to increase the lambda for those ϵ values to 1.25λ but observed the same result. Since
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the model did not show typical CO but rather it seemed as it was underfitting, we tried to reduce the
step-size to α = 0.75ϵ and also both decreasing α and increasing λ. When reducing the step size
we obtain accuracies above those of a constant classifier for some radii, however, some or all seeds
converge to a constant classifier for each setting, hence the large standard deviations. For N-FGSM,
the default configuration of N-FGSM (α = ϵ, k = 2ϵ) works well in all settings except for ϵ = 16 on
CIFAR-10 and ϵ = 10, 12 on SVHN. For CIFAR-10, we increase the noise magnitude to k = 4ϵ.
For SVHN we find that decreasing α as we tried for GradAlign works better than increasing the noise.
We use α = 8 for both ϵ radii. Exact numbers for all the curves are in Appendix S
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Figure 9: Comparison of all methods on CIFAR-10, CIFAR-100 and SVHN with WideResNet28-10
over different perturbation radius (ϵ is divided by 255). We plot both the robust (solid line) and the
clean (dashed line) accuracy for each method. Legend is shared among all plots.

C Increasing adversarial perturbations during training

As mentioned in the main paper, N-FGSM perturbations have ℓ∞−norm larger than ϵ, see Appendix N.
In Section 6 we have seen that the benefits of N-FGSM can not be reproduced by simply increasing α
without increasing the noise. However, for the sake of completeness, we also ablate other single-step
baselines by using a larger ϵ during training i.e., {ϵ = 8/255, ϵ = 12/255, ϵ = 16/255} while testing
with a fixed ϵ = 8/255 on CIFAR-10. Results are presented in Table 2. We observe that increasing
ϵtrain seems to lead to a decrease in robustness for most methods, e.g., PGD-50-10 accuracy for
RS-FGSM goes from 46.08± 0.18 when training with ϵ = 8/255 to 0.0± 0.0 with ϵ = 12/255. In
two cases (GradAlign and MultiGrad) we observe a small increase, highest increase is for GradAlign
which goes from 48.14± 0.15 to 50.6± 0.45, however, the clean accuracy drops from 81.9± 0.22
to 73.29± 0.23. This is similar to increasing α for N-FGSM (see Figure 6 (C)). However, this is tied
to a significant degradation of clean accuracy. All in all, taking into account both clean and robust
accuracy we conclude all baselines perform best without increasing the training ϵ. All ablation results
are presented in Table 2.

Table 2: Ablation of the PGD-50-10 accuracy for single-step methods when increasing the ϵtrain. All
models are evaluated with PGD-50-10 attack and ϵtest = 8/255. Note that considering the trade-off
between clean and robust accuracy, all methods perform best when training with the same epsilon to
be applied at test time.

ϵtrain = 1ϵtest ϵtrain = 1.5ϵtest ϵtrain = 2ϵtest

Method Clean acc. PGD acc. Clean acc. PGD acc. Clean acc. PGD acc. Rel. Cost

GradAlign 81.9 ± 0.22 48.14 ± 0.15 73.29 ± 0.23 50.6 ± 0.45 61.3 ± 0.15 46.67 ± 0.29 3
MultiGrad 82.33 ± 0.14 47.29 ± 0.07 75.28 ± 0.2 50.0 ± 0.79 71.42 ± 5.63 0.0 ± 0.0 2
AT Free 78.41 ± 0.18 46.03 ± 0.36 73.91 ± 4.19 32.4 ± 22.91 71.64 ± 3.89 0.0 ± 0.0 1.6

Kim et. al. 89.02 ± 0.1 33.01 ± 0.09 88.35 ± 0.31 27.36±0.31 90.45 ± 0.08 9.28 ± 0.12 1.5

FGSM 86.41 ± 0.7 0.0 ± 0.0 80.6 ± 2.59 0.0 ± 0.0 77.14 ± 2.46 0.0 ± 0.0 1
RS-FGSM 84.05 ± 0.13 46.08 ± 0.18 65.22 ± 23.23 0.0 ± 0.0 76.66 ± 0.38 0.0 ± 0.0 1
ZeroGrad 82.62 ± 0.05 47.08 ± 0.1 78.11 ± 0.2 46.43 ± 0.37 75.42 ± 0.13 45.63 ± 0.39 1
N-FGSM 80.58 ± 0.22 48.12 ± 0.07 71.46 ± 0.14 50.23 ± 0.31 63.18 ± 0.49 46.46 ± 0.1 1
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D Longer training schedule

In our experiments, we have followed the “fast” training schedule introduced by [35]. However,
[24] suggest that a longer training schedule coupled with early stopping may lead to a boost in
performance. We also use the long training schedule for N-FGSM and observe that it does not lead
to CO. In Table 3 we compare the performance of N-FGSM and GradAlign for the long training
schedule. We observe that GradAlign does not seem to benefit from the long training schedule.
On the other hand, although N-FGSM seems to obtain a slight increase in performance, the “fast”
schedule provides comparable performance. It is worth mentioning that for GradAlign, the default
regularizer hyperparameter for ϵ = 8/255 and CIFAR-10 (λ = 0.2) does not prevent CO. We do a
hyperparameter search and keep the value with the largest final robust accuracy (λ = 0.632).

Table 3: Comparison of “long” [24] and “fast” [35] training schedules for N-FGSM and GradAlign.
GradAlign does not seem to benefit from the long training schedule. Although N-FGSM seems to
obtain a slight increase in performance, the “fast” schedule provides comparable performance.

N-FGSM Grad Align

Clean Acc Robust Acc Clean Acc Robust Acc

Long schedule: Final model

83.18 ± 0.11 36.56 ± 0.26 84.13 ± 0.24 36.17 ± 0.19

Long schedule: Best model

80.8 ± 0.36 48.48 ± 0.27 81.57 ± 0.44 47.86 ± 0.1

fast schedule: Final model

80.58 ± 0.22 48.12 ± 0.07 81.9 ± 0.22 48.14 ± 0.15

In Table 3 we observe that the performance of the final model is lower than that of an early stopped
method. This could be expected due to the phenomena of robust overfitting described in [24].
However, as a sanity check to make sure that this is not due to a hidden CO during the long schedule
which somehow the model recovers from we plot the full training history in Figure 10. There we can
observe that for N-FGSM there is no CO during training.We also show FGSM (which is well known
has CO for ϵ = 8/255) for comparison.
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Figure 10: Training and test accuracy during the long training schedule proposed in [24]. We observe
that N-FGSM (left) does not present CO at any point during training, however suffers from robust
overfitting as described in [24] which suggested selecting the best validated model as a simple and
yet effective way to improve robustness. On the other hand FGSM (right) suffers from CO where the
robustness drops suddenly to 0 and does not recover.

E Randomized Alpha

Kim et al. [15] evaluate intermediate points along the RS-FGSM direction in order to pick the
“optimal” perturbation size. However, we find that increasing the number of intermediate evaluated
points does not necessarily lead to increased adversarial accuracy. Moreover, for large perturbations
we could not prevent CO even with twice the number of evaluations tested by [15]. This motivates
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us to test a very simple baseline where instead of evaluating intermediate steps, the RS-FGSM
perturbation size is randomly selected as: δ = t · δRS-FGSM where t ∼ U [0, 1]d. Interestingly, as
reported in Figure 11, we find that this very simple baseline, dubbed RandAlpha, is able to avoid CO
for all values of ϵ and outperforms [15] on CIFAR-10, CIFAR-100 and SVHN. This is aligned with
our main finding that combining noise with adversarial attacks is indeed a powerful tool that should
be explored more thoroughly before developing more expensive solutions.
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Figure 11: Comparison of [15] with RandomAlpha, our baseline where we multiply the RS-FGSM
perturbation by a scalar uniformly sampled in [0, 1]. We present results on CIFAR-10 (Left), CIFAR-
100 (Middle) and SVHN (Right) with PreActResNet18.
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F Further visualizations of adversarial perturbations and gradients

In this section we present an extension of Figure 5 with further examples. As observed in the main
paper, early in training adversarial perturbations (δ) and gradients are consistent across epochs,
however, after CO they become hard to interpret. Note that although we label rows as either pre-CO
or post-CO we only observe CO for FGSM and RS-FGSM. Both PGD-10 and N-FGSM obtain robust
models as shown in detail in the paper.
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Figure 12: Visualization of adversarial perturbations (δ’s) and gradients averaged across several
epochs before CO (pre-CO) and after (post-CO). Note that only FGSM and RS-FGSM present CO,
PGD-10 and N-FGSM do not. Post-CO, FGSM and RS-FGSM obtain δ’s that are hard to interpret,
idem for their gradients.

G Robust evaluations with autoattack

Table 4: Clean (top) and robust accuracy (bottom) for CIFAR-10 and PreacResNet18 evaluated with
autoattack (AA) [6]. We find the same trend as with PGD50-10.

ϵ = 2/255 ϵ = 4/255 ϵ = 6/255 ϵ = 8/255 ϵ = 10/255 ϵ = 12/255 ϵ = 14/255 ϵ = 16/255

FGSM
91.52 ± 0.08

78.99 ± 0.19

88.59 ± 0.08

65.99 ± 0.24

85.17 ± 0.03

54.0 ± 0.32

86.62 ± 0.08

0.0 ± 0.0

83.35 ± 2.03

0.0 ± 0.0

78.51 ± 3.3

0.0 ± 0.0

77.31 ± 1.9

0.0 ± 0.0

75.88 ± 1.49

0.0 ± 0.0

GradAlign
91.48 ± 0.08

79.09 ± 0.21

88.55 ± 0.18

65.65 ± 0.13

85.23 ± 0.22

53.99 ± 0.2

81.69 ± 0.1

44.11 ± 0.34

77.73 ± 0.18

35.72 ± 0.34

73.46 ± 0.16

28.66 ± 0.15

67.87 ± 0.5

22.93 ± 0.33

61.66 ± 0.32

18.4 ± 0.28

N-FGSM
91.44 ± 0.09

78.99 ± 0.17

88.36 ± 0.04

66.06 ± 0.25

84.56 ± 0.12

53.94 ± 0.3

80.36 ± 0.03

44.36 ± 0.26

75.81 ± 0.22

36.73 ± 0.27

71.03 ± 0.16

30.45 ± 0.2

66.49 ± 0.36

25.08 ± 0.15

62.86 ± 0.88

19.0 ± 1.08

Following previous work, [1, 11] we have evaluated robustness with PGD50-10, i.e. PGD with 50
iterations and 10 restarts. However, for the sake of completeness, we also present results of robust
accuracy evaluated with autoattack [6]. In Table 4 we evaluate models adversarially trained with our
proposed method N-FGSM, the baseline FGSM and GradAlign. We observe the same pattern as with
the PGD50-10 attack, therefore we are conviced that our results are general.
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H Catastrophic Overfitting outside the ResNet family

Previous work focusing on CO has only used architectures from the ResNet family. In Table 5 we
present results for adversarial training with a VGG-16 architecture [28]. Similarly to other studied
models we observe that FGSM leads to CO while N-FGSM is able to prevent it. However, it seems
that FGSM presents CO for slighly larger ϵ radii, indicating that the architecture might play a role in
CO. We consider investigating this further a promising direction of future work.

Table 5: Clean (top) and robust accuracy (bottom) for CIFAR-10 and VGG-16 [28] evaluated with
PGD50-10. We also observe CO for VGG architecture when trained with FGSM, moreover, N-FGSM
is able to prevent CO. Interestingly, for VGG CO happens for slighly large ϵ values indicating that
the architecture might play a role in CO.

ϵ = 4/255 ϵ = 6/255 ϵ = 8/255 ϵ = 10/255 ϵ = 12/255 ϵ = 14/255 ϵ = 16/255

FGSM
85.04 ± 0.1

62.94 ± 0.07

79.34 ± 0.11

52.72 ± 0.12

73.39 ± 0.0

44.0 ± 0.02

82.6 ± 0.0

0.07 ± 0.0

83.04 ± 0.0

0.8 ± 0.0

81.4 ± 0.0

0.25 ± 0.0

80.41 ± 0.21

0.31 ± 0.15

N-FGSM
84.53 ± 0.0

63.32 ± 0.0

79.42 ± 0.0

53.0 ± 0.0

72.01 ± 0.28

44.3 ± 0.09

66.81 ± 0.54

38.25 ± 0.1

61.19 ± 0.0

33.36 ± 0.0

56.97 ± 0.0

29.23 ± 0.0

53.1 ± 1.19

25.72 ± 0.22

I Further increasing the attack radii

Following previous work [1] we have studied ϵ attack radii up to epsilon = 16/255. Indeed, the
performance at these radius is already significantly degraded and thus it would not be very practical
for most applications. However, to show that N-FGSM can prevent CO at even larger radii we test
two additional radii, ϵ = 20/255 and ϵ = 24/255. In both cases N-FGSM is able to prevent CO. For
ϵ = 20/255 we obtain a clean accuracy of 51.63 ± 0.38 and robust of 20.62 ± 0.37 while for ϵ = 24/255
we obtain a clean accuracy of 40.16 ± 0.96 and robust of 15.3 ± 1.49. We argue that it is of little
interest to try even larger perturbations unless more effective methods to improve both the clean and
robust performance are found.

J Testing other norms

Following previous work, we have focused on the ℓ∞ threat model. Although this is where works
studying CO have mainly focused, we observe that CO is also present in other norms such as ℓ1 and
ℓ2. Moreover, in both cases we observe that N-FGSM is able to prevent CO. Interestingly, the range
of norms in which we observe CO is usually much higher than normally tested for these norms which
would explain why the ℓ∞ norm has been the main focus of study in related works.
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Figure 13: Robust accuracy after training with FGSM or N-FGSM using ℓ1 (left) and ℓ2 (right)
perturbations. As observed for ℓ∞ perturbations FGSM leads to CO, while N-FGSM is able to
prevent it. Note that the strength of the perturbations is indicated to be equivalent to ℓ∞ perturbations
where all pixels have maximum magnitude i.e. ϵ = 8/255 indicates perturbations were restricted
to an ℓp norm of a vector where all components are in {−ϵ,+ϵ}. Which would correspond to an ℓ1
norm of nϵ and an ℓ2 norm of ϵ

√
n where n indicates the dimensionality of the input.
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K Combining N-FGSM with additional regularizers

In this section we present the results from Section 7 where we combine N-FGSM with additional
regularizers [29, 30] that were proposed for single-step adversarial training to boost the performance.
First, we try the proposed methods with the default settings (which use a version of RS-FGSM with
Bernoulli noise) and observe they lead to CO for larger ϵ. Then we compare them with N-FGSM
+ Regularizer where we apply their proposed regularizers to N-FGSM. If we apply GAT or NuAT
regularizers to N-FGSM then we do not observe CO and usually a boost in performance. Results are
presented in Table 6.

Table 6: Clean accuracy (top) and PGD50-10 accuracy (bottom) of N-FGSM with additional
regularizers introduced in GAT [29] and NuAT [30]. Both GAT and NuAT present CO with their
default training method. If we apply their proposed regularizers to N-FGSM we can avoid CO while
achieving a boost in performance.

ϵ = 2/255 ϵ = 4/255 ϵ = 6/255 ϵ = 8/255 ϵ = 10/255 ϵ = 12/255 ϵ = 14/255 ϵ = 16/255

GAT
88.79 ± 0.15

80.04 ± 0.06

84.35 ± 0.11

68.51 ± 0.08

80.16 ± 0.15

59.16 ± 0.24

76.75 ± 0.38

50.98 ± 0.12

73.71 ± 0.12

43.34 ± 0.23

80.44 ± 5.08

14.93 ± 9.26

83.9 ± 1.0

2.33 ± 0.58

82.17 ± 2.47

1.25 ± 0.51

N-FGSM+GAT
89.1 ± 0.08

79.96 ± 0.21

84.84 ± 0.05

69.5 ± 0.18

81.38 ± 0.07

60.06 ± 0.09

78.28 ± 0.04

51.8 ± 0.34

75.66 ± 0.35

44.97 ± 0.07

73.56 ± 0.23

38.71 ± 0.16

70.84 ± 0.51

32.71 ± 0.11

65.48 ± 0.96

27.87 ± 0.35

NuAT
87.81 ± 0.24

79.49 ± 0.03

82.9 ± 0.18

67.77 ± 0.13

78.06 ± 0.2

57.93 ± 0.17

73.22 ± 0.34

50.1 ± 0.33

71.08 ± 4.87

34.35 ± 9.0

74.38 ± 7.32

17.54 ± 8.82

78.5 ± 1.54

6.6 ± 0.77

80.1 ± 1.08

3.29 ± 0.87

NGFSM+NuAT
87.92 ± 0.0

79.52 ± 0.0

83.54 ± 0.0

68.36 ± 0.0

78.86 ± 0.25

58.88 ± 0.16

74.61 ± 0.34

51.12 ± 0.2

70.37 ± 0.12

44.62 ± 0.38

65.56 ± 0.19

38.24 ± 0.38

60.76 ± 0.74

32.85 ± 0.58

52.79 ± 0.66

29.19 ± 0.35

N-FGSM
91.48 ± 0.17

79.43 ± 0.21

88.44 ± 0.09

67.09 ± 0.31

84.72 ± 0.04

56.62 ± 0.26

80.58 ± 0.22

48.12 ± 0.07

75.98 ± 0.1

41.56 ± 0.16

71.46 ± 0.14

36.43 ± 0.16

67.11 ± 0.37

32.11 ± 0.2

63.18 ± 0.49

27.67 ± 0.93

L Imagenet experimental details

For our experiments on Imagenet we mainly follow the settings from [35]. However, for simplicity we
did not do image resizing which requires storing two additional Imagenet datasets. More importantly,
we found that the learning rate schedule suggested in [35] was not optimal for N-FGSM. The schedule
suggested in [35] follows three different stages in which the learning increases or decreases linearly
for some iterations. In particular in the first stage, the learning rate has an initial warm-up where it
increases linearly from 0.0 to 0.4 during the first epoch and then decreases linearly to 0.04 during the
next 5 epochs. As a lucky coincidence when debugging, we modified this initial stage such that we
preserved the initial increase to 0.4 for the first epoch, but then we directly jumped to a learning rate
of 0.04 which remained constant for the next 5 epochs. For phase 2 and 3 both schedules remained
the same. First decreasing from 0.04 to 0.004 for epoch 6 to 12 and finally from 0.004 to 0.0004 for
epoch 12 to 15. This small change made N-FGSM improve both in clean and robust accuracy for
ϵ = 4/255, 6/255 and these are the numbers reported. This indicates that further tuning the learning
rate schedule might be an effective way to improve performance and even help prevent CO, however,
due to the computational demands of ImageNet adversarial training we leave it for future work. To
be thorough we also trained RS-FGSM and FGSM with the modified schedule and found that neither
of them benefit from it. Regarding N-FGSM hyperparameters, for ϵ = 2/255 we used α = 2/255 and
k = 1; for ϵ = 4/255 we used α = 4/255 and k = 1; and for ϵ = 6/255 we also used α = 4/255 and
k = 1.

M Visualization of the loss surface

In this section we present a visualization of the loss surface. We adapted the code from [15] to
analyse the shape of the loss surface at the end of training for different methods. [15] reported that
after adversarial training CO, the loss surface would become non-linear. In particular, they found that
the FGSM perturbation seems to be misguided by local maxima very close to the clean image that
result in ineffective attacks. We note this was already reported by [32] which proposed to perform a
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random step to escape those maxima. We argue that adding noise to the random step, when properly
implemented, actually prevents those maxima to appear in the first place.
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Figure 14: Visualization of the loss surface for models trained using different methods. Given a clean
sample from the test set in coordinate (0, 0), we compute the FGSM perturbation and evaluate the
loss on the subspace generated by the FGSM perturbation direction and a random direction. That is,
we evaluate xclean + t1 · δFGSM + t2 · δrandom, where t1, t2 ∈ [0, 1]. Note that FGSM and RS-FGSM
both have CO and the final models present a highly non-linear loss surface, on the other hand, both
N-FGSM and GradAlign produce final models with a very linear loss surface which is key to obtain
meaningful perturbations.
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N Magnitude of N-FGSM perturbations

Lemma N.1 (Expected perturbation). Consider the N-FGSM perturbation as defined in Equation (3)

δN-FGSM = η + α · sign (∇xℓ(f(x+ η), y)) , where η ∼ Ω.

Let the distribution Ω be the uniform distribution U
(
[−kϵ, kϵ]d

)
and α > 0. Then,

Eη

[
∥δN-FGSM∥|22

]
= d

(
k2ϵ2

3
+ α2

)
and Eη [∥δN-FGSM∥|2] ≤

√
d

(
k2ϵ2

3
+ α2

)
Proof. By Jensen’s inequality, we have

Eη [∥δN-FGSM∥2] ≤
√

Eη [∥δN-FGSM∥22]

Then let us consider the term Eη

[
∥δN-FGSM∥22

]
and use the shorthand ∇(η)i = (∇xℓ(f(x+ η), y))i.

Eη

[
∥δN-FGSM∥22

]
=Eη∥η + α · sign (∇xℓ(f(x+ η), y)) ∥22

=Eη

[
d∑

i=1

(ηi + α · sign(∇(η)i))
2

]

=

d∑
i=1

Eη

[
(ηi + α · sign(∇(η)i))

2
]

=

d∑
i=1

Eη

[
(ηi + α · sign(∇(η)i))

2 |sign(∇(η)i) = 1
]
Pη [sign(∇(η)i) = 1]

+

d∑
i=1

Eη

[
(ηi + α · sign(∇(η)i))

2 |sign(∇(η)i) = −1
]
Pη [sign(∇(η)i) = −1]

=

d∑
i=1

1

2kϵ

∫ kϵ

−kϵ

(ηi + α)
2
dηi · Pη [sign(∇(η)i) = 1]

+
1

2kϵ

d∑
i=1

∫ kϵ

−kϵ

(ηi − α)
2
dηi · Pη [sign(∇(η)i) = −1]

=

d∑
i=1

1

2kϵ

∫ α+kϵ

α−kϵ

z2dz · Pη [sign(∇(η)i) = 1]

+
1

2kϵ

d∑
i=1

∫ −α+kϵ

−α−kϵ

z2dz · Pη [sign(∇(η)i) = −1]

=

d∑
i=1

1

2kϵ

∫ α+kϵ

α−kϵ

z2dz · Pη [sign(∇(η)i) = 1]

+
1

2kϵ

d∑
i=1

∫ α+kϵ

α−kϵ

z2dz · Pη [sign(∇(η)i) = −1]

=
1

2kϵ

∫ α+kϵ

α−kϵ

z2dz

d∑
i=1

(Pη [sign(∇(η)i) = 1] + Pη [sign(∇(η)i) = −1])

=
d

6kϵ

[
(α+ kϵ)3 − (α− kϵ)3

]
=
dk2ϵ2

3
+ dα2
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Therefore,

Eη [∥δN-FGSM∥|2] ≤

√
d

(
k2ϵ2

3
+ α2

)
.

Theorem N.2. Let δN-FGSM be our proposed single-step method defined by Equation (3), δFGSM be the
FGSM method [11] and δRS-FGSM be the RS-FGSM method [35]. Then, with default hyperparameter
values and for any ϵ > 0, we have that

Eη

[
∥δN-FGSM∥22

]
> Eη

[
∥δFGSM∥22

]
> Eη

[
∥δRS-FGSM∥22

]
.

Proof. From Lemma N.1 we have that

Eη

[
∥δN-FGSM∥|22

]
= d

(
k2ϵ2

3
+ α2

)
.

On the other hand, [1] showed that

Eη

[
∥δRS-FGSM∥22

]
= d

(
− 1

6ϵ
α3 +

1

2
α2 +

1

3
ϵ2
)
.

Finally, we note that
Eη

[
∥δFGSM∥22

]
= ∥δFGSM∥22 = dϵ2.

The default hyperparameters for N-FGSM are k = 2, α = ϵ and RS-FGSM uses α = 5ϵ/4. With
these hyperparameters and any ϵ > 0 we have

Eη

[
∥δN-FGSM∥|22

]
=

7

3
dϵ2 > Eη

[
∥δFGSM∥|22

]
= dϵ2 > Eη

[
∥δRS-FGSM∥|22

]
=

101

128
dϵ2

In Lemma N.1 we compute the expected value of the squared ℓ2 norm of N-FGSM perturbations and
by Jensen’s inequality we obtain an upper bound for the expected ℓ2 norm of N-FGSM perturbations.
However, obtaining the exact expected magnitude is more complex. To compliment our analytic
results, we approximate the ℓ2 norm of FGSM, RS-FGSM and N-FGSM via Monte Carlo sampling.
Results are presented in Figure 15. We observe that the empirical estimations are very close to the
analytical upper bounds and that indeed, N-FGSM has a magnitude significantly above that of FGSM
or RS-FGSM.

O N-FGSM with Gaussian noise

In the main paper we have only explored noise sources coming from a Uniform distribution. Since we
are measuring robustness against l∞− attacks, the Uniform distribution is a natural choice because
the random perturbations will be bounded to the l∞ ball defined by the span of the distribution.
However, for the sake of completeness, we also explore the performance of augmenting the samples
from a Gaussian distribution where we choose its standard deviation to match that of the uniform
distribution. In Table 7 we present a comparison of the clean (top) and PGD-50-10 (bottom) accuracy
for different values of α and noise magnitude with ϵ = 8/255. Recall that by default we use Uniform
distribution U [−k, k], therefore hyperparameter k sets the noise magnitude.

Increasing the FGSM step size without increasing the amount of noise leads to CO. Note results for
k = 0.5ϵ. More importantly, results are very similar when the two noise distributions share the same
standard deviation. Thus, using Gaussian instead of Uniform noise does not seem to alter the results.
Although this might be expected, we remark that the Gaussian is an unbounded noise distribution and
the common practice in adversarial training is to always restrict the norm of the perturbations.
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Figure 15: Monte Carlo estimations of the expected l2−norm of perturbations from different methods
and corresponding analytical upper bounds. As mentioned in [1], we observe that RS-FGSM
perturbations have lower l2 norm than FGSM. However, N-FGSM perturbations have a significantly
higher l2−norm than both RS-FGSM and FGSM. This seems to indicate that the role of random step
is not simply to lower the l2 norm as previously suggested [1].

Table 7: Comparison of the clean (top) and PGD-50-10 (bottom) accuracy across different values of
step-size α and noise magnitude for the Uniform and Gaussian distributions with ϵ = 8/255. For
every value of k, we use a Gaussian with matching standard deviation. We observe that when we
match the standard deviation, both distribution perform similarly.

Uniform Noise Gaussian Noise

α = 6/255 (0.75ϵ) α = 8/255 (1ϵ) α = 10/255 (1.25ϵ) α = 6/255 (0.75ϵ) α = 8/255 (1ϵ) α = 10/255 (1.25ϵ)

k = 0.5ϵ
85.52 ± 0.23

44.14 ± 0.24

81.54 ± 0.19

47.93 ± 0.11

82.81 ± 1.11

0.0 ± 0.0

85.27 ± 0.11

44.23 ± 0.17

81.71 ± 0.27

47.98 ± 0.14

83.34 ± 1.48

0.0 ± 0.0

k = 1ϵ
85.03 ± 0.09

44.44 ± 0.13

81.57 ± 0.07

48.16 ± 0.21

77.32 ± 0.14

49.68 ± 0.25

85.01 ± 0.17

44.41 ± 0.04

81.35 ± 0.14

48.21 ± 0.11

77.22 ± 0.32

49.83 ± 0.1

k = 2ϵ
84.49 ± 0.1

44.44 ± 0.15

80.58 ± 0.22

48.12 ± 0.07

76.49 ± 0.14

49.77 ± 0.37

84.35 ± 0.24

44.59 ± 0.22

80.44 ± 0.31

48.34 ± 0.1

76.33 ± 0.37

49.77 ± 0.23

P Training with noise augmented samples

Gilmer et al. [9] and Fawzi et al. [8] report a close link between robustness to adversarial attacks
and robustness to random noise. Actually, [9] report that training with noise-augmented samples
can improve adversarial accuracy and vice-versa. We note that N-FGSM can actually be seen as
a combination of noise-augmentation and adversarial attacks. Here we perform an ablation where
we train models with samples augmented with uniform noise U [−k, k] and then test the PGD-
50-10 accuracy. We observe, that indeed random noise can increase the robustness to worst-case
perturbations for small ϵ− l∞ balls. However, as we increase ϵ, noise augmentation is no longer very
effective. With N-FGSM, we apply a weak attack to these noise-augmented samples and this seems
to be enough to make them effective for adversarial training.

Q Comparison of adversarial training cost

In this section we describe how we compute the relative training cost for single-step methods shown
in Figure 1 (right). We approximate the cost based on the number of forward/backward passes each
method uses, disregarding the cost of other additional operations such as adding a random step for
RS-FGSM or N-FGSM. We understand these operations have a negligible cost compared to a full
forward or backward pass.

FGSM: FGSM is the cheapest of all methods since it only uses one forward/backward to compute
the attack and an additional forward/backward to compute the weight update. Hence, Cost FGSM = 2
F/B.
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Figure 16: Training with uniform noise augmented samples improves adversarial accuracy for small
perturbations but is not effective to protect against larger l∞ radius ϵ. This motivates us to further
augment the noisy samples with FGSM. All experiments are averaged over 3 runs.

RS-FGSM: As previously mentioned, we do not take into account the cost of random steps or
clipping, hence we consider RS-FGSM to have the same cost as standard FGSM. Cost RS-FGSM = 2
F/B.

N-FGSM: Idem as before, cost of N-FGSM = 2 F/B.

ZeroGrad: For ZeroGrad they need to do an additional sorting operation to find the smallest gradient
components. This could be potentially expensive, however, since the size of the input image is several
orders of magnitude smaller than that of the network, we also ignore this cost. Cost ZeroGrad = 2
F/B.

MultiGrad: MultiGrad computes 3 random steps and evaluates the gradient in all of them. Therefore,
it needs to do 3 F/B to compute the attack and an additional one to update the weights. Cost MultiGrad
= 4 F/B.

[15]: [15] compute the RS-FGSM perturbation and evaluate the model on c points along this direction.
Therefore, they will spend 1F/B on the RS-FGSM attack, c− 1 F on the evaluations since the clean
image has already been evaluated; and 1 F/B for the weight update. In our plot, we used c = 3 since
it was the most chosen setting. [15] assume the cost of a forward is similar to that of a backward pass,
following this assumption, cost of [15] is 1 F/B + 2 F + 1 F/B = 3 F/B

Free-AT: [26] re-use the gradient from the previous backward pass to compute the FGSM perturbation
of the current iteration. Hence, the cost of their training is only 1 F/B per iteration. However, [35]
observed they needed a longer training schedule to produce comparable results. Therefore, the total
training cost per iteration (1 F/B) is scaled by 96 in the case of Free-AT, while it is only scaled by 30
for other methods. Relative cost Free = (96 · 1 F/B) / (30 · 2 F/B).

GradAlign: Finally, GradAlign uses FGSM with a regularizer. However, this regularizer needs to
compute second-order derivatives via double backpropagation, which does not have the same cost as
regular backpropagation. [1] report that the cost of using GradAlign regularizer increased the cost of
FGSM by 3.

R Infrastructure details and GPU hours

All our training runs have been conducted on either NVIDIA GPU V-100 or P-100 from an internal
cluster. The total compute for the results presented in this work is roughly 2500 hours.

S Detailed results for Section 5.1 and Section 7

In this section we present the tables with the exact numbers used in plots comparing adversarial
training methods. For each method and ϵ− l∞ radius, the top number is the clean accuracy while the
bottom number is the PGD-50-10 accuracy. We separate single-step from multi-step methods with a
double line.
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PreActResNet18 – CIFAR-10 Dataset

ϵ = 2/255 ϵ = 4/255 ϵ = 6/255 ϵ = 8/255 ϵ = 10/255 ϵ = 12/255 ϵ = 14/255 ϵ = 16/255

N-FGSM
91.48 ± 0.17

79.43 ± 0.21

88.44 ± 0.09

67.09 ± 0.31

84.72 ± 0.04

56.62 ± 0.26

80.58 ± 0.22

48.12 ± 0.07

75.98 ± 0.1

41.56 ± 0.16

71.46 ± 0.14

36.43 ± 0.16

67.11 ± 0.37

32.11 ± 0.2

63.18 ± 0.49

27.67 ± 0.93

Grad Align
91.73 ± 0.04

79.16 ± 0.03

88.76 ± 0.0

67.13 ± 0.26

85.67 ± 0.02

56.27 ± 0.31

81.9 ± 0.22

48.14 ± 0.15

77.54 ± 0.06

40.75 ± 0.28

73.29 ± 0.23

34.51 ± 0.63

68.01 ± 0.32

30.36 ± 0.27

61.3 ± 0.15

26.64 ± 0.27

FGSM
91.6 ± 0.1

79.35 ± 0.06

88.77 ± 0.04

67.11 ± 0.09

85.58 ± 0.11

56.33 ± 0.41

86.41 ± 0.7

0.0 ± 0.0

82.08 ± 1.62

0.0 ± 0.0

80.6 ± 2.59

0.0 ± 0.0

76.04 ± 2.37

0.0 ± 0.0

77.14 ± 2.46

0.0 ± 0.0

RS-FGSM
92.09 ± 0.05

78.64 ± 0.08

89.69 ± 0.01

66.12 ± 0.22

87.0 ± 0.12

54.87 ± 0.22

84.05 ± 0.13

46.08 ± 0.18

85.21 ± 0.51

0.0 ± 0.0

65.22 ± 23.23

0.0 ± 0.0

43.59 ± 25.01

0.0 ± 0.0

76.66 ± 0.38

0.0 ± 0.0

Kim et. al.
92.85 ± 0.11

74.74 ± 0.35

91.1 ± 0.04

60.51 ± 0.4

89.34 ± 0.05

48.95 ± 0.45

89.02 ± 0.1

33.01 ± 0.09

88.27 ± 0.14

24.43 ± 0.84

88.35 ± 0.31

13.11 ± 0.63

90.01 ± 0.25

5.86 ± 0.57

90.45 ± 0.08

1.88 ± 0.05

AT Free
87.99 ± 0.16

74.27 ± 0.33

84.98 ± 0.13

62.47 ± 0.25

81.77 ± 0.11

53.18 ± 0.15

78.41 ± 0.18

46.03 ± 0.36

74.79 ± 0.22

39.87 ± 0.07

73.91 ± 4.19

22.99 ± 16.26

61.92 ± 14.94

0.0 ± 0.0

71.64 ± 3.89

0.0 ± 0.0

ZeroGrad
91.71 ± 0.08

79.36 ± 0.05

88.8 ± 0.11

67.32 ± 0.02

85.71 ± 0.1

56.14 ± 0.21

82.62 ± 0.05

47.08 ± 0.1

79.91 ± 0.12

37.58 ± 0.2

78.11 ± 0.2

27.41 ± 0.27

75.66 ± 0.46

21.29 ± 0.97

75.42 ± 0.13

13.06 ± 0.22

MultiGrad
91.57 ± 0.16

79.34 ± 0.02

88.74 ± 0.12

66.81 ± 0.02

85.75 ± 0.05

56.02 ± 0.3

82.33 ± 0.14

47.29 ± 0.07

78.73 ± 0.16

40.11 ± 0.24

75.28 ± 0.2

33.87 ± 0.17

80.94 ± 5.94

9.55 ± 13.5

71.42 ± 5.63

16.35 ± 11.57

PGD-2
91.4 ± 0.07

79.55 ± 0.15

88.46 ± 0.13

67.62 ± 0.03

85.14 ± 0.13

57.39 ± 0.13

81.41 ± 0.05

49.58 ± 0.08

77.18 ± 0.15

43.3 ± 0.11

72.9 ± 0.26

38.13 ± 0.15

70.39 ± 2.71

22.89 ± 15.26

64.81 ± 11.58

9.6 ± 13.37

PGD-10
91.25 ± 0.04

79.47 ± 0.13

88.34 ± 0.11

68.29 ± 0.24

84.79 ± 0.11

58.85 ± 0.18

80.71 ± 0.14

51.33 ± 0.31

76.13 ± 0.35

45.02 ± 0.49

71.24 ± 0.3

39.93 ± 0.5

66.7 ± 0.39

36.02 ± 0.67

62.11 ± 0.62

32.22 ± 0.64

PreActResNet18 – CIFAR-100 Dataset

ϵ = 2/255 ϵ = 4/255 ϵ = 6/255 ϵ = 8/255 ϵ = 10/255 ϵ = 12/255 ϵ = 14/255 ϵ = 16/255

N-FGSM
69.12 ± 0.27

51.02 ± 0.34

64.0 ± 0.06

39.5 ± 0.12

59.53 ± 0.02

32.06 ± 0.37

54.9 ± 0.2

26.46 ± 0.22

50.6 ± 0.16

22.23 ± 0.17

46.06 ± 0.14

18.95 ± 0.15

41.67 ± 0.25

16.33 ± 0.15

37.91 ± 0.11

14.34 ± 0.07

Grad Align
68.96 ± 0.15

51.31 ± 0.12

64.71 ± 0.16

39.37 ± 0.25

60.42 ± 0.23

31.91 ± 0.28

56.53 ± 0.31

25.8 ± 0.14

54.06 ± 0.44

18.7 ± 1.92

48.87 ± 0.32

17.86 ± 0.04

43.84 ± 0.14

15.51 ± 0.16

38.93 ± 0.21

13.62 ± 0.19

FGSM
69.01 ± 0.13

51.3 ± 0.19

64.47 ± 0.15

39.7 ± 0.16

63.85 ± 2.18

10.93 ± 14.64

53.42 ± 0.65

0.0 ± 0.0

45.06 ± 2.29

0.0 ± 0.0

46.14 ± 2.58

0.0 ± 0.0

41.66 ± 0.88

0.0 ± 0.0

44.68 ± 1.74

0.0 ± 0.0

RS-FGSM
69.83 ± 0.29

50.13 ± 0.32

65.9 ± 0.36

38.36 ± 0.19

62.15 ± 0.23

30.82 ± 0.08

55.26 ± 6.86

0.01 ± 0.01

32.33 ± 12.12

0.0 ± 0.0

36.07 ± 2.59

0.0 ± 0.0

21.52 ± 5.56

0.0 ± 0.0

20.38 ± 6.15

0.0 ± 0.0

Kim et. al.
72.92 ± 0.41

44.19 ± 0.25

70.16 ± 0.07

30.63 ± 0.28

67.98 ± 0.19

22.0 ± 0.02

68.07 ± 0.1

12.75 ± 0.21

68.37 ± 0.21

6.98 ± 0.23

74.09 ± 0.06

0.0 ± 0.0

74.06 ± 0.34

0.0 ± 0.0

74.01 ± 0.36

0.0 ± 0.0

AT Free
63.01 ± 0.19

45.7 ± 0.33

59.41 ± 0.27

35.95 ± 0.09

55.43 ± 0.37

29.37 ± 0.21

51.91 ± 0.08

24.32 ± 0.4

48.11 ± 0.09

20.64 ± 0.22

43.48 ± 1.25

5.71 ± 8.05

18.33 ± 4.86

0.0 ± 0.0

20.43 ± 11.25

0.0 ± 0.0

ZeroGrad
69.35 ± 0.36

51.1 ± 0.09

64.59 ± 0.32

39.38 ± 0.15

60.69 ± 0.09

31.72 ± 0.21

56.94 ± 0.13

25.87 ± 0.09

54.55 ± 0.17

19.49 ± 0.08

52.97 ± 0.34

14.32 ± 0.08

50.87 ± 0.26

10.92 ± 0.59

50.73 ± 0.3

7.3 ± 0.16

MultiGrad
69.01 ± 0.16

51.15 ± 0.03

64.44 ± 0.11

39.16 ± 0.03

60.65 ± 0.26

31.73 ± 0.09

56.84 ± 0.2

25.96 ± 0.11

53.62 ± 0.25

21.37 ± 0.16

53.05 ± 1.85

9.57 ± 7.32

48.28 ± 0.66

3.2 ± 4.49

45.28 ± 11.14

0.0 ± 0.0

PGD-2
69.18 ± 0.1

51.36 ± 0.03

64.32 ± 0.14

40.06 ± 0.14

60.21 ± 0.13

32.99 ± 0.24

55.8 ± 0.16

27.38 ± 0.16

51.68 ± 0.1

23.39 ± 0.19

48.2 ± 0.1

19.83 ± 0.29

46.14 ± 1.24

10.55 ± 7.51

37.97 ± 10.52

4.79 ± 6.75

PGD-10
68.83 ± 0.07

51.51 ± 0.27

63.87 ± 0.09

40.59 ± 0.36

59.37 ± 0.07

33.65 ± 0.02

54.79 ± 0.38

28.55 ± 0.27

50.53 ± 0.15

24.17 ± 0.12

46.05 ± 0.21

21.2 ± 0.12

41.76 ± 0.07

18.72 ± 0.06

37.81 ± 0.14

16.59 ± 0.16

26



PreActResNet18 – SVHN Dataset

ϵ = 2/255 ϵ = 4/255 ϵ = 6/255 ϵ = 8/255 ϵ = 10/255 ϵ = 12/255

N-FGSM
96.01 ± 0.04

86.44 ± 0.1

94.54 ± 0.15

72.53 ± 0.19

92.25 ± 0.33

58.42 ± 0.14

89.56 ± 0.49

45.63 ± 0.11

86.74 ± 0.86

33.96 ± 0.49

81.48 ± 1.64

26.13 ± 0.81

Grad Align
96.02 ± 0.05

86.43 ± 0.1

94.56 ± 0.21

72.12 ± 0.19

92.53 ± 0.24

57.34 ± 0.24

90.1 ± 0.34

43.85 ± 0.14

87.23 ± 0.75

32.87 ± 0.33

84.01 ± 0.46

23.62 ± 0.41

FGSM
96.04 ± 0.07

86.5 ± 0.05

95.67 ± 0.07

13.61 ± 5.83

93.73 ± 0.68

0.56 ± 0.72

91.74 ± 0.86

0.26 ± 0.36

90.76 ± 0.63

0.07 ± 0.1

87.17 ± 0.43

0.0 ± 0.0

RS-FGSM
96.18 ± 0.11

86.16 ± 0.14

95.09 ± 0.09

71.28 ± 0.4

95.11 ± 0.44

0.11 ± 0.08

94.46 ± 0.16

0.0 ± 0.0

93.88 ± 0.24

0.0 ± 0.0

92.74 ± 0.5

0.0 ± 0.0

Kim et. al.
96.35 ± 0.02

83.26 ± 0.24

95.25 ± 0.08

66.32 ± 0.63

94.83 ± 0.02

48.27 ± 0.52

94.88 ± 0.29

31.8 ± 1.1

96.61 ± 0.09

0.18 ± 0.21

96.61 ± 0.01

0.0 ± 0.0

AT Free
95.01 ± 0.09

84.55 ± 0.27

93.66 ± 0.12

71.61 ± 0.75

91.72 ± 0.29

59.31 ± 1.0

91.29 ± 4.07

0.01 ± 0.0

91.86 ± 3.66

0.0 ± 0.0

92.36 ± 1.0

0.0 ± 0.0

ZeroGrad
96.06 ± 0.03

86.43 ± 0.1

94.81 ± 0.16

71.59 ± 0.22

93.53 ± 0.26

51.72 ± 0.53

92.42 ± 1.29

35.93 ± 2.73

90.34 ± 0.32

21.34 ± 0.31

88.09 ± 0.4

14.14 ± 0.32

MultiGrad
96.01 ± 0.08

86.4 ± 0.08

94.71 ± 0.17

71.98 ± 0.26

95.75 ± 0.58

28.1 ± 18.85

94.86 ± 0.97

11.49 ± 16.19

94.7 ± 0.12

0.0 ± 0.0

94.48 ± 0.19

0.0 ± 0.0

PGD-2
96.03 ± 0.14

86.72 ± 0.06

94.66 ± 0.1

73.29 ± 0.29

93.77 ± 0.61

60.53 ± 0.73

94.63 ± 1.29

20.68 ± 18.56

84.09 ± 14.99

0.41 ± 0.29

94.16 ± 0.54

0.02 ± 0.03

PGD-10
95.92 ± 0.08

86.94 ± 0.14

94.37 ± 0.13

74.76 ± 0.19

92.46 ± 0.25

63.9 ± 0.48

89.67 ± 0.34

53.95 ± 0.55

85.75 ± 0.65

44.91 ± 0.45

80.08 ± 0.93

37.65 ± 0.53

WideResNet28-10 – CIFAR-10 Dataset

ϵ = 2/255 ϵ = 4/255 ϵ = 6/255 ϵ = 8/255 ϵ = 10/255 ϵ = 12/255 ϵ = 14/255 ϵ = 16/255

N-FGSM
92.51 ± 0.11

81.43 ± 0.3

89.65 ± 0.09

69.11 ± 0.24

85.8 ± 0.23

58.29 ± 0.14

81.59 ± 0.32

49.53 ± 0.25

76.92 ± 0.04

42.37 ± 0.36

72.13 ± 0.15

36.85 ± 0.2

67.82 ± 0.43

31.66 ± 0.6

56.73 ± 0.42

25.01 ± 0.23

Grad Align
92.59 ± 0.05

81.33 ± 0.4

89.95 ± 0.3

69.81 ± 0.47

86.98 ± 0.06

59.0 ± 0.13

83.19 ± 0.26

50.0 ± 0.05

79.35 ± 0.26

41.48 ± 0.51

73.79 ± 0.72

35.06 ± 0.74

66.38 ± 0.53

30.83 ± 0.39

57.75 ± 0.75

26.26 ± 0.13

FGSM
92.65 ± 0.17

81.38 ± 0.22

90.06 ± 0.18

69.59 ± 0.25

87.99 ± 1.3

38.69 ± 26.54

86.46 ± 0.45

0.0 ± 0.0

82.67 ± 1.78

0.0 ± 0.0

80.14 ± 1.2

0.0 ± 0.0

74.54 ± 4.01

0.0 ± 0.0

71.56 ± 3.78

0.0 ± 0.0

RS-FGSM
92.85 ± 0.1

80.9 ± 0.13

90.73 ± 0.2

68.23 ± 0.17

88.24 ± 0.19

57.21 ± 0.17

83.64 ± 1.74

0.0 ± 0.0

82.1 ± 1.45

0.0 ± 0.0

78.62 ± 0.7

0.0 ± 0.0

73.25 ± 8.16

0.0 ± 0.0

68.64 ± 4.3

0.0 ± 0.0

RandAlpha
93.37 ± 0.22

77.67 ± 0.66

92.17 ± 0.21

63.73 ± 0.31

90.71 ± 0.14

50.4 ± 0.14

89.16 ± 0.19

39.37 ± 0.42

87.44 ± 0.31

30.13 ± 0.9

85.69 ± 0.28

23.13 ± 0.33

83.98 ± 0.24

16.0 ± 0.22

83.23 ± 0.46

8.47 ± 0.66

AT Free
90.66 ± 0.25

77.0 ± 0.27

88.37 ± 0.15

64.25 ± 0.33

86.11 ± 0.29

53.76 ± 0.48

83.5 ± 0.27

44.85 ± 0.39

80.52 ± 0.32

31.87 ± 5.53

83.59 ± 1.35

0.0 ± 0.0

39.58 ± 15.8

0.0 ± 0.0

42.59 ± 27.96

0.0 ± 0.0

ZeroGrad
92.62 ± 0.11

81.42 ± 0.28

90.17 ± 0.05

69.28 ± 0.29

86.98 ± 0.28

58.4 ± 0.14

84.25 ± 0.28

48.29 ± 0.16

81.72 ± 0.29

36.08 ± 0.29

79.24 ± 0.82

28.24 ± 1.79

78.14 ± 0.46

18.54 ± 0.31

75.34 ± 0.12

14.6 ± 0.12

MultiGrad
92.64 ± 0.1

81.19 ± 0.28

90.18 ± 0.13

69.3 ± 0.2

87.11 ± 0.36

57.98 ± 0.08

83.87 ± 0.46

48.74 ± 0.09

80.89 ± 0.14

41.22 ± 0.57

82.88 ± 2.85

4.46 ± 6.09

86.6 ± 1.52

0.0 ± 0.0

85.46 ± 3.73

0.0 ± 0.0

PGD-2
92.69 ± 0.14

81.54 ± 0.18

90.18 ± 0.19

69.87 ± 0.26

86.87 ± 0.18

59.4 ± 0.19

83.31 ± 0.16

50.88 ± 0.16

79.61 ± 0.47

43.94 ± 0.24

75.81 ± 0.24

37.77 ± 0.57

71.41 ± 1.38

21.06 ± 13.39

67.2 ± 14.94

0.0 ± 0.0

PGD-10
92.24 ± 0.31

81.18 ± 0.57

89.65 ± 0.33

70.34 ± 0.26

86.91 ± 0.51

60.59 ± 0.21

82.82 ± 0.7

52.58 ± 0.2

78.63 ± 0.66

45.92 ± 0.38

74.0 ± 0.67

40.44 ± 0.17

68.6 ± 0.58

35.98 ± 0.56

64.17 ± 0.72

32.5 ± 0.61
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WideResNet28-10 – CIFAR-100 Dataset

ϵ = 2/255 ϵ = 5/255 ϵ = 6/255 ϵ = 8/255 ϵ = 10/255 ϵ = 12/255 ϵ = 14/255 ϵ = 16/255

N-FGSM
71.56 ± 0.13

52.23 ± 0.33

66.49 ± 0.46

39.93 ± 0.37

61.38 ± 0.68

30.97 ± 0.21

56.23 ± 0.59

26.77 ± 0.65

51.54 ± 0.63

23.03 ± 0.54

46.43 ± 0.61

19.3 ± 0.59

42.11 ± 0.32

16.67 ± 0.4

38.34 ± 0.47

14.27 ± 0.33

Grad Align
71.68 ± 0.33

51.5 ± 0.45

67.09 ± 0.19

39.9 ± 0.42

62.86 ± 0.1

32.0 ± 0.22

58.55 ± 0.41

26.9 ± 0.62

53.85 ± 0.73

22.63 ± 0.62

46.94 ± 0.86

19.9 ± 0.65

42.63 ± 0.5

16.93 ± 0.12

36.17 ± 0.45

14.03 ± 0.24

FGSM
71.92 ± 0.33

52.83 ± 0.37

67.34 ± 0.36

39.83 ± 0.31

64.72 ± 1.12

0.0 ± 0.0

56.87 ± 1.24

0.03 ± 0.05

52.31 ± 2.11

0.0 ± 0.0

48.99 ± 1.17

0.0 ± 0.0

44.27 ± 1.4

0.0 ± 0.0

42.05 ± 1.03

0.0 ± 0.0

RS-FGSM
72.65 ± 0.28

51.63 ± 0.52

68.26 ± 0.2

39.57 ± 0.09

65.58 ± 0.69

26.63 ± 2.8

54.25 ± 5.85

0.0 ± 0.0

46.08 ± 4.87

0.0 ± 0.0

35.84 ± 0.17

0.0 ± 0.0

24.4 ± 1.25

0.0 ± 0.0

21.37 ± 5.04

0.0 ± 0.0

RandAlpha
73.9 ± 0.15

49.13 ± 0.91

71.17 ± 0.12

34.3 ± 0.54

68.65 ± 0.22

25.5 ± 0.33

66.42 ± 0.13

20.27 ± 0.98

64.05 ± 0.5

16.3 ± 0.14

61.99 ± 0.6

12.4 ± 0.29

59.74 ± 0.57

6.93 ± 0.19

58.9 ± 0.78

3.63 ± 0.12

AT Free
67.62 ± 0.24

48.07 ± 0.31

63.27 ± 0.72

37.93 ± 0.69

59.53 ± 0.31

29.7 ± 0.51

55.77 ± 0.28

24.43 ± 0.37

47.02 ± 3.83

3.23 ± 4.43

33.52 ± 9.24

0.0 ± 0.0

7.87 ± 1.78

0.0 ± 0.0

20.92 ± 21.48

0.0 ± 0.0

ZeroGrad
71.68 ± 0.07

52.63 ± 0.61

67.2 ± 0.14

39.57 ± 0.33

63.69 ± 0.14

30.27 ± 0.54

60.77 ± 0.26

23.7 ± 0.08

61.05 ± 0.38

15.1 ± 0.49

58.39 ± 0.16

11.13 ± 0.68

56.19 ± 0.11

8.8 ± 0.36

56.38 ± 0.18

4.9 ± 0.36

MultiGrad
71.8 ± 0.15

51.9 ± 0.29

67.73 ± 0.48

39.7 ± 0.37

63.24 ± 0.33

31.5 ± 0.62

60.05 ± 0.79

26.03 ± 0.09

56.39 ± 0.49

20.8 ± 0.29

56.79 ± 8.27

0.0 ± 0.0

59.8 ± 3.77

0.0 ± 0.0

52.96 ± 5.58

0.0 ± 0.0

PGD-2
71.62 ± 0.15

51.73 ± 0.48

67.25 ± 0.43

40.27 ± 0.7

63.18 ± 0.36

32.23 ± 0.19

59.02 ± 0.4

27.13 ± 0.37

54.47 ± 0.45

23.43 ± 0.31

50.91 ± 0.35

20.23 ± 0.39

41.03 ± 3.18

0.03 ± 0.05

40.13 ± 3.66

0.0 ± 0.0

PGD-10
71.11 ± 0.62

52.5 ± 0.59

66.9 ± 0.57

40.73 ± 0.56

62.05 ± 0.47

32.8 ± 0.29

57.64 ± 0.81

27.97 ± 0.59

52.84 ± 0.88

24.7 ± 0.36

48.14 ± 0.73

21.8 ± 0.57

43.14 ± 0.87

18.87 ± 0.6

39.2 ± 0.62

16.8 ± 0.57

WideResNet28-10 – SVHN Dataset

ϵ = 2/255 ϵ = 4/255 ϵ = 6/255 ϵ = 8/255 ϵ = 10/255 ϵ = 12/255

N-FGSM
95.64 ± 0.09

84.1 ± 0.73

93.66 ± 0.41

66.9 ± 0.86

91.77 ± 0.42

53.0 ± 0.36

88.89 ± 0.58

40.5 ± 0.37

88.07 ± 0.59

30.47 ± 0.76

87.52 ± 0.49

22.43 ± 0.53

Grad Align
95.41 ± 0.06

84.57 ± 0.56

93.9 ± 0.48

67.27 ± 0.54

68.36 ± 34.49

39.53 ± 14.89

42.62 ± 32.73

24.7 ± 9.34

19.3 ± 0.21

17.63 ± 0.62

19.53 ± 0.08

18.13 ± 0.52

FGSM
95.83 ± 0.1

85.03 ± 0.37

95.0 ± 0.24

31.53 ± 6.57

94.23 ± 0.79

1.7 ± 1.36

91.11 ± 1.36

0.13 ± 0.19

88.83 ± 1.71

0.0 ± 0.0

86.74 ± 0.7

0.0 ± 0.0

RS-FGSM
95.81 ± 0.25

83.8 ± 0.43

94.53 ± 0.4

66.67 ± 0.65

95.23 ± 0.26

0.53 ± 0.26

94.68 ± 0.62

0.0 ± 0.0

93.9 ± 0.52

0.0 ± 0.0

91.64 ± 2.98

0.0 ± 0.0

RandAlpha
96.02 ± 0.23

82.5 ± 0.45

95.47 ± 0.18

63.33 ± 0.53

94.69 ± 0.26

47.7 ± 0.99

93.72 ± 0.44

35.73 ± 0.34

93.08 ± 1.45

23.17 ± 1.97

93.96 ± 0.68

11.1 ± 3.05

AT Free
94.85 ± 0.39

83.13 ± 0.17

92.95 ± 0.65

68.67 ± 0.53

91.62 ± 1.93

54.93 ± 2.58

93.74 ± 0.69

0.03 ± 0.05

92.47 ± 0.97

0.0 ± 0.0

90.5 ± 1.41

0.0 ± 0.0

ZeroGrad
95.78 ± 0.21

84.47 ± 0.83

94.06 ± 0.52

66.1 ± 0.37

92.13 ± 0.98

47.3 ± 0.62

91.04 ± 0.4

29.33 ± 0.56

88.85 ± 0.92

20.77 ± 0.63

89.8 ± 1.36

9.33 ± 0.76

MultiGrad
95.63 ± 0.16

84.37 ± 0.59

94.27 ± 0.38

67.27 ± 0.31

93.64 ± 1.21

50.1 ± 0.9

94.83 ± 1.55

1.77 ± 1.72

95.26 ± 0.34

0.0 ± 0.0

95.22 ± 0.15

0.0 ± 0.0

PGD-2
95.88 ± 0.35

86.25 ± 0.7

94.66 ± 0.1

73.29 ± 0.25

93.77 ± 0.61

60.53 ± 0.72

92.99 ± 1.11

40.77 ± 4.39

88.81 ± 0.93

34.33 ± 2.76

83.17 ± 4.78

26.8 ± 3.31

PGD-10
95.92 ± 0.08

86.94 ± 0.13

94.36 ± 0.13

74.46 ± 0.54

92.46 ± 0.25

63.87 ± 0.49

89.67 ± 0.34

53.95 ± 0.55

85.98 ± 0.59

44.59 ± 0.14

80.08 ± 0.93

37.64 ± 0.49
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