
Appendix A Literature Reviews on Related Works

A.1 Dataset Distillation

In this section, we briefly review the methodology of constructing S as an input-sized vector and
provide a detailed review of our main comparative methods, HaBa [19], IDC [14] and GLaD [4].

Input-sized Parameterization. Dataset Distillation (DD) [33] aims at finding the synthetic dataset
S with a bi-level optimization. The main idea of bi-level optimization is that the network parameter θS ,
which is trained on S, minimizes the (population) risk of the original dataset D. Dataset Condensation
(DC) [45] introduces a proxy objective, which aims at matching the layer-wise gradients of a network
over the optimization path of S. Differentiable Siamese Augmentation (DSA) [43] applies the
differentiable and identical data augmentation to original data instances and synthetic data instances
at each training step. Contrary to gradient matching i.e. short-range trajectory matching [45],
Trajectory Matching (TM) aims at transferring the knowledge of long-range trajectory from pre-
trained with the original dataset. It minimizes the difference between the training trajectory on
synthetic data and the training trajectory on real data. Distribution Matching (DM) [44] points out
the computation cost of precedents. Therefore, the authors propose a new objective that aims at
aligning the feature distributions of both the original dataset and the synthetic dataset within sampled
embedding spaces. CAFE [32] extends the DM by layer-wise feature matching. Kernel Inducing
Point (KIP) [24] introduces a kernel-based objective that leverages infinite-width neural networks. It
optimizes to let condensed datasets be kernel inducing points in kernel ridge regression. FRePo [46]
points out the meta-gradient computation and overfitting in dataset distillation. FRePo overcomes
these challenges by utilizing the truncated backpropagation through time and model pool.

HaBa [19]. HaBa proposed a technique for dataset factorization, which involves breaking the
synthetic dataset into bases and hallucinator networks. The hallucinator takes bases as input and
generates image instances. By learning bases and hallucinators, the resulting model could produce
more diverse samples based on the available budget. However, incorporating an additional network
in distillation requires a separate budget, which is distinct from the data instances. For example,
HaBa does not perform when 1 image per class setting, although using light-weight hallucinators.
Furthermore, joint learning of both the network and data usually leads to instability in the training.

IDC [14]. IDC configures the synthetic dataset as several reduced-size of spatial images and
utilizes the differentiable multi-formation function to restore to the original size. The usual choice
of multi-formation function is an upsampling module, which does not require training. Therefore,
efficient parameterization enables the increasing the available number of data instances. However,
the compression process still takes place in the spatial domain, leading to the loss of information and
inefficient utilization of the budget. Additionally, [8] empirically showed that upsampling methods
cause distortion in the spectral distribution of natural images.

GLaD [4]. GLaD employs a pre-trained generative model and distills the synthetic dataset in the
latent space of the generative model, such as Generative Adversarial Networks (GAN). By leveraging
the generative model, GLaD encourages better generalization to unseen architecture and scale to high-
dimensional datasets. However, generative models typically require a large number of parameters,
which introduces several inefficiencies. Firstly, storing a generative model with many parameters is
burdensome in dataset distillation which is budget-constrained. Due to the budget constraint, GLaD
proposes to use a generative model for training, and at the end of training, create a distilled instance
by combining the distilled latent code and generative model to create a distilled instance and store it
in the budget. This eliminates the need to allocate a budget for the generative model, but the amount
of budget occupied by one distilled instance is the same as the input-sized parameterization method.
As a result, it creates the same number of instances as the input-sized parameterization method,
which makes the synthetic dataset insufficiently expressive. There is also a computational inefficiency
because it takes more time to move forward and backward due to the large number of parameters.
Finally, Frequency transform is dataset agnostic, while the deep generative model needs to apply a
suitable structure to the dataset. This has the inefficiency of selecting the appropriate structure based
on the dataset.

1

A.2 Frequency Transform

Additional Review of Frequency Transform. As mentioned in the main paper, the form of the
frequency transform depends on the selection of the basis function ϕ(a, b, u, v) (see Eq. (2) in
the main paper). Discrete Cosine Transform (DCT) uses the cosine function as the basis function
i.e. ϕ(a, b, u, v) = cos

(
π
d1
(a + 1

2u)
)
cos
(

π
d2
(b + 1

2v)
)
. Discrete Fourier Transform (DFT) utilizes

the exponential function as the basis function i.e. ϕ(a, b, u, v) = e−i2π(ua
d1

+ vb
d2

). Discrete Wavelet
Transform (DWT) employs the wavelet function, such as the Haar wavelet function or the Daubechies
wavelet. In the case of images with multiple color channels, both frequency transform and inverse
frequency transform can be independently applied to each channel. There are various research areas
in machine learning, which use the property of frequency domain. In the following paragraphs, we
review research conducted in the direction of utilizing the property of frequency domain such as
adversarial attacks and analyze the neural network.

Adversarial Attack. Recently, in adversarial attack areas, there has been a discussion suggesting
that attacks in the frequency domain exhibit higher effectiveness compared to attacks based in
the spatial domain [9, 29]. In [9], the authors propose a method to constrain the search space of
adversarial attacks to the low-frequency domain. This method consistently reduces the black-box
attack’s query cost. Furthermore, the authors of [29] show empirical evidence of the effectiveness of
the low-frequency attack.

Analyzing Neural Network. There are a bunch of studies that analyze neural networks in terms
of frequency transforms. Spectral bias in deep neural networks [25, 2] is a well-known problem
in machine learning, which describes the tendency of the network to prefer specific frequency
components over other components while training. The presence of spectral bias in a deep neural
network can have a significant impact on its ability to generalize to new data instances by restricting
its ability to capture crucial patterns or features for a given task [2, 37]. To prevent such biased
training, [42, 39] designed a network and the corresponding loss function that takes transformed
values in the frequency domain as input. To prevent spectral bias during the training, [36, 13]
introduced frequency-based regularization techniques, while [20] proposed augmentation methods
based on the frequency domain.

Appendix B Proofs of Theoretical Evidences

B.1 Proof of Proposition 1

Proposition 1. Let domain A and B be connected by a linear bijective function, W . The sum of η
over a subset of dimensions in domain A for a dataset X is equal to the sum of η for the dataset
transformed to domain B using only the corresponding subset of dimensions.

Proof. Mathematically, let X be the d-dimensional dataset with n samples in the domain A, and let
XB be the transformed dataset in the domain B. Let S ⊆ {1, 2, ..., d} be the subset of dimensions for
which we want to calculate the sum of explained variance ratio. Then, the sum of explained variance
ratio for S in the domain A is given by:

RA(S) =

∑
i∈S λi∑d
i=1 λi

(1)

where λi is the eigenvalues of i-th dimension of the covariance matrix of X . As noted in the
assumption, bijective function W exists to transform the X into XB , i.e. XB = WX . We can write
the covariance matrix of XB as:

ΣB =
1

n
XBX

T
B =

1

n
(WX)(WX)T = W (

1

n
XXT)WT = WΣAW

T (2)

where ΣA is the covariance matrix of X in the domain A. Having said that, let SB = {j | j =
W (i), i ∈ S} be the corresponding subset of dimensions in the domain B. It should be noted that
each element in SB do not have to be one-hot dimension. Also, in a linear bijective transformation,

2

orthogonality in the original space is preserved in the transformed space. Then, the sum of explained
variance ratios for the dimension subset, SB , in the domain B is given as follows:

RB(SB) =

∑
j′∈SB

λ
′

j∑d
j=1 λj

(3)

where λj is an eigenvalue of j-th dimension of the covariance matrix of XB . Now, we can show that
RA(S) = RB(SB) as follows:

RB(SB) =

∑
j∈SB

λj∑d
j=1 λj

=

∑
j∈SB

λW (i)∑d
j=1 λW (i)

=

∑
i∈S λi∑d
i=1 λi

= RA(S) (4)

where we used the fact that the eigenvalues of the covariance matrix are the same for X and XB (i.e.,
λi = λW (j) for all i, j), and the fact that the sum of eigenvalues is invariant under bijective linear
transformation.

Therefore, we have shown that the sum of the explained variance ratio for a subset of dimensions in
the domain A is the same as the explained variance ratio sum for the domain B when transforming
the domain A dataset to the domain B using only that subset of dimensions. We re-arrange the claim
as follows: The sum of explained variance ratios of a masked dataset for a specific dimension subset
remains preserved even under linearly bijective transformations between domains.

B.2 Proof of Corollary 1

Corollary 1. Assume that two distinct domains, B and C, are linearly bijective with domain A by
WB and WC . let X be a dataset in domain A, and XB and XC be the datasets transformed to
domains B and C, respectively. Let V ∗

B,k and V ∗
C,k be the set of k dimension indexes that maximize η

in each domain. Let η∗B,k and η∗C,k be the corresponding sum of η for each domain. If η∗B,k ≥ η∗C,k,
then the sum of η for WV ∗

B,k
XB is greater than that of WV ∗

C,k
XC .

Proof. In Proposition 1, we proved that the sum of explained variance ratios of a masked dataset for
a specific dimension subset remains preserved even under linearly bijective transformations between
domains. Having said that, WV ∗

C,k
XC is a transformed dataset of XC from domain C to domain A,

where only the top-k dimensions that maximize the sum of explained variance ratios are utilized.
Proposition 1 states that this transformation preserves the sum of explained variance ratios, and since
η∗B,k ≥ η∗C,k, the sum of explained variance ratios is preserved even in terms of the relative magnitude
between the explained variance ratios sum of the transformed datasets.

Appendix C Experimental Details

C.1 Dataset

In this paper, we evaluate FreD on a variety of benchmark datasets, including those widely used in
dataset distillation.

• MNIST [18] is a handwritten digit image dataset with 60,000 images for training and 10,000
images for testing. Each image is a 28 × 28 gray-scale image and is categorized into 10
classes (digits from 0 to 9).

• Fashion MNIST [35] contains various fashion items images such as clothing and shoe. It
consists of a training set of 60,000 grayscale images and a test set of 10,000 images. Each
image has a 28× 28 size. Fashion MNIST has 10 classes in total.

• SVHN [23] is a real-world digit image dataset with 73,257 images for training and 26,032
images for testing. Each image in the dataset is a 32× 32 RGB image and belongs to one of
10 classes ranging from 0 to 9.

• CIFAR-10 [15] consists of 32× 32 RGB images with 50,000 images for training and 10,000
images for testing. It has 10 classes in total and each class contains 5,000 images for training
and 1,000 images for testing.

3

• CIFAR-100 [15] comprises a total of 60,000 32× 32 RGB images distributed across 100
classes. Within each class, 500 images are allocated for training, while 100 images are for
testing. These 100 classes are further grouped into 20 superclasses, with each superclass
consisting of 5 classes at a more specific level.

• 3D MNIST (https://www.kaggle.com/datasets/daavoo/3d-mnist) consists of
10,000 training data and 1,000 test data, and each data has 1× 16× 16× 16 size. Each data
instance is categorized into 10 classes.

• Tiny-ImageNet [17] is a downsampled subset of ImageNet [5] to a size of 64 × 64. This
dataset consists of 200 classes and each class contains 500 images for training and 100
images for testing.

• ImageNet-Subset is a dataset consisting of a subset of similar features in the ImageNet [5].
By following the previous work, we consider diverse types of subsets: ImageNette (various
objects)[12], ImageWoof (dog breeds)[12], ImageFruit (fruits) [3], ImageMeow (cats) [3],
ImageSquawk (birds) [3], ImageYellow (yellowish things) [3], and ImageNet-[A, B, C, D,
E] (based on ResNet50 performance) [4]. Each subset has 10 classes. We consider two
types of resolution: 128× 128 and 256× 256.

• LSUN [41] aims at understanding the large-scale scene images. The original LSUN dataset
has 10 classes and each class contains a large number of images, ranging from 120k to
3,000k for training. We consider two datasets, coined as LSUN-10k/LSUN-25k, which
randomly sampled 10k/25k instances per class which resulted in a total 100k/250k instances,
respectively. We also downsize each instance to a 128× 128 size.

• CIFAR-10.1 [27] consists of 2,000 new test images which have same classes as CIFAR-10.
• CIFAR-10-C and ImageNet-C [11] aim at measuring the robustness of object recognition

based on CIFAR-10 and ImageNet, respectively. They have 15 types of corruption and each
corruption has five levels with level 5 indicating the most severest. We create ImageNet-
Subset-C by selecting data from ImageNet-C that matches the ImageNet-Subset classes.

C.2 Architecture

For 2D image datasets, we basically employ an n-depth convolutional neural network, coined
ConvNetDn, by following the previous works. The ConvNetDn has n duplicate blocks, which consist
of a convolution layer with 3× 3-shape 128 filters, an instance normalization layer [31], ReLU, and
an average pooling with 2×2 kernel size with stride 2. After the convolution blocks, a linear classifier
outputs the logits. We utilize a different number of blocks depending on the resolution: ConvNetD3
for 28× 28 and 32× 32, ConvNetD4 for 64× 64, ConvNetD5 for 128× 128 and ConvNetD6 for
256× 256. For the performance comparison for different test network architectures, we also follow
the precedent: ResNet [10], VGG [30], AlexNet [16], and ViT [7].

For the 3D point cloud dataset; 3D MNIST, we implement a 3D version of ConvNet, coined
Conv3DNet. Similarly, Conv3DNet has three duplicate blocks; a convolution layer with 3× 3× 3-
shape 64 filters, a 3D instance normalization, ReLU, and a 3D average pooling with 2× 2× 2 with
stride 2. A linear layer follows these convolution blocks.

C.3 Implementation Configurations

We use trajectory matching objective (TM) [3] for LDD as a default although FreD can use any
dataset distillation loss. Similarly, we utilize Discrete Cosine Transform (DCT) as a default frequency
transform F . For the implementation of frequency transform, we utilize the open-source PyTorch
library; torch-dct (https://github.com/zh217/torch-dct) for DCT and pytorch_wavelets
(https://github.com/fbcotter/pytorch_wavelets) for Discrete Wavelet Transform (DWT).
We utilize the built-in function of PyTorch for the Discrete Fourier Transform (DFT). We separately
apply the frequency transform to each channel for RGB image datasets. We use an SGD optimizer
with a momentum rate of 0.5 for all our experiments. Each experiment is trained with 15,000
iterations. Contrary to previous research [3, 19], FreD does not use the ZCA Whitening. We used
four RTX 3090 GPUs by default and two Tesla A100 GPUs for CIFAR-100, Tiny-ImageNet, and
ImageNet-Subset. We basically follow the evaluation protocol of the previous works [45, 44, 3]. We
evaluate each method by training 5 randomly initialized networks from scratch on optimized S. We
provide the detailed hyper-parameters in Table 9 (see the end of Appendix).

4

https://www.kaggle.com/datasets/daavoo/3d-mnist
https://github.com/zh217/torch-dct
https://github.com/fbcotter/pytorch_wavelets

Appendix D Additional Experimental Results

D.1 Performance Comparison on Low-dimensional Datasets

We evaluate our proposed method on low-dimensional datasets (≤ 64×64 resolution) such as MNIST,
Fashion MNIST, and Tiny-ImageNet. Table 1 shows that FreD achieves improved or competitive
performances in most experimental settings. These results repeatedly support our conjecture: the
utilization of the frequency domain yields beneficial outcomes in terms of enhancing performance.

FreD’s motivation lies in leveraging select important dimensions of the frequency domain, which can
contain much of the spatial domain’s information, to utilize the given memory budget more efficiently.
This efficiency manifests greater utility when the available memory budget is more limited. Through
extensive experiments results, FreD demonstrates more substantial performance improvement in most
experiments with an IPC=1 setting. TinyImageNet is originally a dataset with 500 instances per class,
and the IPC=50 setting for this dataset could be considered a not-so-drastic reduction. In situations
where such a significant reduction doesn’t occur, FreD’s motivation may be weakened. Excluding
this particular setting, FreD consistently demonstrates performance improvement compared to the
baseline across evaluations.

Table 1: Test accuracies (%) on MNIST, Fashion MNIST, and Tiny-ImageNet. The best results and
the second-best result are highlighted in bold and underline, respectively. Note that IDC does not
provide the standard deviation on MNIST and Fashion MNIST experiments in the original paper.

MNIST Fashion MNIST Tiny-ImageNet

IPC 1 10 1 10 1 10 50
#Params 7.84k 78.4k 7.84k 78.4k 2457.6k 24576k 122880k

Coreset Random 64.9 ±3.5 95.1±0.9 51.4 ±3.8 73.8 ±0.7 1.4 ±0.1 5.0 ±0.2 15.0 ±0.4
Herding 89.2 ±1.6 93.7 ±0.3 67.0 ±1.9 71.1 ±0.7 2.8 ±0.2 6.3 ±0.2 16.7 ±0.3

Input-sized
parameterization

DC 91.7 ±0.5 97.4 ±0.2 70.5 ±0.6 82.3 ±0.4 - - -
DSA 88.7 ±0.6 97.8 ±0.1 70.6 ±0.6 84.6 ±0.3 - - -
DM 89.7 ±0.6 97.5 ±0.1 - - 3.9 ±0.2 12.9 ±0.4 24.1 ±0.2

CAFE+DSA 90.8 ±0.5 97.5 ±0.1 73.7 ±0.7 83.0 ±0.3 - - -
TM 88.7 ±1.0 96.6 ±0.4 75.7 ±1.5 88.4 ±0.4 8.8 ±0.3 23.2 ±0.2 28.0 ±0.2
KIP 90.1 ±0.1 87.5 ±0.0 73.5 ±0.5 86.8 ±0.1 - - -

FRePo 93.0 ±0.4 98.6 ±0.1 75.6 ±0.3 86.2 ±0.2 15.4 ±0.3 25.4 ±0.2 -

Parameterization
IDC 94.2 98.4 81.0 86.0 - - -

HaBa 92.4 ±0.4 97.4 ±0.2 80.9 ±0.7 88.6 ±0.2 - - -
FreD 95.8 ±0.2 97.6 ±0.8 84.6 ±0.2 89.1 ±0.2 19.2 ±0.4 24.2 ±0.4 26.4 ±0.4

Entire original dataset 99.6 ±0.0 93.5 ±0.1 37.6 ±0.4

D.2 Performance Comparison on High-dimensional Datasets

We further evaluate our proposed method on high-dimensional datasets (≥ 128× 128 resolution).
Table 2 and 3 present the results of extensive experiments on 128× 128 resolution ImageNet-Subset.
As in the case of low-dimensional datasets, FreD consistently achieves the highest performance im-
provement among the parameterization methods in most experimental settings. Since the performance
of FreD at IPC=10 (#Params=4915.2k) already overwhelms the performance of HaBa of IPC=11
(#Params=5406.72k), we did not conduct the experiment of FreD on IPC=11 (#Params=5406.72k).
Furthermore, in Table 4, FreD repeatedly shows better performance on 256×256 resolution ImageNet-
Subset.

It should be noted that FreD significantly improves the performance of cross-architecture generaliza-
tion. For instance, GLaD also improves cross-architecture performance, but it shows the performance
degradation in the architecture used for training when the utilized dataset distillation loss is TM. On
the other hand, FreD shows the best performance in all experiments. It means that FreD provides
insight into how well the frequency domain-based parameterization method understands the task,
rather than overfitting to a particular architecture.

In summary, these extensive experimental results continuously demonstrate the efficacy of utilizing
the frequency domain in dataset distillation regardless of the image’s resolution.

5

Table 2: Test accuracies (%) on ImageNet-Subset (Image-[Nette, Woof, Fruit, Yellow, Meow,
Squawk], 128 × 128). Note that HaBa is structurally disabled to experiment in IPC=1
(#Params=491.52k) due to the nature of its methodology.

#Params Model ImageNette ImageWoof ImageFruit ImageYellow ImageMeow ImageSquawk

491.52k
(IPC=1)

TM 47.7 ±0.9 28.6 ±0.8 26.6 ±0.8 45.2 ±0.8 30.7 ±1.6 39.4 ±1.5
w/ IDC 61.4 ±1.0 34.5 ±1.1 38.0 ±1.1 56.5 ±1.8 39.5 ±1.5 50.2 ±1.5

w/ HaBa - - - - - -
w/ FreD 66.8 ±0.4 38.3 ±1.5 43.7 ±1.6 63.2 ±1.0 43.2 ±0.8 57.0 ±0.8

983.04k
(IPC=2)

TM 55.2 ±1.1 30.9 ±1.3 31.6 ±1.6 49.7 ±1.4 35.3 ±2.2 43.9 ±0.6
w/ IDC 65.4 ±1.2 37.6 ±1.6 43.0 ±1.5 62.4 ±1.7 43.1 ±1.2 55.5 ±1.2

w/ HaBa 51.9 ±1.7 32.4 ±0.7 34.7 ±1.1 50.4 ±1.6 36.9 ±0.9 41.9 ±1.4
w/ FreD 69.0 ±0.9 40.0 ±1.4 46.3 ±1.2 66.3 ±1.1 45.2 ±1.7 62.0 ±1.3

4915.2k
(IPC=10)

TM 63.0 ±1.3 35.8 ±1.8 40.3 ±1.3 60.0 ±1.5 40.4 ±2.2 52.3 ±1.0
w/ IDC 70.8 ±0.5 39.8 ±0.9 46.3 ±1.4 68.7 ±0.8 47.9 ±1.4 65.4 ±1.2

w/ HaBa - - - - - -
w/ FreD 72.0 ±0.8 41.3 ±1.2 47.0 ±1.1 69.2 ±0.6 48.6 ±0.4 67.3 ±0.8

5406.72k
(IPC=11)

TM 63.9 ±0.5 36.6 ±0.8 40.1 ±1.9 60.4 ±1.5 41.0 ±1.5 54.6 ±1.0
w/ HaBa 64.7 ±1.6 38.6 ±1.3 42.5 ±1.6 63.0 ±1.6 42.9 ±0.9 56.8 ±1.0

Table 3: Test accuracies (%) on ImageNet-Subset (ImageNet-[A, B, C, D, E], 128 × 128) with
IPC=1 (#Params=491.52k). "Cross" denotes the average test accuracy of trained AlexNet, VGG11,
ResNet18, and ViT on each synthetic dataset.

ImageNet-A ImageNet-B ImageNet-C ImageNet-D ImageNet-E

ConvNet Cross ConvNet Cross ConvNet Cross ConvNet Cross ConvNet Cross

DC 43.2 ±0.6 38.7 ±4.2 47.2 ±0.7 38.7 ±1.0 41.3 ±0.7 33.3 ±1.9 34.3 ±1.5 26.4 ±1.1 34.9 ±1.5 27.4 ±0.9
w/ GLaD 44.1 ±2.4 41.8 ±1.7 49.2 ±1.1 42.1 ±1.2 42.0 ±0.6 35.8 ±1.4 35.6 ±0.9 28.0 ±0.8 35.8 ±0.9 29.3 ±1.3
w/ FreD 53.1 ±1.0 48.0 ±1.4 54.8 ±1.2 47.6 ±1.5 54.2 ±1.2 47.8 ±1.2 42.8 ±1.1 36.3 ±1.4 41.0 ±1.1 35.0 ±1.1

DM 39.4 ±1.8 27.2 ±1.2 40.9 ±1.7 24.4 ±1.1 39.0 ±1.3 23.0 ±1.4 30.8 ±0.9 18.4 ±0.7 27.0 ±0.8 17.7 ±0.9
w/ GLaD 41.0 ±1.5 31.6 ±1.4 42.9 ±1.9 31.3 ±3.9 39.4 ±0.7 26.9 ±1.2 33.2 ±1.4 21.5 ±1.0 30.3 ±1.3 20.4 ±0.8
w/ FreD 58.0 ±1.7 48.7 ±1.5 58.6 ±1.3 47.5 ±1.5 55.6 ±1.4 47.1 ±1.0 46.3 ±1.2 35.9 ±2.0 45.0 ±1.8 32.1 ±1.6

TM 51.7 ±0.2 33.4 ±1.5 53.3 ±1.0 34.0 ±3.4 48.0 ±0.7 31.4 ±3.4 43.0 ±0.6 27.7 ±2.7 39.5 ±0.9 24.9 ±1.8
w/ GLaD 50.7 ±0.4 39.9 ±1.2 51.9 ±1.3 39.4 ±1.3 44.9 ±0.4 34.9 ±1.1 39.9 ±1.7 30.4 ±1.5 37.6 ±0.7 29.0 ±1.1
w/ FreD 67.7 ±1.0 51.9 ±1.1 69.3 ±1.2 50.7 ±1.2 63.6 ±2.0 48.4 ±1.1 54.4 ±1.0 39.2 ±1.4 55.4 ±1.7 39.8 ±1.1

Table 4: Test accuracies (%) on ImageNet-Subset (ImageNet-[A, B, C, D, E], 256 × 256) with
IPC=1 (#Params=1966.08k). "Cross" denotes the average test accuracy of trained AlexNet, VGG11,
ResNet18, and ViT on each synthetic dataset.

ImageNet-A ImageNet-B ImageNet-C ImageNet-D ImageNet-E

ConvNet Cross ConvNet Cross ConvNet Cross ConvNet Cross ConvNet Cross

DC - 38.3 ±4.7 - 32.8 ±4.1 - 27.6 ±3.3 - 25.5 ±1.2 - 23.5 ±2.4
w/ GLaD - 37.4 ±5.5 - 41.5 ±1.2 - 35.7 ±4.0 - 27.9 ±1.0 - 29.3 ±1.2
w/ FreD 54.8 ±0.9 48.0 ±0.9 56.2 ±1.0 48.2 ±1.7 53.5 ±1.4 47.3 ±1.0 41.6 ±1.2 37.8 ±1.0 39.1 ±1.5 33.4 ±1.2

D.3 Performance Comparison on Large-size Dataset

Table 5: Test accuracies (%) on LSUN.

LSUN-10k LSUN-25k

DC DM DC DM

Vanilla 24.0 ±1.1 22.3 ±0.4 23.9 ±0.5 22.3 ±0.4
w/ IDC 22.7 ±0.3 27.4 ±0.8 22.7 ±0.7 27.1 ±0.4
w/ FreD 30.3 ±0.9 37.1 ±0.2 32.1 ±0.2 36.3 ±0.6

Entire dataset 71.8 ±0.3 72.8 ±0.3

Distilling the dataset into a small cardinality synthetic
dataset can be more effective when the size of the
original is large. Therefore, we further investigate the
usefulness of our method and several baselines on a
dataset with a large number of instances. We choose
LSUN dataset [41] as the large-size dataset. Table 5
provides performances of FreD and other baselines
on the LSUN dataset. As a result, FreD achieves
the best performance compared to the implemented
baselines.

6

D.4 More Results on Compatibility of Parameterization.

In Table 2 of the main paper, we reported an average performance over the unseen test network archi-
tecture such as AlexNet, VGG11, and ResNet18 for evaluating the cross-architecture generalization.
Herein, we provide detailed performance for each test network architecture. Table 6 repeatedly shows
the significant performance improvement of FreD in terms of cross-architecture generalization. These
experimental results validate the effectiveness of frequency domain-based parameterization on both
the dataset distillation objective and unseen test architectures.

Table 6: Test accuracies (%) on CIFAR-10 under various dataset distillation loss and cross-architecture.
We distill the synthetic dataset by using ConvNet.

DC DM TM

IPC 2 11 51 2 11 51 2 11 51
#Params 61.44k 337.92k 1566.72k 61.44k 337.92k 1566.72k 61.44k 337.92k 1566.72k

AlexNet

Vanilla 20.0 ±1.3 22.4 ±1.4 29.5 ±0.9 20.7 ±3.6 37.0 ±0.9 49.1 ±0.9 26.1 ±1.0 36.0 ±1.5 49.2 ±1.3
w/ IDC 26.8 ±1.8 41.5 ±0.5 44.2 ±0.7 36.4 ±1.1 47.7 ±0.6 59.2 ±0.7 32.5 ±2.2 43.7 ±3.0 54.9 ±1.1

w/ HaBa 22.2 ±1.1 33.0 ±0.9 33.4 ±1.4 32.1 ±0.6 44.1 ±0.7 53.1 ±0.9 43.6 ±1.5 49.0 ±3.0 60.1 ±1.4
w/ FreD 39.8 ±0.4 42.4 ±0.6 46.4 ±0.5 46.4 ±0.7 55.7 ±0.5 65.7 ±0.5 44.1 ±1.3 55.9 ±0.8 65.9 ±0.8

VGG11

Vanilla 28.0 ±0.3 35.9 ±0.7 38.7 ±0.5 22.3 ±1.0 41.6 ±0.6 55.2 ±0.5 38.0 ±1.2 50.5 ±1.0 61.4 ±0.3
w/ IDC 34.3 ±0.7 40.0 ±0.5 42.4 ±0.8 38.2 ±0.6 52.8 ±0.5 62.2 ±0.3 48.2 ±1.2 52.1 ±0.7 65.2 ±0.6

w/ HaBa 29.4 ±0.9 37.0 ±0.4 41.9 ±0.6 26.9 ±0.6 49.4 ±0.4 67.5 ±0.4 48.3 ±0.5 60.5 ±0.6 67.5 ±0.4
w/ FreD 38.8 ±0.9 40.0 ±0.8 44.8 ±0.9 48.1 ±0.9 59.0 ±0.6 66.6 ±0.2 51.0 ±0.8 60.0 ±0.6 69.9 ±0.4

ResNet18

Vanilla 18.1 ±0.8 18.4 ±0.4 22.1 ±0.4 22.3 ±1.0 40.0 ±1.5 53.4 ±0.7 35.2 ±1.0 45.1 ±1.5 54.5 ±1.0
w/ IDC 24.9 ±0.9 24.8 ±0.7 34.1 ±0.7 37.3 ±1.5 50.9 ±0.7 62.5 ±0.5 46.7 ±0.9 50.2 ±0.6 64.5 ±1.2

w/ HaBa 24.5 ±0.6 24.3 ±0.6 31.1 ±0.3 31.3 ±0.7 47.6 ±0.5 59.6 ±0.4 47.4 ±0.7 58.0 ±0.9 64.4 ±0.6
w/ FreD 33.0 ±1.1 29.8 ±0.6 37.0 ±0.9 49.7 ±0.3 57.3 ±1.2 62.6 ±1.0 53.9 ±0.7 64.4 ±0.6 71.4 ±0.7

D.5 More Results on Robustness against Corruption.

IPC=1
(#Params=30.72k)

IPC=10
(#Params=307.2k)

0

10

20

30

40

50

60
Te

st
 a

cc
ur

ac
y

(%
)

DC
DSA
TM
IDC
FreD

Figure 1: Test accuracies (%)
on CIFAR-10.1

Our proposed method, FreD, demonstrates substantial robustness
against corruption, evidence supported by the findings in Figure 7
and Table 5 of the main paper. In this context, we provide further ex-
perimental results: 1) the test accuracies results for CIFAR-10.1, and
2) a detailed breakdown of test accuracies based on different types
of corruption in CIFAR-10-C. For detailed results on CIFAR-10-C,
we report the performance of the severest level and average across
all severity levels. In Figure 1, FreD achieves the best performance
with a significant gap over the baseline methods on CIFAR-10.1.
Furthermore, Table 7 verifies the superior robustness regardless of
corruption type.

Table 7: Test accuracies (%) on CIFAR-10-C with IPC=1 (#Params=30.72k).

(a) Severity level 5 (most severest)

Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr Elastic Pixel JPEG Avg.

DC 28.0 28.1 27.5 28.4 28.1 27.9 27.4 27.7 27.9 19.3 28.1 28.2 28.1 28.5 28.5 27.4
DSA 27.5 27.5 27.0 27.9 27.5 27.5 26.7 27.2 27.7 18.8 27.3 28.9 27.9 28.1 27.9 27.0
TM 30.2 30.4 28.6 29.0 28.0 28.2 28.6 30.4 29.6 23.0 32.5 31.4 29.3 30.0 31.2 29.4
IDC 36.4 36.2 33.3 39.4 37.6 38.6 38.4 38.1 38.7 29.7 37.9 39.1 38.4 39.2 38.7 37.3
FreD 54.4 54.2 48.9 57.1 54.8 55.4 55.4 55.9 54.7 43.3 56.3 41.6 57.1 58.5 58.1 53.7

(b) Average across all severity levels

Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr Elastic Pixel JPEG Avg.

DC 28.2 28.3 28.0 28.5 28.3 28.2 27.8 28.0 28.2 24.3 28.4 28.6 28.1 28.5 28.5 28.0
DSA 27.8 27.8 27.5 28.1 27.8 27.8 27.3 27.6 27.8 23.7 27.9 28.8 27.6 28.2 28.0 27.6
TM 30.8 31.1 29.9 30.5 29.0 29.5 29.6 31.0 30.5 28.0 32.3 32.4 29.5 31.1 31.5 30.4
IDC 37.4 37.8 36.3 39.7 38.2 39.0 39.0 38.9 38.6 35.7 39.3 40.4 38.5 39.4 39.1 38.5
FreD 56.7 57.3 54.4 58.9 56.4 57.2 57.3 58.0 56.5 53.6 59.2 53.5 57.2 59.6 58.9 57.0

7

D.6 Performance Comparison with Memory Addressing

Memory addressing (MA) [6] is a new parameterization method to create a common representation
by encapsulating the features shared among different classes into a set of bases. The reported
performances of [6] show mixed results under various settings. However, the performance of [6] is
not solely due to the MA but also includes the effects of other components. For a fair comparison
between MA and FreD, we standardized the distillation loss and evaluated their performances.

Figure 2a shows that MA and FreD exhibit competitive performances on CIFAR-10 with each other
under the implemented settings of DM and TM losses. We further assessed the robustness of each
approach by evaluating the transferability of the synthetic datasets against diverse distribution shifts.
Figure 2b represents mixed result performance on CIFAR-10.1. As a result in Figure 2c, FreD
particularly shows better performances than MA in most corrupted versions of datasets. Furthermore,
it should be noted that FreD achieves higher performance than MA when the severity level becomes
higher. We conjecture that because FreD selects informative dimensions in the frequency domain, it
has good robustness to corruptions that typically occur in the high-frequency domain. In terms of
computational time, MA requires about nearly three times more than FreD. Please refer to Section
E.4 for the detailed discussion.

While both methods are distinct approaches, the implementation of MA in the spatial domain allows
a further transformation to the frequency domain. This enables the orthogonal application of MA and
FreD. One possible combination is to define the bases of MA in the frequency domain and select the
informative dimensions. It allows more flexible parameterization. We leave it as future work.

DM TM
30

35

40

45

50

55

60

Te
st

 a
cc

ur
ac

y
(%

)

MA
FreD

(a) Target dataset: CIFAR-10

DM TM
30

35

40

45

50

55

60

Te
st

 a
cc

ur
ac

y
(%

)

MA
FreD

(b) Target dataset: CIFAR-10.1

1 2 3 4 5
Severity Level

40

45

50

55

60

Te
st

 a
cc

ur
ac

y
(%

)

TM w/ MA
TM w/ FreD

DM w/ MA
DM w/ FreD

(c) Target dataset: CIFAR-10-C

Figure 2: Performance comparison of MA and FreD on each target dataset (Source dataset: CIFAR-
10). Note that higher level indicates higher corruption.

D.7 Compatibility with BPTT

BPTT BPTT+Aug
35

40

45

50

55

60

Te
st

 a
cc

ur
ac

y
(%

)

Vanilla
w/ FreD

Figure 3: Study of FreD on BPTT

Back-propagation through time (BPTT) is another optimiza-
tion framework that effectively solves the bi-level optimization
problem. [6] suggests BPTT to train the synthetic dataset in
dataset distillation. FreD is a new type of parameterization
framework for dataset distillation, while BPTT is introduced as
a new optimization framework for dataset distillation. Hence,
they can be utilized orthogonally. To verify the efficiency of
FreD, we conduct an experiment on models that combine the
BPTT framework with FreD.

Figure 3 shows the performance of the model with
FreD in the BPTT framework on CIFAR-10 under IPC=1
(#Params=30.72k). As mentioned in [6], we considered two
variants of BPTT framework with and without augmentation.
We reduced the number of training iterations for each baseline
and FreD from 50,000 to 5,000.

As a result, BPTT with FreD outperformed BPTT without FreD under BPTT framework regardless of
whether or not the augmentation was used. Furthermore, even when compared to the performance of

8

BPTT with full iteration training reported in the original paper (49.± 0.6), BPTT w/ FreD achieved
higher performance (57.4± 0.4). It indicates that FreD is an efficient methodology that can also be
applied in the BPTT framework.

D.8 Additional Ablation Study on Frequency Transform

We basically utilized three frequency transforms: DCT, DFT, and DWT. We especially want to
highlight the energy compaction property of DCT, where most of the signal information tends to
be concentrated in a few low-frequency components (Please refer to Figure 2 in [1] and Figure 1 in
[40]). This characteristic aligns well with the motivation of FreD, and Figure 8b of the main paper
demonstrates that DCT is the best choice among the possible options.

To further analyze the effect of frequency transforms on FreD, we have conducted various experiments.
Figure 4 presents the results as follows:

• Across all settings, we observe improved performances of FreD than the baseline regardless
of the type of frequency transform employed.

• DCT outperforms DFT and DWT in most cases, highlighting the effective exploitation of
DCT’s energy compaction property within the FreD framework.

• DFT exhibits relatively lower performance in comparison to DCT and DWT. This discrep-
ancy is attributed to the complex-valued nature of DFT. Unlike DCT and DWT, which
operate in real space, DFT requires additional resources to represent a single instance due
to its complex space. As a result, the quantity of synthetic instances that can be generated
within an identical budget is reduced by half than others, leading to lower performance.

IPC=1
(#Params=30.72k)

IPC=10
(#Params=307.2k)

20
30
40
50
60
70
80
90

Te
st

 a
cc

ur
ac

y
(%

)

DC

Vanilla
w/ DFT
w/ DWT
w/ DCT

IPC=1
(#Params=30.72k)

IPC=10
(#Params=307.2k)

20
30
40
50
60
70
80
90

Te
st

 a
cc

ur
ac

y
(%

)

DM

Vanilla
w/ DFT
w/ DWT
w/ DCT

IPC=1
(#Params=30.72k)

IPC=10
(#Params=307.2k)

20
30
40
50
60
70
80
90

Te
st

 a
cc

ur
ac

y
(%

)

TM

Vanilla
w/ DFT
w/ DWT
w/ DCT

(a) SVHN

IPC=1
(#Params=30.72k)

IPC=10
(#Params=307.2k)

20

30

40

50

60

70

Te
st

 a
cc

ur
ac

y
(%

)

DC

Vanilla
w/ DFT
w/ DWT
w/ DCT

IPC=1
(#Params=30.72k)

IPC=10
(#Params=307.2k)

20

30

40

50

60

70

Te
st

 a
cc

ur
ac

y
(%

)

DM

Vanilla
w/ DFT
w/ DWT
w/ DCT

IPC=1
(#Params=30.72k)

IPC=10
(#Params=307.2k)

20

30

40

50

60

70

Te
st

 a
cc

ur
ac

y
(%

)

TM

Vanilla
w/ DFT
w/ DWT
w/ DCT

(b) CIFAR-10

Figure 4: Ablation study on the frequency transform. Note that DM does not provide the test
accuracies on SVHN in the original paper.

D.9 Performance Comparison with Post-downsampling

As mentioned by IDC, the most basic methodology for dataset distillation is to generate the large-
cardinality S and compress them with post-processing. In the previous study, the comparison was
conducted only in the spatial domain, but this paper extends it to consider post-processing in the
frequency domain. Post-processing is the compression of vanilla in each domain. Table 8 presents
the results as follows:

9

• Post-downsampling in both domains achieves lower performance than DM since they
compress the trained synthetic dataset. These results indicate the inevitable information loss.
While post-downsampling shows information loss, frequency domain-based downsampling
achieves higher performance than spatial domain. It demonstrates the frequency domain
stores task-relevant information more effectively than spatial domain.

• End-to-end methods achieve higher performance than post-downsampling methods. Among
them, the frequency domain-based method (FreD) achieves higher performance than the
spatial domain-based method (IDC).

• FreD shows a higher cross-architecture generalization despite spending a quarter of the
budget of the vanilla model.

Table 8: Test accuracies (%) comparison under various test network architecture on CIFAR-10. We
utilize DM for the dataset distillation loss and ConvNet for the training architecture.

Decoded instances
per class #Params Model ConvNet AlexNet VGG11 ResNet18

40

1228.8k DM 61.2 ±0.4 48.8 ±0.5 53.9 ±0.5 52.1 ±0.5

307.2k
Post-downsampling Spatial 56.7 ±0.5 44.6 ±0.8 49.9 ±0.6 49.5 ±0.6

Frequency 59.3 ±0.4 47.4 ±0.5 52.5 ±0.5 51.2 ±0.6

End-to-End IDC 59.6 ±0.5 47.6 ±0.7 52.2 ±0.6 50.8 ±0.5
FreD 60.5 ±0.3 50.9 ±0.4 54.8 ±0.3 53.1 ±0.9

D.10 More Visualization of Binary Mask and Transformed Images

We provide the binary mask and transformed images from our proposed method on various datasets:
SVHN (see Figure 9), CIFAR-10 (see Figure 10), CIFAR-100 (see Figure 11a), Tiny-ImageNet (see
Figure 11b), and ImageNet-Subset (see Figure 12 and 14). For CIFAR-100 and Tiny-ImageNet, we
visualize the first 10 classes. For a better layout, we plot these visualizations at the end of the paper.
Through these results, we can observe that the constructed synthetic dataset by FreD contains both
intra-class diversity and inter-class discriminative features, regardless of the image resolution.

For 3D MNIST experiments, we provide Figure 8, which displays the original image and a set of
trained synthetic data through each distillation method. To enable visualization of the 16× 16× 16
dimension point cloud, we sliced each instance’s depth dimension into 16 images and displayed them
separately. The image located at the top left represents the frontmost view, while the image at the
bottom right corresponds to the rearmost view. From Figure 8, FreD effectively captures the class-
discriminative information that class 0 should possess. It indicates that the proposed frequency-based
dataset distillation framework is applicable to higher-dimensional data than two-dimensional data.
Furthermore, compared to the DM and IDC, the synthesized instance by FreD shows more clearer
boundary in dimensions 6 ∼ 11 which is the key class-discriminative information of 0. This result
demonstrates that the selection of informative dimensions in the frequency domain is effective. In the
revised paper, we will add the visualization of the 3D MNIST cloud synthesized by each method.

Appendix E Additional Discussions

E.1 Comparison between FreD and PCA-based Transform

0 64 200 400 600 800 1000
Number of selected dimensions by EVR

0

0.2

0.4

0.6

0.8
0.89
0.96

1

Su
m

 o
f E

VR

PCA-based transform
on Frequency domain
FreD
Difference

Figure 5: PCA vs FreD.

PCA-based transform, which sets the principal components of the
given dataset as new axes, can ideally preserve the sum of explained
variance ratio by selecting top-k principal components as a subset of
new dimensions. However, there are some evidence for the claim that
PCA cannot be practically utilized as a method of dataset distillation.

First, PCA-based transform requires an additional budget to store
the transform matrix. PCA-based transform utilizes top-k principal
components as new axes of the introduced domain. As these axes are
composed of a weighted sum of each dimension value, and therefore,
it is not possible to implement a feature like FreD, which selects a

10

subset of dimensions from the overall dimensions of the domain. Therefore, the transform matrix
created for projection is a d× k dimensional matrix consisting of the top-k principal components.
This matrix needs to be stored separately from the condensed dataset S, as it represents a distinct
component for transformation, which means an additional budget is needed. Unlike PCA-based
transforms, in the frequency domain transform, once you choose a specific frequency transform, the
corresponding transform function and inverse transform function remain fixed. Therefore, there is no
need to manage these functions separately with an additional budget.

Secondly, the commonly used linear PCA fails to capture the correlations present in the spatial
domain of the data (e.g., correlations between adjacent pixels in an image). Although there are
spatial principal component analysis [34] methods specifically designed for spatial domains, such
methodologies utilize spatial kernel matrix to model the correlation information between adjacent
pixels, which could introduce the possibility of information loss. In this subsection, we refer to
information loss specifically to the loss of information that occurs during the utilization of a spatial
kernel or converting kernel-extracted information into linear features. In other words, it is challenging
to accurately determine the principal components for a given dataset during the implementation,
making it difficult to use PCA transforms.

Having said that, we conducted the comparison between 1) the sum of explained variance ratio (EVR)
obtained through principal component analysis using a dataset transformed into the frequency domain
and 2) the sum of EVR by using FreD, which is based on dimension selection in the frequency
domain. The sum of EVR based on eigenvectors is maximum in terms of other comparable baselines.
However, it should be noted that even if PCA is performed based on the frequency domain, the
constraint of storing the projection matrix in the memory budget still remains. Figure 5 illustrates
the Cumulative EVR based on the different number of selected dimensions for each method. In our
whole experiments, the smallest dimension selection was 64 dimensions. Based on this dimension
selection, the Cumulative EVR of FreD, compared to the sum of the EVR of the top-64 eigenvectors
in PCA, differs by only around 7%. Furthermore, when more dimensions are selected, this difference
becomes smaller. In this regard, FreD can be considered an efficient methodology that sacrifices
slightly in EVR while not requiring an additional memory budget for an additional transform matrix.

E.2 More Visualization of ∥∇SLDD(S,D)∥ in Frequency Domain

(a) DC (b) TM

Figure 6: Visualization
of ∥∇SLDD(S,D)∥

The main idea of this paper is to compress spatial domain information
into fewer frequency dimensions. To verify our idea, we investigate
the magnitude of the gradient for LDD(S,D) i.e. ∥∇SLDD(S,D)∥.
Specifically, we visualize the magnitude of the gradient of DM distillation
loss in Figure 2b of the main paper. To demonstrate that our observation
is not confined to a specific distillation loss, we provide the magnitude of
the gradient in the frequency domain across different distillation losses,
which are DC and TM in Figure 6. It shows that the concentration of
gradient exhibits a consistent pattern regardless of the type of distillation
loss.

E.3 Discussion on Budget Allocation

In this section, we will delve further into how the frequency domain-based dimension subset selection
by FreD leads to a reduction in the actual budget. Let x ∈ Rd1×d2 as a data instance in the spatial
domain, whose dimension size is d = d1×d2. If each element of x is a 32-bit float, each image would
occupy 32 × d bits in memory. Let’s assume the same instance is transformed into the frequency
domain with the same dimension size, and we only utilize k dimensions in that domain. In that case,
the budget required to represent the values would decrease to 32 × k bits. However, in addition
to simply storing the values on selected dimensions, we also need to store information about the
positions where each value is located. One advantage of FreD is that instead of having separate
masks for each instance, it has separate masks for each class. It means that we only need to store the
position of the dimension being passed through, once per class. Therefore, we can prevent budget
waste by storing the indices of the selected dimension M̃ and the frequency coefficient value of that

11

dimension f̃ , rather than storing the entire frequency representation f :

f = F(x) =

(
0.2335 0.0000 0.1246
0.1243 1.0442 0.0000

0 0.0000 0.0000

)
⇐⇒

{
f̃ = [0.2335, 0.1246, 0.1243, 1.0442]

M̃ = [0, 2, 3, 4]

It should be noted that the masking list M̃ , which contains the dimension indices, only needs to store
integers. Additionally, since only one masking list per class is required, it reaches a level that can be
ignored in terms of the budget. Therefore, the total required budget becomes 32× k bits. With the
frequency information stored in this manner, it becomes possible to reassemble it into a tensor for
future use without any information loss.

E.4 Algorithm Complexity

As a complexity analysis, we consider the computation time for single image retrieval based on
FreD and other parameterization methods. For sized 2D image in a spatial domain, IDC utilizes a
resizing method as a parameterization, so its complexity is O(HW) where H is the height and W is
the width of the image. HaBa, which requires an additional network for computation, inherits the
complexity, O(HWF 2), where F is the filter size of the convolution neural network. MA operates
by performing matrix multiplication between the matrix and downsampled bases. Given that K
represents the number of bases and s is the downsampling scale, MA’s complexity is O(HW × K

s2).
FreD, when used with DCT, involves two operations: masking and inverse frequency transform. The
complexities of these steps are O(HW) and O(HW logW) respectively. Thus, the total complexity
of FreD is O(HW logW).

Based on the above complexity, Figure 7 shows the empirical wall-clock time of single-image retrieval
for each method. As a result, we show that FreD inherits the second-best single-image retrieval
complexity. Although IDC is most efficient in time complexity, we empirically demonstrated that
the parameterization based on IDC falls behind FreD in terms of performance in most settings.
Furthermore, we want to note that HaBa and GLaD, which utilize the parameterized transform, show
extremely high computation cost in terms of single-image retrieval.

IDC HaBa MA GLaD FreD
0

1

2

3

4

5

6

El
ap

se
d

Ti
m

e
(m

s)

0.13
0.48

(a) CIFAR-10 (32× 32)

IDC HaBa MA FreD
0

2

4

6

8

10

12

14

El
ap

se
d

Ti
m

e
(m

s)

0.32 0.87

(b) Tiny-ImageNet (64× 64)

IDC HaBa GLaD FreD
0

5

10

15

20

25

30

El
ap

se
d

Ti
m

e
(m

s)

0.1 0.46

(c) ImageNet-Subset (128× 128)

Figure 7: Wall-clock time of single image retrieval for each method. "ms" denotes the millisecond.

E.5 Influence of Spectral Bias on Frequency Domain-based Approach

Spectral bias refers to the phenomenon that neural networks are prone to prioritize learning the
low-frequency components over relatively higher-frequency components [26, 38, 8]. For FreD, even
though we employed a mask based on the explained variance ratio (EVR), which is not a simple
low-frequency filter: the low-frequency components in the frequency domain were predominantly
selected in most experimental scenarios. It should be noted that our EVR does not enforce keeping
the low-frequency components, unlike the neural network’s spectral bias; what EVR only enforces is
keeping the components with a higher explanation ratio on the image feature.

However, this characteristic can become a risk to performance if the task-specific information of data
is mostly found in the high-frequency components. These cases include 1) medical imaging on fine
details like tumors [21] and 2) digital watermarking [22]. In such cases, there may be a requirement
for new masking that allows FreD to capture important high-frequency components. The masking

12

strategy of FreD can be flexibly operated, and depending on the characteristics of the given dataset
and task, it can readily employ other strategies as needed.

E.6 Impact of Linear Bijectivity Assumption of F

Impact of linear bijectivity For the theory presented in Section 3.3 of the main paper to hold, the
function F must be linearly bijective. Note that FreD could utilize any kind of frequency transforms,
such as DCT, DFT, and DWT. Since these transforms are all linearly bijective in theory, the proposed
proposition could be applicable without any limitation.

Having said that, we elaborate on the potential issues that might emerge, when integrating not linearly
bijective transforms into the framework of FreD, as follows:

When F is not bijective. If F is not bijective, then its inverse F−1 does not exist. This absence
makes the process of transforming to another domain and then restoring back to the original domain
infeasible. It potentially results in information loss that interferes accurate reconstruction of the
original image. An alternative solution could be separating the transform into distinct encoder and
decoder components, which enable a procedure for one-to-one mapping. However, the construction
of such components necessitates additional training costs, when F of FreD does not require any kind
of additional training. Furthermore, if the encoding is not one-to-one, information might be lost
during the encoding process.

When F is not linear but bijective. FreD employs a subset of dimensions in the frequency domain.
The choice is feasible as the linearly bijective transform maintains the EVR in the selected dimensions.
Proposition and corollary in Section 3.3 theoretically support this attribute, where these do not apply
to nonlinear bijective transforms. For 2D-image processing, nonlinear bijective transforms include 1)
Log-Polar Transform, and 2) Radial Basis Function (RBF) transform. Domains from these transforms
do not exhibit the concentration of the original dataset’s variance on specific dimensions.

Appendix F Broader Impact

How to parameterize S for dataset distillation is highly versatile as it enhances efficiency and
performance by determining the form of the data optimized and stored, regardless of the form of
the objective of dataset distillation. Furthermore, in contrast to previous research that was solely
conducted in the spatial domain, the exploration of the frequency domain introduces a new perspective
in interpreting datasets. In our study, the analyzed dataset consists of pure images without any injected
noise. However, real-world datasets can often contain unintended adversarial noise or other types
of noise during the processing stages. Analyzing datasets based on the frequency domain enables
the detection of noise that may not be visually apparent to the human eye. Moreover, by separately
treating specific frequency information that is susceptible to noise, it becomes possible to extend the
research to areas such as noisy-filtered dataset distillation.

Appendix G Limitation

Efficacy Differences Depending on Applied Domain. The applicability and efficacy of FreD’s
frequency transform are demonstrated specifically within the spatial domain of 2D/3D images.
Among the data domains commonly used in machine learning frameworks, natural language domain
would likely be challenging to connect with the frequency domain directly. While Fourier Transform
can still be applied to text after it’s been converted into a numerical format, such as a time series, this
conversion is non-trivial and the resulting frequency domain representation may not be as intuitively
meaningful. Thus, for certain domains, the effectiveness of frequency transform may not be as
substantial as it is for 2D/3D images.

However, in multi-modal tasks, major components like audio signals and video data naturally align
with the frequency domain. Tools such as the 1D Fourier transform for audio signals and 3D Fourier
transform for video data already exist to process these types directly. Excluding a few specific
domains, FreD would be a framework that can be applied across a broader range of domains.

13

Performances Highly Dependent on Masking Strategy. FreD’s frequency-based parameterization
is motivated by the fact that the spatial domain information of a 2D image can be concentrated in
specific components of the transformed frequency domain. The EVR based masking selects important
dimensions from the frequency domain, consistently showing strong performances across the various
experiments conducted in this study.

Having said that, Figure 8a of the main paper demonstrates that there could be significant performance
disparities depending on the masking strategy employed. Therefore, there could be substantial issues
if the chosen masking strategy fails to select the important dimensions accurately. For certain datasets
or tasks, essential task-specific information might be contained in the high-frequency region. These
cases could include 1) medical imaging on fine details like tumors [21] and 2) digital watermarking
[28]. This highlights a limitation that EVR masking may not be suitable for all data and tasks.

It should be noted that the masking strategy of FreD can be flexibly operated, and depending on the
characteristics of the given dataset and task, it is not restricted to using an EVR-based mask and can
readily employ other strategies as needed.

One potential solution to identify task-related frequency components is to utilize the gradient of the
given task loss. If specific frequency components have a substantial gradient distribution, it indicates
that the component greatly influences the task. By substituting with gradient-based masking, we
could address the potential limitations that EVR masks might have.

14

Table 9: List of hyper-parameters.

(a) Gradient matching (DC)

Dataset #Params Synthetic
batch size

Learning rate
(Frequency)

Selected dimension
per channel

Increment
of instances

CIFAR-10

61.44k
(IPC=2) - 103 32 ×32

337.92k
(IPC=11) - 103 128 ×8

1566.72k
(IPC=51) 256 102 256 ×4

LSUN 491.52k
(IPC=1) 80 105 128 ×128

ImageNet-
Subset

(128× 128)

491.52k
(IPC=1) - 105 2048 ×8

ImageNet-
Subset

(256× 256)

1966.08k
(IPC=1) - 106 8192 ×8

(b) Feature matching (DM)

Dataset #Params Synthetic
batch size

Learning rate
(Frequency)

Selected dimension
per channel

Increment
of instances

CIFAR-10

61.44k
(IPC=2) - 106 64 ×16

337.92k
(IPC=11) - 105 128 ×8

1566.72k
(IPC=51) - 105 256 ×4

LSUN 491.52k
(IPC=1) 40 105 256 ×64

ImageNet-
Subset

(128× 128)

491.52k
(IPC=1) - 106 2048 ×8

3D MNIST

40.96k
(IPC=1) - 106 512 ×8

409.6k
(IPC=10) - 106 1024 ×4

2048k
(IPC=50) - 106 1024 ×4

(c) Trajectory matching (TM)

Dataset #Params Synthetic
steps

Expert
epochs

Max start
epoch

Synthetic
batch size

Learning rate
(Frequency)

Learning rate
(Step size)

Learning rate
(Teacher)

Selected dimension
per channel

Increment
of instances

MNIST

7.84k
(IPC=1) 50 2 5 - 106 10−7 10−2 49 ×16

78.4k
(IPC=10) 30 2 15 - 105 10−5 10−2 392 ×2

Fashion
MNIST

7.84k
(IPC=1) 50 2 5 - 106 10−7 10−2 49 ×16

78.4k
(IPC=10) 60 2 15 - 105 10−5 10−2 196 ×4

SVHN

30.72k
(IPC=1) 50 2 5 - 107 10−7 10−2 64 ×16

307.2k
(IPC=10) 30 2 15 - 107 10−5 10−2 128 ×8

1536k
(IPC=50) 40 2 40 500 107 10−5 10−3 256 ×4

CIFAR-10

30.72k
(IPC=1) 50 2 5 - 108 10−7 10−2 64 ×16

61.44k
(IPC=2) 50 2 5 160 108 10−7 10−2 64 ×16

307.2k
(IPC=10) 40 2 15 320 107 10−5 10−2 160 ×6.4

337.92k
(IPC=11) 40 2 15 320 107 10−5 10−2 176 ×5.82

1536k
(IPC=50) 30 2 40 500 107 10−5 10−3 256 ×4

1566.72k
(IPC=51) 30 2 40 510 107 10−5 10−3 256 ×4

CIFAR-100

30.72k
(IPC=1) 50 2 15 - 108 10−5 10−2 128 ×8

307.2k
(IPC=10) 20 2 40 2048 5× 106 10−5 10−2 400 ×2.56

1536k
(IPC=50) 80 2 40 256 5× 106 10−5 10−2 400 ×2.56

Tiny-
ImageNet

2457.6k
(IPC=1) 30 2 30 400 109 10−4 10−2 512 ×8

24576k
(IPC=10) 40 2 40 300 109 10−4 10−2 3840 ×3.2

122880k
(IPC=50) 40 2 40 250 109 10−4 10−2 3840 ×3.2

ImageNet-
Subset

(128× 128)

491.52k
(IPC=1) 20 2 10 - 109 10−6 10−2 2048 ×8

983.04k
(IPC=2) 20 2 10 80 109 10−6 10−2 2048 ×8

4915.2k
(IPC=10) 20 2 10 80 109 10−6 10−2 4096 ×4

15

(a) Original (b) DM (c) IDC (d) FreD

Figure 8: The cross-section visualizations of class 0 in 3D MNIST. Each top left image represents the
frontmost view, while bottom right image corresponds to the rearmost view.

Figure 9: Visualization of the binary mask and the transformed images by FreD on SVHN with IPC=1
(#Params=30.72k). In this setting, FreD constructs 16 images per class under the same budget.

Figure 10: Visualization of the binary mask and the transformed images by FreD on CIFAR-10 with
IPC=1 (#Params=30.72k). In this setting, FreD constructs 16 images per class under the same budget.

16

(a) CIFAR-100 (b) Tiny-ImageNet

Figure 11: Visualization of the binary mask and the transformed images by FreD on CIFAR-100
with IPC=1 (#Params=30.72k) and Tiny-ImageNet with IPC=1 (#Params=2457.6k). Due to a lack of
space, only the first 10 classes were visualized. In both cases, FreD constructs 8 images per class
under the same budget.

(a) ImageNette (b) ImageWoof

Figure 12: Visualization of the binary mask and the transformed images by FreD on ImageNet-Subset
with IPC=1 (#Params=491.52k). In these cases, FreD constructs 8 images per class under the same
budget.

17

(a) ImageFruit (b) ImageYellow

Figure 13: Visualization of the binary mask and the transformed images by FreD on ImageNet-Subset
with IPC=1 (#Params=491.52k). In these cases, FreD constructs 8 images per class under the same
budget.

(a) ImageMeow (b) ImageSquawk

Figure 14: Visualization of the binary mask and the transformed images by FreD on ImageNet-Subset
with IPC=1 (#Params=491.52k). In these cases, FreD constructs 8 images per class under the same
budget.

18

References
[1] Nasir Ahmed, T_ Natarajan, and Kamisetty R Rao. Discrete cosine transform. IEEE transactions

on Computers, 100(1):90–93, 1974.

[2] Yuan Cao, Zhiying Fang, Yue Wu, Ding-Xuan Zhou, and Quanquan Gu. Towards understanding
the spectral bias of deep learning. arXiv preprint arXiv:1912.01198, 2019.

[3] George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu.
Dataset distillation by matching training trajectories. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 4750–4759, 2022.

[4] George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu.
Generalizing dataset distillation via deep generative prior. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3739–3748, 2023.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[6] Zhiwei Deng and Olga Russakovsky. Remember the past: Distilling datasets into addressable
memories for neural networks. Advances in Neural Information Processing Systems, 35:34391–
34404, 2022.

[7] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. An image is worth 16x16 words: Transformers for image recognition at scale. arxiv 2020.
arXiv preprint arXiv:2010.11929, 2010.

[8] Ricard Durall, Margret Keuper, and Janis Keuper. Watch your up-convolution: Cnn based
generative deep neural networks are failing to reproduce spectral distributions. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 7890–7899,
2020.

[9] Chuan Guo, Jared S Frank, and Kilian Q Weinberger. Low frequency adversarial perturbation.
arXiv preprint arXiv:1809.08758, 2018.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[11] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

[12] Jeremy Howard. A smaller subset of 10 easily classified classes from imagenet and a little more
french. URL https://github. com/fastai/imagenette, 2019.

[13] Liming Jiang, Bo Dai, Wayne Wu, and Chen Change Loy. Focal frequency loss for image
reconstruction and synthesis. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 13919–13929, 2021.

[14] Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong,
Jung-Woo Ha, and Hyun Oh Song. Dataset condensation via efficient synthetic-data param-
eterization. In International Conference on Machine Learning, pages 11102–11118. PMLR,
2022.

[15] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

19

[17] Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

[18] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[19] Songhua Liu, Kai Wang, Xingyi Yang, Jingwen Ye, and Xinchao Wang. Dataset distillation via
factorization. arXiv preprint arXiv:2210.16774, 2022.

[20] Yuyang Long, Qilong Zhang, Boheng Zeng, Lianli Gao, Xianglong Liu, Jian Zhang, and
Jingkuan Song. Frequency domain model augmentation for adversarial attack. In Computer
Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Pro-
ceedings, Part IV, pages 549–566. Springer, 2022.

[21] Geethu Mohan and M Monica Subashini. Mri based medical image analysis: Survey on brain
tumor grade classification. Biomedical Signal Processing and Control, 39:139–161, 2018.

[22] Yuki Nagai, Yusuke Uchida, Shigeyuki Sakazawa, and Shin’ichi Satoh. Digital watermarking
for deep neural networks. International Journal of Multimedia Information Retrieval, 7:3–16,
2018.

[23] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. 2011.

[24] Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with
infinitely wide convolutional networks. Advances in Neural Information Processing Systems,
34:5186–5198, 2021.

[25] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht,
Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks. In International
Conference on Machine Learning, pages 5301–5310. PMLR, 2019.

[26] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht,
Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks. In International
Conference on Machine Learning, pages 5301–5310. PMLR, 2019.

[27] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do cifar-10
classifiers generalize to cifar-10? arXiv preprint arXiv:1806.00451, 2018.

[28] Rui Shao, Tianxing Wu, and Ziwei Liu. Detecting and grounding multi-modal media manipula-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 6904–6913, 2023.

[29] Yash Sharma, Gavin Weiguang Ding, and Marcus Brubaker. On the effectiveness of low
frequency perturbations. arXiv preprint arXiv:1903.00073, 2019.

[30] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[31] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

[32] Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan
Bilen, Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning features.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12196–12205, 2022.

[33] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation.
arXiv preprint arXiv:1811.10959, 2018.

[34] Wen-Ting Wang and Hsin-Cheng Huang. Regularized principal component analysis for spatial
data. Journal of Computational and Graphical Statistics, 26(1):14–25, 2017.

[35] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, 2017.

20

[36] Kai Xu, Minghai Qin, Fei Sun, Yuhao Wang, Yen-Kuang Chen, and Fengbo Ren. Learning in
the frequency domain. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1740–1749, 2020.

[37] Zhi-Qin John Xu, Yaoyu Zhang, and Tao Luo. Overview frequency principle/spectral bias in
deep learning. arXiv preprint arXiv:2201.07395, 2022.

[38] Zhi-Qin John Xu, Yaoyu Zhang, and Tao Luo. Overview frequency principle/spectral bias in
deep learning. arXiv preprint arXiv:2201.07395, 2022.

[39] Aitao Yang, Min Li, Zhaoqing Wu, Yujie He, Xiaohua Qiu, Yu Song, Weidong Du, and Yao
Gou. Cdf-net: A convolutional neural network fusing frequency domain and spatial domain
features. IET Computer Vision, 17(3):319–329, 2023.

[40] Leonid P Yaroslavsky. Compression, restoration, resampling,‘compressive sensing’: fast
transforms in digital imaging. Journal of Optics, 17(7):073001, 2015.

[41] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

[42] Jingyi Zhang, Jiaxing Huang, Zichen Tian, and Shijian Lu. Spectral unsupervised domain
adaptation for visual recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9829–9840, 2022.

[43] Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In
International Conference on Machine Learning, pages 12674–12685. PMLR, 2021.

[44] Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 6514–6523, 2023.

[45] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching.
arXiv preprint arXiv:2006.05929, 2020.

[46] Yongchao Zhou, Ehsan Nezhadarya, and Jimmy Ba. Dataset distillation using neural feature
regression. arXiv preprint arXiv:2206.00719, 2022.

21

	Appendix Literature Reviews on Related Works
	Dataset Distillation
	Frequency Transform

	Appendix Proofs of Theoretical Evidences
	Proof of Proposition 1
	Proof of Corollary 1

	Appendix Experimental Details
	Dataset
	Architecture
	Implementation Configurations

	Appendix Additional Experimental Results
	Performance Comparison on Low-dimensional Datasets
	Performance Comparison on High-dimensional Datasets
	Performance Comparison on Large-size Dataset
	More Results on Compatibility of Parameterization.
	More Results on Robustness against Corruption.
	Performance Comparison with Memory Addressing
	Compatibility with BPTT
	Additional Ablation Study on Frequency Transform
	Performance Comparison with Post-downsampling
	More Visualization of Binary Mask and Transformed Images

	Appendix Additional Discussions
	Comparison between FreD and PCA-based Transform
	More Visualization of SLDD(S,D) in Frequency Domain
	Discussion on Budget Allocation
	Algorithm Complexity
	Influence of Spectral Bias on Frequency Domain-based Approach
	Impact of Linear Bijectivity Assumption of F

	Appendix Broader Impact
	Appendix Limitation

