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ABSTRACT

World model based reinforcement learning (RL) has emerged as a promising ap-
proach for autonomous driving, which learns a latent dynamics model and uses it
to train a planning policy. To speed up the learning process, the pretrain-finetune
paradigm is often used, where online RL is initialized by a pretrained model and
a policy learned offline. However, naively performing such initialization in RL
may result in dramatic performance degradation during the online interactions in
the new task. To tackle this challenge, we first analyze the performance degrada-
tion and identify two primary root causes therein: the mismatch of the planning
policy and the mismatch of the dynamics model, due to distribution shift. We
further analyze the effects of these factors on performance degradation during
finetuning, and our findings reveal that the choice of finetuning strategies plays a
pivotal role in mitigating these effects. We then introduce AdaWM, an Adaptive
World Model based planning method, featuring two key steps: (a) mismatch iden-
tification, which quantifies the mismatches and informs the finetuning strategy,
and (b) alignment-driven finetuning, which selectively updates either the policy or
the model as needed using efficient low-rank updates. Extensive experiments on
the challenging CARLA driving tasks demonstrate that AdaWM significantly im-
proves the finetuning process, resulting in more robust and efficient performance
in autonomous driving systems.

1 INTRODUCTION

Automated vehicles (AVs) are poised to revolutionize future mobility systems with enhanced safety
and efficiency |Yurtsever et al.| (2020); Kalra & Paddock| (2016)); Maurer et al.| (2016). Despite sig-
nificant progress Teng et al.| (2023)); |[Hu et al.| (2023); Jiang et al.| (2023)), developing AVs capable
of navigating complex, diverse real-world scenarios remains challenging, particularly in unforeseen
situations |(Campbell et al.| (2010); |Chen et al.|(2024)). Autonomous vehicles must learn the complex
dynamics of environments, predict future scenarios accurately and swiftly, and take timely actions
such as emergency braking. Thus motivated, in this work, we devise adaptive world model to ad-
vance embodied Al and improve the planning capability of autonomous driving systems.

World model (WM) based reinforcement learning (RL) has emerged as a promising self-supervised
approach for autonomous driving Chen et al.[(2024); Wang et al.[(2024); Guan et al.|(2024); L1 et al.
(2024). This end-to-end method maps sensory inputs directly to control outputs, offering improved
efficiency and robustness over traditional modular architectures |Yurtsever et al.| (2020); |Chen et al.
(2024). By learning a latent dynamics model from observations and actions, the system can predict
future events and optimize policy decisions, enhancing generalization across diverse environments.
Recent models like DreamerV2 and DreamerV3 have demonstrated strong performance across both
2D and 3D environments |[Hafner et al.| (2020; 2023)).

* Work done while interned at Bosch Research North America.
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Published as a conference paper at ICLR 2025

However, learning a world model and a planning policy from scratch can be prohibitively time-
consuming, especially in autonomous driving, where the state space is vast and the driving envi-
ronment the vehicle might encounter can be very complex |Ibarz et al| (2021); |[Kiran et al.| (2021}).
Moreover, the learned model may still perform poorly on unseen scenarios [Uchendu et al.|(2023);
Wexler et al.| (2022); Liu et al.| (2021). These challenges have led to the adoption of pretraining
and finetuning paradigms, which aim to accelerate learning and improve performance Julian et al.
(2021). In this approach, models are first pretrained on large, often offline datasets, allowing them to
capture general features that apply across various environments. Following pretraining, the model
is finetuned using task-specific data to adapt to the new environment. Nevertheless, without a well-
crafted finetuning strategy, a pretrained model can suffer significant performance degradation due
to the distribution shift between pretraining tasks and the new task. To illustrate the possible inef-
ficiencies of some commonly used finetuning strategies, such as alternating between updating the
world model in one step and the policy in the next, we present the following motivating example.

A Motivating Example. Consider an agent pretrained

to make right turns at a four-way intersection, later fine- 300 — —
tuned for left turns under similar traffic conditions. We 0 —
evaluate three finetuning strategies: alternate finetuning 2

: _ : C— = —300] —— Pretraining
(Model+-Policy), model-only finetuning, and policy-only 3 Model+Policy

finetuning. As shown in Figure all strategies ini- -600

. . . .. —— Model-only
tially experience performance degradation due to distri- 000 Policy-only
bution shift. However, model-only finetuning demon- e — Tos

strates significantly faster recovery compared to the other Steps 165
approaches. This observation reveals a crucial insight:

the transition from right to left turns primarily challenges Figure 1: Performance comparison of
the agent’s dynamics model, which must adapt to dif- different finetuning strategies in the left
ferent spatial-temporal relationships of approaching ve- turn with moderate traffic flow task.
hicles. When the dynamics model misaligns with the new

environment, the policy inevitably makes decisions based on inaccurate predictions. Thus, dynam-
ics model mismatch becomes the dominating factor limiting performance. Model-only finetuning
addresses this directly, while alternate and policy-only strategies struggle by failing to prioritize this
critical misalignment.

This example illustrates that effective finetuning requires identifying and prioritizing the dominating
mismatch rather than simply alternating between model and policy updates. This work addresses the
key challenge of determining efficient finetuning strategies by investigating:

When and how should the pretrained dynamics model and planning policy be finetuned to
effectively mitigate performance degradation due to distribution shift?

Building on the insights from our motivated example, we propose AdaWM, an adaptive world model
based planning method designed to fully leverage a pretrained policy and world model while ad-
dressing performance degradation during finetuning. Specifically, our main contributions can be
summarized as follows:

e We quantify the performance gap observed during finetuning and identify two primary root
causes: (1) dynamics model mismatch, and (2) policy mismatch. We then assess the corre-
sponding impact of each on the finetuning performance.

e Based on our theoretical analysis, we introduce AdaWM, Adaptive World Model based planning
for autonomous driving. As shown in Figure 2] AdaWM achieves effective finetuning through
two key steps: (1) Mismatch Identification. At each finetuning step, AdaWM first evaluates the
degree of distribution shift to determine the dominating mismatch that causes the performance
degradation, and (2) Alignment-driven Finetuning, which determines to update either the dynam-
ics model or the policy to mitigate performance drop. This selective approach ensures that the
more dominating mismatch, as identified in the motivated example, is addressed first. Moreover,
AdaWM incorporates efficient update methods for both the dynamics model and the policy, re-
spectively. For dynamics model finetuning, we propose a LoRa-based low-rank adaptation Hu
et al.| (2021); Koohpayegani et al.| (2024), where only the low-dimensional vectors are updated
to enable a more efficient finetuning. For policy finetuning, we decompose the policy network
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Figure 2: A sketch of adaptive world model based planning (AdaWM): During pretraining, a dy-
namics model and a planning policy are learned offline. For online adaptation, at each finetuning
step t, AdaWM first identifies the more dominating mismatch that causes the performance degrada-
tion and then carries out alignment-driven finetuning accordingly.

Table 1: Categorization of related works in terms of (1) Learning Method (SL: Supervised Learning;
RL: Reinforcement Learning), (2) Finetuning strategy, (3) Online interaction and (4) Tasks.

Paper Learning Method Finetuning Online Tasks
VAD |Jiang et al.|(2023) SL X X CARLA
UniAD|Hu et al.|(2023) SL X X CARLA
Li et al.|(2024) RL X v CARLA
Feng et al.|(2023) RL v (Model-only) v xArm, D4RL
Baker et al.|(2022); Hansen et al.|(2022) RL v (Policy-only) v Manipulation
AdaWM (Ours) RL v (Alignment-driven Finetuning) v CARLA

into a weighted convex ensemble of sub-units and update only the weights of these sub-units to
further streamline the finetuning process.

e We validate AdaWM on the challenging CARLA environment over a number of tasks, demon-
strating its ability to achieve superior performance in terms of routing success rate (SR) and
time-to-collision (TTC). Our results show that AdaWM effectively mitigates performance drops
cross various new tasks, confirming the importance of identifying and addressing the dominating
mismatch in the finetuning process.

Related Work. Recently, end-to-end autonomous driving systems have gained significant momen-
tum with the availability of large-scale datasets |[Hu et al.| (2023); Jiang et al.| (2023)); |Chen et al.
(2024). Recent advances in autonomous driving have been driven by two main approaches: su-
pervised learning methods and world model based reinforcement learning methods. Supervised
learning approaches like VAD Jiang et al.[(2023) and UniAD |Hu et al.| (2023) have demonstrated
impressive performance in the CARLA benchmark. Meanwhile, world model (WM) based methods
have emerged as a promising alternative. By learning a differentiable latent dynamics model, world
model based methods enable the agent to efficiently anticipate future states and hence improve the
decision making |Levine & Koltun| (2013)); Wang et al.| (2019); |Zhu et al.| (2020). However, existing
WDM-based approaches primarily focus on the pretraining stage, which aims to learn a good policy
to solve the new task by using offline datasets. Think2Drive|L1 et al.[(2024) uses DreamerV3|Hafner
et al.[(2023)) for offline training, while DriveDreamer Wang et al.| (2023)) employs diffusion models
for environmental representation. [Vasudevan et al.| (2024)) trains different world models based on
different behavior prediction in the environment. While these methods show promise, they often
struggle with performance degradation when adapting to new tasks, as shown in our experiments (
i.e., Table[2).

Current studies on finetuning strategies in RL focus on model adaptation [Feng et al.| (2023)) or pol-
icy updates through imitation learning Baker et al.| (2022); [Hansen et al.| (2022)); [Uchendu et al.
(2023) and self-supervised learning [Ouyang et al.| (2022). As summarized in Table [I] existing ap-
proaches either lack online fine-tuning capabilities (VAD, UniAD) or employ single-focused strate-
gies (model-only or policy-only). Meanwhile, while Julian et al.|(2021); Feng et al.| (2023) demon-
strated the general effectiveness of finetuning in robotic learning tasks, existing autonomous driving
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systems lack a unified framework for dynamic adaptation. Our proposed AdaWM addresses these
limitations through alignment-driven finetuning that adaptively balances both model and policy up-
dates based on real-time task requirements, achieving superior performance compared to both su-
pervised learning methods without finetuning and RL approaches with rigid adaptation strategies.

2 ADAWM: ADAPTIVE WORLD MODEL BASED PLANNING

Basic Setting. Without loss of generality, we model the agent’s decision making problem as a
Markov Decision Process (MDP), defined as (S, A, P, r,~). In particular, S C R% represents state
space, and A is the action space for agent, respectively. - is the discounting factor. At each time step
t, based on observations s; € S, agent takes an action a; according to a planning policy 7 : § — A.
The environment then transitions from state s, to state s;+; following the state transition dynamics
P(s¢41]st,at) : S x A x S — [0, 1]. In turn, the agent receives a reward r; := 7(s¢, at).

Pretraining: World Model based RL. In the pretraining phase, we aim to learn a dynamics
model WMy, to capture the latent dynamics of the environment and predict the future environment
state. To train a world model, the observation s; is encoded into a latent state z; € Z C R? using an
autoencoder g4 [Kingma| (2013). Meanwhile, the hidden state h, is incorporated into the encoding
process to capture contextual information from current observations Hafner et al.| (2023} [2020), i.e.,
zt ~ qg(zt|he, s¢), where hy stores historical information relevant to the current state. We further
denote x; as the model state, defined as follows,

Model State x; := [hy, 2] € X, (D

The dynamics model WM, predicts future states using a recurrent model, such as an Recurrent Neural
Network (RNN) Medsker et al.| (2001), which forecasts the next hidden state h;;; based on the
current action a; and model state x;.

The obtained hidden state h;1; is then used to predict the next latent state 2,11 ~ pg(:|het1).
The dynamics model WMy, (2441|%¢, a;) is trained by minimizing the prediction error between these
predicted future states and the actual observations. Additionally, the learned (world) model can also
predict rewards and episode termination signals by incorporating the reward prediction loss Hafner
et al.[(2023)).

Once trained, the dynamics model is used to guide policy learning. The agent learns a planning
policy 7, (+|2+) by maximizing its value function

K

Vi (1) 2 Bty amrs YV (@14io1, arpio1) + 75 Q™ @iy, arr k), 2
=1

where the first term is the cumulative reward from a K -step lookahead using the learned dynamics
model, and the second term is the Q-function Q™ (¢, a;) = Eqr, [, 77 (24, ar)], which corre-
sponds to the expected cumulative reward when action a; is taken at state x; , and the policy 7, is
followed thereafter. In this way, the policy learning is informed by predictions from the dynamics
model regarding future state transitions and expected rewards.

Finetuning with the Pretrained Dynamics Model and Policy. Once the pretraining is complete,
the focus is to finetune the pretrained dynamics model WMy and policy 7, to adapt to the new task
while minimizing performance degradation due to the distribution shift. In particular, at each fine-
tuning step ¢, the agent conducts planning using the current policy 7, and dynamics model WM, .
By interacting with environments, the agent is able to collect samples {x;, a;, 7} for the new task.
In this work, the primary objective is to develop an efficient finetuning strategy to mitigate the over-
all performance degradation during finetuning. To this end, in what follows, we first analyze the
performance degradation that occurs during finetuning due to the distribution shift. From this anal-
ysis, we identify two root causes contributing to the degradation: mismatch of the dynamics model
and mismatch of the policy.
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2.1 IMPACT OF MISMATCHES ON PERFORMANCE DEGRADATION

Performance Gap. When the pretrained model and policy align well with the state transition dy-
namics and the new task, the learning performance should remain consistent. However, in practice,
distribution shifts between the pretraining tasks and the new task can lead to suboptimal planning and
degraded performance when directly using the pretrained model and policy. To formalize this, we

let WM (P) denote the pretrained dynamics model with probability transition matrix P, and WM (P)

the dynamics model of the new task with probability transition matrix P. For simplicity, we denote
the policy as m = m,, when the context is clear to avoid ambiguity.

Let 1) denote the learning performance of using model WMy and policy 7 in the pretraining task, and
let 7 represent the performance of applying WM (P) and policy = to the new task with environment

dynamics P. Using the value function V' (z) defined in Equation , the performance gap can be
expressed as follows:

n_ﬁ:Em"‘PO |: W7P1;I¢(P)(:E) _%7;]4)(}5)(1.)} ’ (3)

where py is the initial state distribution and the second term captures the expected return when the
agent applies the pretrained model and policy to the new task with the underlying dynamics P. Next,
we introduce the latent dynamics model to capture temporal dependencies of the environment.

Latent Dynamics Model. At each time step ¢, the agent will leverage the dynamics model WM
to generate imaginary trajectories {x¢x, as+x }r_, over a lookahead horizon K > 0. These tra-
jectories are generated based on the current model state x; and actions a; sampled from policy 7.
Particularly, the dynamics model is typically implemented as a RNN, which computes the hidden
states h; and state presentation z; as follows,

ht+1 = fh(xtvat)y Zt41 = fz(ht+1)7

where f;, maps the current state and action to the next hidden state and f, maps the hidden state to
the next state representation. In our theoretical analysis, following the formulation as in previous
works [Lim et al.| (2021); Wu et al| (2021), we choose f;, = Ax; + op(Wxy + Uay + b) and
f2 = 0.(Vhyy1), where matrices A, W, U, V, b are trainable parameters. Meanwhile, o is the L -
Lipschitz activation functions for the state representation and oy, is a Ly-Lipschitz element-wise
activation function (e.g., ReLU |Agarap| (2018)). Next, we make the following standard assumptions
on latent dynamics model, action and reward functions.

Assumption 1 (Weight Matrices) The Frobenius norms of weight matrices W, U and V are upper
bounded by By, By and By, respectively.

Assumption 2 (Action and Policy) The action input is upper bounded, i.e., |a;| < By, t =1, --.
Additionally, the policy 7 is Lo-Lipschitz, i.e., for any two states x,x' € X, we have dx (7 (-|z) —
w(-|2")) < Lodx(z,x"), where da and dx are the corresponding distance metrics defined in the
action space and state space.

Assumption 3 The reward function r(x,a) is L.-Lipschitz, i.e., for all x,2’ € X and a,a’ € A,
we have |r(z,a) — r(z,ad')| < L.(dx(z,2") + da(a,a’)), where dx and d 4 are the corresponding
metrics in the state space and action space, respectively.

Characterization of Performance Gap. We start by analyzing the state prediction error at pre-
diction step k = 1,2,--- , K, defined as ¢, = xp — Zj, where xj is the underlying true state
representation in the new task and Zj, is the predicted state representation by using the pretrained
dynamics model WMy. The prediction error arises due to a combination of factors such as distribution
shift between tasks and the generalization limitations of the pretrained dynamics model. To this end,
we decompose the prediction error into two terms,

e = (vx — Tx) + (T — &1) 4

where Zj, is the underlying true state representation when planning is conducted in the pretraining
tasks. The first term (z; — Zj) captures the difference between the true states in the current and
pretraining tasks, reflecting the distribution shift between the tasks. The second term (T — &)



Published as a conference paper at ICLR 2025

stems from the prediction error of the pretrained RNN model on the pretraining task. This decom-
position allows us to rigorously examine the impact of distribution shift and model generalization
by bounding these two components respectively.

To analyze the prediction error, we assume the dynamics model is trained using supervised learning
on samples of state-action-state sequence and resulting the empirical loss is /,,. We assume the ex-
pected Total Variation (TV) distance between the true state transition probability P and the predicted
dynamics P be upper bounded by & poie., Ex[Dry(P |1P)] < € - Building on these assumptions
and the analysis developed in Appendix [A] the upper bound for the prediction error is derived as
er < Eo k-

We now assess the direct impact of the prediction error on the performance gap in Equation (9). As
shown in Equation (2)), the value function depends on both the cumulative rewards by K -step rollout
using the pretrained dynamics model and the Q-function at the terminal state. Prediction errors in
the state representation cause the policy to select sub-optimal actions, impacting both immediate
rewards and future state transitions. These errors accumulate over time, distorting the terminal state
and degrading the Q-function evaluation. Moreover, the pretrained policy m was optimized for the
pretraining tasks and may no longer select optimal actions in the new task due to differences in task
objectives and environment dynamics. As a result, the performance gap arises from the compounded
effect of both the prediction errors and the sub-optimality of the planning policy. To quantify this,
we now derive an upper bound for the resulting performance drop.

K—1
Let T i= 35— L, (1 + Lx) + 75 Lo(1 + Lx), Emax = max; &y and Lg = Ly/(1 = 7).
Meanwhile, we denote the policy shift between the pretrained policy 7 and the underlying optimal
policy 7 for the current task to be &, := max, Drv(7|7). Then we obtain the following result.

Theorem 1 Given Assumptions[I] [2| and 3| hold, the performance gap, denoted as 1 — 1), is upper

bound by:
Eme 27E 5 4rmax€ 4vE
_p< K max T P T max<&mw T )
= (7 -k 17K)+ ( 1—7 T14F

Determine the Dominating Mismatch. The upper bound in Theorem|T|highlights two primary root
causes for performance degradation: the mismatch of dynamics model, represented by term &Eax
and &, where the dynamics model failing to accurately capture the true dynamics of the current
task; and mismatch of policy ( £), when the pretrained policy being sub-optimal. As demonstrated
in the motivating example Figure |1} effective finetuning hinges on identifying the dominating root
cause of the performance degradation and prioritizing on its finetuning. Based on the above theoretic
analysis, we have the following criterion to determine the dominating mismatch at each step:

e Update dynamics model if £ > C1&r — Ca, where Ct = (2rmax(1 — ) /(v — 7?) + 2) and

K—-1
Cy = % which implies that the errors from the dynamics model are the dominating cause

of performance degradation, and improving the model’s accuracy will most effectively reduce
the performance gap.

e Update planning policy if £, > C%S b+ g—’;‘ which indicates that the performance degradation
is more sensitive to suboptimal actions chosen by the policy, and refining the policy will be the
most impactful step toward performance improvement.

Specifically, in the implementation of AdaWM (as outlined in Algorithm([T), we use the TV distances
between the state distributions P and P to estimate the dynamics model mismatch following Janner
et al.|(2019) and the policy distributions 7 and 7 for the policy mismatch. In particular, at each step,
if Dyy(P|P) > C - Dyy(n|#) where C is a function of C; and Cs, the dynamics model is updated;
otherwise, the policy is updated. It is worth noting that this simplified criteria is in line with the
theoretical insights while reducing computational complexity. The proof of Theorem|I]can be found

in Appendix
2.2 ADAWM: MISMATCH IDENTIFICATION AND ALIGNMENT-DRIVEN FINETUNING
Based on the above analysis, we propose AdaWM with efficient finetuning strategy while minimiz-

ing performance degradation. As outlined in Algorithm[T} AdaWM consists of two key components:
mismatch identification and adaptive finetuning.
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Algorithm 1 AdaWM: Adaptive World Model based Planning

Require: Pretrained dynamics model WM, (P) and policy 7, (parameter €2). Planning horizon K.
Threshold C'. Reply buffer B collected from pretraining phase.
1: for finetuning stept = 1,2, --- do
: Collect samples W = {(z, a, )} by following current policy 7; (parameter w;) and dynam-
ics model WM, (P) (parameter ¢;).
3: Mismatch Identification: Evaluate the policy mismatch by using samples from B and W to
compute the TV distance as Dry(m¢|m,,) = max, ||m(alx) — 7, (a|x)]|.
Evaluate the mismatch of the dynamics model by Dy (P|P) ~ | P(z,a) — P(z,a)|:.

4 if Dry(P|P) > C - Dyy(m|m,) then

5: Update dynamics model B’ < B, ¢, = (B'Z) " ®.
6: else

7: Update policy A’ <~ A, w; = (A")TQ.

8: end if

9: end for

Mismatch Identification. The first phase of AdaWM is dedicated to identifying the dominant
mismatch between the pretrained task and the current task and two main types of mismatches are
evaluated (line 3 in Algorithm [I): 1) Mismatch of Dynamics Model. AdaWM estimates the Total
Variation (TV) distance between dynamics model by measuring state-action visitation distribution
Janner et al.| (2019). This metric helps quantify the model’s inability to predict the current task’s
state accurately, revealing weaknesses in the pretrained model’s understanding of the new task; and
2) Mismatch of Policy. AdaWM calculates the state visitation distribution shift using TV distance
between the state visitation distributions from pretraining and the current task.

Alignment-driven Finetuning. Once the dominant mismatch is identified, AdaWM selectively
finetunes either the dynamics model or the policy based on which component contributes more
to the performance gap. In particular, AdaWM uses the following finetuning method to further
reduce computational overhead and ensures efficiency (line 4-8 in Algorithm|[T). 1) Finetuning the
Dynamics Model. AdaWM leverages a LoRA-based |Hu et al.|(2021) low-rank adaptation strategy
(as known as NoLa [Koohpayegani et al.| (2024)) to efficiently update the dynamics model. The
model parameters are decomposed into two lower-dimensional vectors: the latent representation
base vector Z and vector ®. During finetuning, only the weight B of the base vector is updated, i.e.,
B' + B,¢' = (B'Z) T ®. 2) Finetuning Planning Policy. AdaWM decomposes the policy network

w into a convex combination of sub-units 2 = Ziil d;w;. During finetuning, only the weight vector
A = [0, ,0p] of these sub-units are updated, i.e., A’ + A.

3 EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of AdaWM by addressing the following two questions:
1) Can AdaWM help to effectively mitigate the performance drop through finetuning in various
CARLA tasks? 2) How does the parameter C' in AdaWM impact the finetuning performance.

Experiments Environment. We conduct our experiments in CARLA, an open-source simulator
with high-fidelity 3D environment [Dosovitskiy et al.| (2017)). At each time step ¢, agent receives
bird-eye-view (BEV) as observation, which unifies the multi-modal information |Liu et al.|(2023)); L1
et al.|(2023). Furthermore, by following the planned waypoints, agents navigate the environment by
executing action a;, such as acceleration or brake, and receive the reward r; from the environment.
We define the reward as the weight sum of five attributes: safety, comfort, driving time, velocity and
distance to the waypoints. The details of the CARLA environment and reward design are relegated

to Appendix

Baseline Algorithms. In our study, we consider three state-of-the-art autonomous driving algo-
rithms as baseline and evaluate their performance when deployed in the new task. Notably, we
choose supervised learning based method VAD |Jiang et al.| (2023)) and UniAD Hu et al.| (2023) and
use the provided checkpoints trained on Bench2Drive Jia et al.|(2024) dataset for closed-loop evalu-
ation in CARLA. Meanwhile, we also compare AdaWM with the state-of-the-art DreamerV3 based
learning algorithms adopted by Think2drive L1 et al.|(2024).
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Pre-RTMO03 ROMO3 RTD12 LTMO3 LTDO3
Algorithm | TTCT SR | TTCT SR} | TICT SRT | TICT SRT | TTCT SRT
UniAD 125 048 | 092 0.3 | 007 0.05] 005 004 003 004
VAD 096 055| 095 0.15 | 015 0.12] 005 0.10| 0.09 0.10
DreamerV3 | 1.16 0.68 | 095 040 | 042 032 | 025 028 | 0.15 035
AdaWM | 1.16 068 | 2.05 082 | 125 0.66 | 1.32 072 | 1.92 0.70

Table 2: The impact of finetuning in CARLA tasks. (RO/RT/LT: Roundabout / Right Turn / Left
Turn, M/D: Moderate / Dense traffic, 03 and 12 indicate different Towns.)

Pretrain-Finetune. In our experiments, we use the tasks from CARLA leaderboard v2 and
Bench2Drive [Jia et al.| (2024) for pretraining. The pretraining is conducted for 12 hour training
on a single V100 GPU. After obtaining the pretrained model and policy, we conduct finetuning
phase for one hour on a single V100 GPU. It is important to note that the three baseline algorithms
were originally designed for offline learning, where they were trained on a fixed offline dataset and
expected to generalize well to new tasks. In our comparison, we adhere to the original implementa-
tion of these baseline algorithms and evaluate their performance using the provided offline-trained
checkpoints, as described in their respective papers. While finetuning is not applied to the baseline
algorithms due to their offline nature, this allows us to maintain consistency with their intended
design and ensure a valid comparison of their performance.

3.1 PERFORMANCE COMPARISONS

In this section, we compare the learning performance among our proposed AdaWM and the baseline
algorithms in terms of the time-to-collision (TTC) and success rate (SR,, also known as completion
rate), i.e., the percentage of trails that the agent is able to achieve the goal without any collisions.

Evaluation Tasks. In our experiments, we evaluate the proposed AdaWM and the baseline methods
on a series of increasingly difficult autonomous driving tasks. These tasks are designed to assess
each model’s ability to generalize to the new task and traffic condition. The first task closely mir-
rors the pretraining scenario, while subsequent tasks introduce more complexity and challenge. In
particular, during pretraining, AdaWM is trained on Pre-RTMO3 task, which involves a Right Turn
in Moderate traffic in Town 03. Following the pretraining, we evaluate the learning performance in
four tasks, respectively: 1) Task ROMO3: This task is a ROundabout in Moderate traffic in Town
03. While it takes place in the same town as the pretraining task, the introduction of a roundabout
adds complexity to the driving scenario; 2) Task RTD12: This task features a Right Turn in Dense
traffic in Town 12. The increased traffic density and different town environment make this task more
challenging than the pretraining task; 3) Task LTMO03: This task involves a Left Turn in Moderate
traffic in Town 03. Although it takes place in the same town and traffic conditions as the pretraining
task, the switch to a left turn introduces a new challenge; and 4) Task LTD03: The most challenging
task as it involves a Left Turn in Dense traffic in Town 03. The combination of heavy traffic and a
left turn in a familiar town environment makes this task the hardest in the evaluation set. We sum-
marize the evaluation results in Table|2|and Table |3} We also include the learning curve in Figure
Meanwhile, we also include another five challenging scenarios for verify the capability of AdaWM
in Appendix [G|

3.1.1 EVALUATION RESULTS

The Impact of Finetuning in Autonomous Driving. Following previous works on the effectiveness
of fine-tuning in robotic learning Julian et al.|(2021)); Feng et al.| (2023)), we first validate this finding
in the autonomous driving domain. As shown in Table 2] AdaWM consistently outperforms its
pretrained only counterparts and two supervised learning based methods, i.e., VAD and UniAD,
across various tasks. Starting with Task ROMO3, which closely resembles the pretraining scenario
Pre-RTMO3 (right turn, moderate traffic in Town 03), our method achieved a TTC of 2.05 and an SR
of 0.82. This far exceeds the performance of the baseline methods, where DreamerV3, VAD, and
UniAD achieved TTC values of 0.95, 0.95, and 0.92, respectively, and much lower success rates,
with the highest being 0.40 by DreamerV3. This significant difference highlights AdaWM’s ability
to adapt more effectively even in familiar environments. In the most challenging task, LTDO03 (left
turn with dense traffic in Town 03), AdaWM continues to excel, achieving a TTC of 1.92 and an SR
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Figure 3: Learning curves of different finetuning strategies in four evaluation tasks.
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Figure 4: The mismatches of the dynamics model and policy during the finetuning.

of 0.70. In contrast, DreamerV3, the best-performing baseline, reached only 0.15 in TTC and 0.35
in SR, while both VAD and UniAD struggled with TTC values below 0.1 and SRs as low as 0.04.
Similar trends are observed in Tasks RTD12 (right turn, dense traffic in Town 12) and LTMO3 (left
turn, moderate traffic in Town 03), where AdaWM consistently outperforms the baseline methods,
achieving both higher TTC and SR scores. These results affirm that AdaWM’s adaptive finetuning
approach significantly improves performance across various challenging tasks, ensuring both safer
and more reliable decision-making.

Effectiveness of Finetuning Strategy. Building upon the established benefits of finetuning, we
next demonstrate the superiority of our alignment-driven finetuning strategy compared to standard
finetuning methods in Table [3] While conventional approaches like model-only, policy-only and
alternate finetuning show improvements over pretraining, AdaWM’s alignment-driven strategy con-
sistently achieves better performance. For instance, in Task ROMO3 (roundabout, moderate traffic
in Town03), AdaWM achieved a TTC of 2.05 and an SR of 0.82, surpassing the model-only (TTC
0.95, SR 0.60) and policy-only (TTC 0.46, SR 0.72) approaches. These results demonstrate that
AdaWM'’s finetuning strategy, which adaptively adjusts the model or policy based on the results
from mismatch identification, provides the most robust performance in complex driving scenarios.

3.2 ABLATION STUDIES

Determine the Dominating Mismatch during Finetuning. We compare the changes of two mis-
matches, mismatch of dynamics model and mismatch of policy, for different finetuning strategies in
Figure[d It can be seen from Figure fa] that model-only finetuning often leads to a deterioration in
policy performance, as indicated by a significant increase in TV distance. This suggests that while
the model adapts to new task, the policy struggles to keep pace, resulting in suboptimal decision-
making. Conversely, as shown in Figure4b] policy-only finetuning reduces the TV distance between
policies, but this comes at the cost of an increased mismatch of dynamics model, signaling a grow-
ing discrepancy between the learned dynamics model and the actual environment. In contrast, in
Figure we show that our proposed alignment-driven finetuning method in AdaWM can effec-
tively align both factors in the new task. By selectively adjusting the model or policy at each step,
this adaptive method prevents either error from escalating dramatically, maintaining stability and
ensuring better performance throughout the finetuning process.

The Impact of Parameter C. In Table [d we study the effect of different parameter C' on four
tasks (ROMO3, RTD12, LTMO03, LTDO03) in terms of TTC and SR. Notably, when C becomes too
large, AdaWM’s performance deteriorates, as it essentially reduces to policy-only finetuning. This is
reflected in the sharp drop in both TTC and SR for high C values, such as C' = 100, across all tasks.
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ROMO3 RTD12 LTMO03 LTDO03
Algorithm TTCt SRt | TTCt SRt | TTCtT SRt | TTCT SR
No finetuning | 0.95 0.40 042 032 0.25 0.28 | 0.15 0.35
Policy-only 046 072 | 1.21 0.63 | 0.21 0.61 | 062 0.61
Model-only 0.95 0.60 0.83 048 1.39 0.68 | 1.49 0.63
Model+Policy | 0.72 0.52 092 050 | 1.09 0.60 | 1.21 0.58
AdaWM 205 0.82 125 0.66 | 1.32 0.72 | 192 0.70

Table 3: Comparison on the effectiveness of different finetuning strategies.

ROMO3 RTDI2 LTMO03 LTDO03

C | TTCT SRf | TTICT SR} | TICT SRT | TTCT SRT
05 [ 123 058 | 1.16 050 | 1.I5 047 | 127 052
2 |18 070 | 120 057|128 068|173 0.63
5 205 082|125 066|132 072192 070
10 [215 085 | 125 062|124 062|201 072
50 | 1.86 071 | 087 051|130 068|178 062
100 | 1.17 045 | 062 046 | 092 043 | 1.05 032

Table 4: Ablation studies on C'.

—— Dynamics Model
~—— Policy
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—— Policy

1.02 1.05 1.08 : 1.05 1.10 : 1.05 1.10
Steps le5 Steps le5 Steps le5

(a)C =2 (b) C' = 10. (c) C = 50.
Figure 5: The mismatches of the dynamics model and policy with different value of C'.

On the other hand, very small C values result in suboptimal performance due to insufficient updates
to the dynamics model, underscoring the importance of alignment-driven finetuning for achieving
robust learning. Meanwhile, the results demonstrate that AdaWM performs well across a wide range
of C values (between 2 and 50). As further illustrated in Figure[5] AdaWM effectively controls mis-
matches in both the policy and the dynamics model for C' = 2, 10, and 50. For instance, in Figure[5b|
when the mismatch in the dynamics model becomes more pronounced than in the policy, AdaWM
prioritizes fine-tuning the dynamics model, which in turn helps reduce policy sub-optimality and
preserves overall performance. Conversely, in Figure[SaJand Figure[5c| when the policy mismatch is
more dominant, AdaWM identifies and fine-tunes the policy accordingly. These results emphasize
AdaWM'’s adaptability in managing different sources of mismatch, ensuring efficient fine-tuning
and strong performance across a variety of tasks.

4 CONCLUSION

In this work, we propose AdaWM, an Adaptive World Model based planning method that miti-
gates performance drops in world model based reinforcement learning (RL) for autonomous driving.
Building on our theoretical analysis, we identify two primary causes for the performance degrada-
tion: mismatch of the dynamics model and mismatch of the policy. Building upon our theoretical
analysis, we propose AdaWM with two core components: mismatch identification and alignment-
driven finetuning. AdaWM evaluates the dominating source of performance degradation and applies
selective low-rank updates to the dynamics model or policy, depending on the identified mismatch.
Extensive experiments on CARLA demonstrate that AdaWM significantly improves both route suc-
cess rate and time-to-collision, validating its effectiveness. This work emphasizes the importance of
choosing an efficient and robust finetuning strategy in solving challenging real-world tasks. There
are several promsing avenues for future research. First, exploring the generalization of AdaWM to
other domains beyond autonomous driving could broaden its applicability. Additionally, extending
AdaWM to multi-agent setting that accounts for the interaction among agents could further enhance
its robustness in complex real-world environments.
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Appendix

A PROOF OF UPPER BOUND OF PREDICTION ERROR

We first present the results on the upper bound of the prediction error in Lemmal[T]below. For brevity,

we denote M = BVBU%9 \I/k(fs, n) =1, +3 logz(n%) +(’)<d MBa(lJr\F\/nZ 10g(2)k)>’ where d is the
dimension of the latent state representation and Ny = L, L, L, UV, Ny = L,L,VW + L,V A.

Then we obtain the following result on the upper bound of the prediction error.

Lemma 1 Under Assumptions[I|and 2] we have that with probability at least 1 — 8, the prediction
error €, for k > 1, is upper bounded by

K
€K SZ Nf (\/ \I/h(g, TL) + 1/5(]\7253; + 2hB3;(513 - gP))) = 56,K
j=1

Proof. 'We decompose the prediction error into two terms,
ex = (zr — Tg) + (T — i) (®)]
where T, is the underlying true state representation.

* (xy — Ty): distribution shift between the pretraining task and the new task
* (ZTy — &) the generalization error of the pre-trained RNN model on the pre-training task.

Next, we derive the upper bound for each term respectively.

Upper bound for (z; — Zj). Let the expected total-variation distance between the pretraining task
to be P(z'|x, a) and the new task to be P(2’|z, a) be upper bounded by Ep, i.e., E,[Drv(P||P)] <
Ep.
Following the same line as in Lemma B.2|Janner et al.| (2019), we assume

mtaXEszt(Z)DKL (P (LU/ | .%') ||P($/ | .%')) S gp,
and the initial distributions are the same.

Then we have the marginal state visitation probability is upper bounded by

1 .
5 S0 @) — )| < e

Meanwhile, for simplicity, we define the following notations to characterize the prediction error at
k time step.

E[l‘t+k] :pk > 0,

E[i‘t+k] :ﬁk 2 O,

& =aF — 7",
where p* = E, k() [2] = Y., xp*(x) is the mean value of the marginal visitation distribution at
time step k (starting from time step 0).

Then we obtain the upper bound for the non-stationary part of the prediction error as follows,
E[¢,] =pF — p* < 2kB,Ep

Upper bound for (Z;, — &) ). We consider the setting where RNN model is obtained by training on
n i.i.d. samples of state-action-state sequence {x¢, a;, z;+1} and the empirical loss is ,, with loss
function f. Denote eRNN := 7, — #;. The RNN is trained to map the one step input, i.e., z¢, at, to
the output x4 ;. Particularly, the world model leverage the RNN to make prediction over the future
steps. Following the standard probably approximately correct (PAC) learning analysis framework,
we first recall the following results Wu et al.| (2021)) on the RNN generalization error. For brevity,
we denote M = BVBU%7 \I/k((‘)" n) =1, +3 “Oi(n%) ) (dMBa(1+\F\/n2 log(2)k‘)>’ where d is the
dimension of the latent state representation
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Lemma 2 (Generalization Error of RNN) Assume the weight matrices satisfy Assumption |I|and
the input satisfies Assumption|2| Assume the training and testing datasets are drawn from the same
distribution. Then with probability at least 1 — o, the generalization error in terms of the expected
loss function has the upper bound as follows,

g (3) |, (L o AMB(1+ w/zlog(2)k)>
vy \/ﬁ

Elf(zii4r — Tigtr) <ln+3 o

In particular, the results in Lemma [2] considers the least square loss function and the generalization
bound only applies to the case when the data distribution remains the same during the testing. In
our case, since the testing and training sets are collected from the same simulation platform thus
following the same dynamics. For simplicity, in our problem setting, we assume the underlying
distribution of input {x, a; } is assumed to be uniform. Subsequently, we establish the upper bound
for the generalization error. Let €, = x; ++k — T ++k. then we have, with probability at least 1 — 9,

G < \/Wg(0,n) (6)

Error Accumulation and Propagation. We first recall the decomposition of the prediction error as
follows.

=N g (7

Then by using the Lipschitz properties of the activation functions and Assumption 2] we obtain the
upper bound for the error,

€k :el;NN + €k
<esth + LnLV(Weg ik + ULg€a k1)
:Effg + Ly L. VWeg 41 + LpLVULg€z 4111
=epoy + (LnL VW + L.V A)€i g1k + L L.VULq€; 14 k-1

=My + Negtrr—1 (8)
where
My i=egon + (LhL VW + L.V A)ey 144
N :=L,L,VUL,.
Notice that in the stationary part of the prediction error, we have |e; 14, = |€;4%|. Furthermore,

by abuse of notation, we apply Equation recursively and obtain the relationship between the
prediction error at k rollout horizon and the gap from the input, i.e.,
€4k <Myt + Neppr—1
<My, + NMyig_o

IN

k
< Z N"M;ip—p + NFe,
h=0
Taking expectation on both sides gives us,
k
Ele;pi] <> N"E[M;yp 1] + NVE[e/]
h=0
k
<) N"2nB.Ep + Ni&, + E[egin]),
h=0
where Ny = L, L, VW + L,V A.
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The Upper Bound of the Prediction Error. Then by invoking Markov inequality, we have the
upper bound for €; with probability at least 1 — § as follows,

k
1
€tk < E Nh <(5(2th513 + ngar) + \I/t(n,5)> = (c/‘g,t
h=1

B PROOF OF THEOREM

Next, we quantify the performance gap when using the pre-trained policy and model in the current
task.

K
n—1=BE.opamm,m, [Z v'r(zi,a:) + Q(zk, ak)

K
- Ezwﬁ,anw,WM(b [Z ’)/i’I“(Zi, ai) + Q(ZKa a’K)

i=1 =1
K K
= (EZNP@NM WM, [Z Y'r(ziaq) | — E, paor, M lz vz, ai)] )
=1 =1
95 (Bompammain, Q0 ax)] = Bep o, Q25 a))) ©)

Note the first term on the RHS is associated with the modeling error and the sub-optimality of the
policy, while the second term is only relevant to modeling error. In what follows, we recap the
formulation for world-model based RL.

Then, by follow the same line as in Janner et al.|(2019)), let " := %Lr(l—l—Lﬂ)—i—fyLLQ(l—i—Lw),

Emax = max¢ & and Lo = L, /(1 — ). Meanwhile, we denote the policy divergence to be
& = max, Drv(7|7). Let the expected total-variation distance between the true state transition

probability P(z'|z, a) and the predicted (current tasks) one P(z’|z, a) be upper bounded by £, i.e.,
E,[Drv(P||P)] < & - Then we obtain the first term is upper bounded by

Lemma 3 Given Assumption 3| holds, the first term in Equation () is upper bounded by,

r 29(Ep +2E5)  ArmaxEn
1—~K 1—7

(10)

By using the definition of Q-function and the upper bound of the prediction error in Lemma [l we
obtain that the second term in Eqn. [0]is upper bounded by

K 5rnax
1—7

By combining the upper bounds of the two terms, we obtain the upper bound in Theorem

B.1 DERIVATION OF C; AND (s

Next, we derive the parameter C; and C5 in AdaWM (ref. Section 2.1).

The RHS of the inequality in Theorem [T]can be divided into two parts, i.e.,
& 2vE ¢ 4 & 4~
,YK maxK +T Y };{ +T TmaxCr + Y 7rK ’
1—7 11— 1—7 11—
where the first part is relevant to the dynamics model mismatch and the second part is related to the

policy mismatch. Evidently, when the first term is larger than the second one, we have the dynamics
mismatch to be more dominant, i.e.,

& 2vE 4 4rmaxf 44
K max P max%“~m T
r r
(7 [ 1—7K>> (1—7 +1—7K>

,YK—l(c/’
—Ep > (2rmax(1 — /(v =42 + 2) Er — Tm = C1&E; — Cy,
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K—1
where C1 = (2rmax(1 —7%)/(y — 7?) +2) and Cy = 1T—fFmax,

Similarly, we obtain that when &, > C%E pt+ % the policy mismatch is more dominant. To
summarize, we have,

e Update dynamics model if £5 > C1E; — Co, where C = (27'max(1 -/ (v —4?) + 2) and

K—-1
Cy = % which implies that the errors from the dynamics model are the dominating cause
of performance degradation, and improving the model’s accuracy will most effectively reduce
the performance gap.

e Update planning policy if &, > C%E b+ g—f which indicates that the performance degradation
is more sensitive to suboptimal actions chosen by the policy, and refining the policy will be the
most impactful step toward performance improvement.

C EXPERIMENTS DETAILS

CARLA Environment The vehicle’s state consists of two primary sources of information: envi-
ronmental observations and the behavior of surrounding vehicles. Environmental observations are
captured through sensors such as cameras, radar, and LiDAR, providing information about objects
in the environment and their geographical context. Following standard approaches Bansal et al.
(2018)); [Chen et al.| (2023), we represent the vehicle’s state using a bird’s-eye view (BEV) semantic
segmentation image of size 128 x 128.

In our experiments, we use a discrete action space. At each time step, the agent selects both acceler-
ation and steering angle. The available choices for acceleration are [—2, 0, 2], and for steering angle
are [—0.6,—0.2,0,0.2,0.6].

We design the reward as the weighted sum of six different factors, i.e.,
Ry = wy Rgape + waReomfort + W3 Riime + w4Rvelocily + w5 Roii + we Rtargela

In particular,

* Rt is the time to collision to ensure safety
* Reomfort 15 relevant to jerk behavior and acceleration
* Riime 1S to punish the time spent before arriving at the destination

* Ryelocity 18 to penalize speeding when the velocity is beyond Sm/s and the leading vehicle is
too close

* R, is to penalize the large orientation of the vehicle
* Riarge 18 to encourage the vehicle to follow the planned waypoints

CARLA Benchmark tasks. We use the same configuration for scriveners and routes as defined
in the Bench2Drive dataset Jia et al.[|(2024). In particular, we consider the following tasks:

* SignalizedJunctionRightTurn_Town03_Route26775_Weather2 (Pre-RTMO03)
¢ NoScenario_Town03_Route27530_Weather25 (ROMO03)

* NonSignalizedJunctionRightTurn_Town12_Route7979_WeatherO (RTD12)

* SignalizedJunctionLeftTurn_Town03_Route26700_Weather22 (LTMO03)

* NonSignalizedJunctionLeftTurn_Town03_Route27000_Weather23 (LTDO03)

The evaluation metric is evaluated when the agent is navigating along the pre-determined waypoints.
Below are the list of the tasks configuration considered in our experiments.

Pre-RTMO03

Pre -RTMO03: &SignalizedJunctionRightTurn_-Town03_Route26775_Weather2
env:
world :
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town: Town03

Weather: 2

Route: 26775
name: Pre-RTMO03
observation.enabled: [camera, collision ,
<<: =carla_wpt
lane_start_point: [6.0, -101.0, 0.1, -90.0]
ego_path: [[6.0, -101.0, 0.1], [-126, 214, 0.1]]
use_road_waypoints: [True, False]
use_signal: True

birdeye_wpt]

ROMO3

ROMO03: &NoScenario_Town0O3_Route27530_Weather25
env:

world :

town: Town03

Weather: 25

Route: 26530
name : ROMO3
observation.enabled: [camera,
<<: =carla_wpt
lane_start_point: [12.0, 21.0, 0.1, -90.0]
ego_path: [[12.0, 21.0, O0.1], [226, 132, 0.1]]

use_road_waypoints: [True, False]
use_signal: True

collision , birdeye_wpt]

RTDI12
RTD12: &NonSignalizedJunctionRightTurn_-Townl2_Route7979_Weather0
env:
world :
town: Townl2
Weather: 0
Route: 7979

name: RTDI12

observation.enabled: [camera, collision ,
<<: xcarla_wpt

lane_start_point: [27.0, 101.0, 0.1, -90.0]
ego_path: [[27.0, 101.0, 0O0.1], [-89, 231, 0.1]]

use_road_waypoints: [True, False]
use_signal: False

birdeye_wpt]

LTMO03
LTMO03: &SignalizedJunctionLeftTurn_Town0O3_Route26700_Weather22
env:
world :
town: Town03
Weather: 22

Route: 26700
name: LTMO03
observation.enabled: [camera, collision ,
<<: =carla_wpt
lane_start_point: [11.0, -21.0, 0.1, -90.0]
ego_path: [[11.0, -21.0, O.1], [-71, 127, 0.1]]

use_road_waypoints: [True, False]
use_signal: True

birdeye_wpt]

LTDO03
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Dimension | L

GRU recurrent units | 2048
CNN multiplier 64

Dense hidden units 768
MLP layers 4

Parameters | 77M

Table 5: Model Sizes Hafner et al.|(2023).

LTDO03: &NonSignalizedJunctionLeftTurn_TownO3_Route27000_Weather23
env:
world :
town: TownO3
Weather: 23
Route: 27000
name: LTDO03
observation.enabled: [camera, collision , birdeye_wpt]
<<: =carla_wpt
lane_start_point: [9.0, -47.0, 0.1, -90.0]
ego_path: [[9.0, -47.0, 0.1], [83, 229, 0.1]]
use_road_waypoints: [True, False]
use_signal: False

D TERMINOLOGY

In this work, we distinguish world model and dynamics model. The key difference lies in their
scope and functionality. A world model |Ha & Schmidhuber| (2018)) is a comprehensive internal
representation that an agent builds to understand its environment, including not just the state transi-
tions (dynamics) but also observations, rewards, and potentially agent intentions. It enables agents
to simulate future trajectories, plan, and predict outcomes before acting. In contrast, a dynamics
model is a more specific component focused solely on predicting how the environment’s state will
evolve based on the current state and the agent’s actions. While the dynamics model predicts state
transitions, the world model goes further by incorporating how the agent perceives the environment
(observation model) and the rewards it expects to receive (reward model).

E WORLD MODEL TRAINING

We use Dreamer v3 |[Hafner et al.|(2023) structure, i.e., encoder-decoder, RSSM |[Hafner et al.|(2019),
to train the world model and adopt the Large model for all experiments with dimension summarized
in Table[5] We first restate the hyper-parameters in Table[6]

Learning BEV Representation. The BEV representation can be learnt by using algorithms such
as BevFusion |Liu et al.| (2023)), which is capable of unifying the cameras, LiDAR, Radar data into
a BEV representation space. In our experiment, we leverage the privileged information provided by
CARLA Dosovitskiy et al.|(2017), such as location information and map topology to construct the
BEVs.
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Name | Symbol | Value
General
Replay capacity (FIFO) — 106
Batch size B 16
Batch length T 64
Activation — LayerNorm + SiLU
World Model
Number of latents — 32
Classes per latent — 32
Reconstruction loss scale Bpred 1.0
Dynamics loss scale Bdyn 0.5
Representation loss scale Brep 0.1
Learning rate — 10~*
Adam epsilon € 1078
Gradient clipping — 1000
Actor Critic
Imagination horizon H 15
Discount horizon 1/(1 =) 333
Return lambda A 0.95
Critic EMA decay — 0.98
Critic EMA regularizer — 1
Return normalization scale S Per(R,95) — Per(R,5)
Return normalization limit L 1
Return normalization decay — 0.99
Actor entropy scale n 3.1074
Learning rate — 3-107°
Adam epsilon € 1075
Gradient clipping — 100

Table 6: Dreamer v3 hyper parameters Hafner et al.|(2023).

World Model Training. The world model is implemented as a Recurrent State-Space Model
(RSSM) Hafner et al.| (2019; 2023) to learn the environment dynamics, encoder, reward, continuity
and encoder-decoder. We list the equations from the RSSM mode as follows:

Sequence model: = fo(ht—1,2t-1,0a:-1)
RSSM Encoder: 2t ~ qy(2e|he, 1)
Dynamics predictor: Ze ~ pe(2t|ht) an
Reward predictor: T ~ pe(Pe|he, 2t)
Continue predictor: & ~ py(Eelhe, 2¢)
Decoder: Ty~ P¢(=’Et|ht, %)

We follow the same line as in Dreamer v3|Hafner et al.| (2023) to train the parameter ¢. We include
the following verbatim copy of the loss function considered in their work.

Given a sequence batch of inputs x;.p, actions aj.p, rewards r1.p, and continuation flags cy.7,
the world model parameters ¢ are optimized end-to-end to minimize the prediction loss Lpyed, the
dynamics loss Lqyn, and the representation loss L., with corresponding loss weights Bpreqa = 1,

ﬁdyn = 05’ ﬁrep =0.1:
E((b) = Eq¢ [Zzzl(ﬂpredﬁpred(¢) + ﬂdyn‘cdyn(¢) =+ BrEPErep((b))} . (12)

Epred(qs) = - 1np¢(act\zt, ht) - 1np¢(7“t|zt7 ht) - 1np¢(ct|2ta ht)
Layn(¢) = max (1, KL[sg(qy(z|he, x0))||  po(zelhe) 1) (13)
Lyep(¢) = max (1, KL qg(zi|he, 20) [[se(ps(zelhe))])
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Actor-Critic Learning. We consider the prediction horizon to be 16 as the same as in Dreamer v3
while training the actor-critic networks. We follow the same line as in Dreamer v3 and consider the
actor and critic defined as follows.

Actor: a ~ o (ag|zy)

14
Critic: vy () = Epy r [Ri], (1

where R; = Ziio YT ry+- with discounting factor v = 0.997. Meanwhile, to estimate returns that
consider rewards beyond the prediction horizon, we compute bootstrapped A-returns that integrate
the predicted rewards and values:

RN =71, + 'yct((l — Nog(si01) + AR?H) R) = vy (s7) (15)

E.1 TRAINING DATASET: BENCH2DRIVE

In our experiments, we use the open source Bench2Drive dataset Jia et al.|(2024); L1 et al.| (2024),
which is a comprehensive benchmark designed to evaluate end-to-end autonomous driving (E2E-
AD) systems in a closed-loop manner. Unlike existing benchmarks that rely on open-loop evalua-
tions or fixed routes, Bench2Drive offers a more diverse and challenging testing environment. The
dataset consists of 2 million fully annotated frames, collected from 10,000 short clips distributed
across 44 interactive scenarios, 23 weather conditions, and 12 towns in CARLA. This diversity al-
lows for a more thorough assessment of autonomous driving capabilities, particularly in corner cases
and complex interactive situations that are often underrepresented in other datasets.

A key feature of Bench2Drive is its focus on shorter evaluation horizons compared to the CARLA
v2 leaderboard. While the CARLA v2 leaderboard uses long routes (7-10 kilometers) that are chal-
lenging to complete without errors, Bench2Drive employs shorter, more manageable scenariosl.
This approach allows for a more granular assessment of driving skills and makes the benchmark
more suitable for reinforcement learning applications.

Checkpoints. In particular, for VAD and UniAD, we directly use the checkpoint provide by [Jia
et al.[|(2024), which are trained on the whole Bench2drive dataset.

F VISUALIZATION OF MODEL PREDICTION

In Figure [6] Figure [7], Figure [§|Figure 0] and Figure we show the comparative visualization
of world model predictions across five different training settings (AdaWM, Alternate finetuning,
model-only finetuning, policy-only finetuning, and no finetuning) reveals distinct performance pat-
terns in the ROMO3 task over 60 time steps. In each visualization set, the ego vehicle (red car) and
surrounding agents (green cars) are shown with their respective planned trajectories (blue line for
ego, yellow lines for others) across three rows: ground truth bird’s-eye view (BEV), world model
predicted BEV, and prediction error. All configurations exhibit increasing prediction errors as the
time horizon extends further into the future, consistent with the growing uncertainty in long-term
predictions. However, AdaWM demonstrates superior performance with notably smaller prediction
errors compared to the other finetuning approaches, suggesting its enhanced capability in maintain-
ing accurate world model predictions over extended time horizons.
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Figure 6: Prediction results for 65 time steps in AdaWM.

Model+Policy
Error Model True

Figure 7: Prediction results for 65 time steps with alternate finetuning mechanism.

G SUPPLEMENTARY EXPERIMENTS

Furthermore, we conduct experiments on another five diverse and challenging scenarios to vali-
date the performance of AdaWM. In particular, we consider the following environment settings,
respetively,

» HI13: HighwayCutIn_Town13_Route23823_Weather7

* HEI12: HighwayExit_Town12_Route2233_Weather9

YEI12: YieldToEmergency Vehicle_Town12_Route1809_Weather9

BI12: BlockedIntersection_Town12_Route12494_Weather9

VT11: VehicleTurningRoutePedestrian_Town11_Route27267_Weather12

HCI13

HC13: &HighwayCutln_-Townl3_Route23823_Weather7
env:

world :

town: Townl3

Weather: 7

Route: 23823
name: HCI13
observation.enabled: [camera, collision , birdeye_wpt]
<<: xcarla_wpt
lane_start_point: [12.0, 7.0, 0.1, -90.0]
ego_path: [[12.0, 7.0, O.1], [23, 122, 0.1]]
use_road_waypoints: [True, False]
use_signal: False

Model Only
Error Model True

k=1 5 10 40 65

Figure 8: Prediction results for 65 time steps with only model finetuning.
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Policy Only
Error Model True

No Finetuning
Error Model True

Figure 10: Prediction results for 65 time steps without finetuning.

HE12

HEI2: &HighwayExit_-Townl2_Route2233_Weather9
env:
world :
town: Townl2
Weather: 9
Route: 2233
name: HE12
observation.enabled: [camera, collision , birdeye_wpt]
<<: =carla_wpt
lane_start_point: [32.0, -27.0, 0.1, -90.0]
ego_path: [[32.0, -27.0, O.1], [11l, —-129, 0.1]]
use_road_waypoints: [True, False]
use_signal: False

YEI12

YEI12: &YieldToEmergencyVehicle . Townl2_Routel809_Weather9
env:
world :
town: Townl2
Weather: 9
Route: 1809
name: YEI12
observation.enabled: [camera, collision , birdeye_wpt]
<<: =carla_wpt
lane_start_point: [11.0, 27.0, 0.1, -90.0]
ego_path: [[11.0, 27.0, O.1], [103, -21, 0.1]]
use_road_waypoints: [True, False]
use_signal: False

BI12

BI12: &BlockedIntersection_.-Townl2_Routel2494_Weather9
env:
world :
town: Townl2
Weather: 9
Route: 12494
name: BI12
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Pre-RTMO03 HC13 HE12 |
Algorithm | TTCT SRt | TTCT SRt | TTC1T SRt
UniAD 125 048 | 0.82 0.08 1.01 0.15
VAD 096 055| 094 0.13 092 0.30
DreamerV3 1.16 0.68 0.95 0.33 1.07 0.52
AdaWM 1.16 068 | 198 0.73 2.21 0.89

Table 7: The impact of finetuning in CARLA tasks. (HC/HE: highway cut-in / highway exit, 12 and
13 indicate different Towns.)

Pre-RTMO03 YEI2 BII2 VTI11
Algorithm | TTCT SRT | TTICT SR} | TICT SRT | TICT SRT
UniAD 125 048 | 022 004 042 0.10| 024 005
VAD 096 055| 079 008 | 088 0.18| 082 0.12
DreamerV3 | 1.16 0.68 | 0.80 0.15| 093 042 | 1.02 0.58
AdaWM | 1.16 068 | 1.53 052 | 141 059 | 121 0.88

Table 8: The impact of finetuning in CARLA tasks. (YE/BI/VT: Yield to emergency vehicle /
Blocked Intersection / Vehicle Turing Route Pedestrian, 11 and 12 indicate different Towns.)

observation.enabled: [camera, collision , birdeye_wpt]
<<: =carla_wpt

lane_start_point: [80.0, 23.0, 0.1, -90.0]

ego_path: [[80.0, 23.0, O.1], [121, 219, 0.1]]
use_road_waypoints: [True, False]

use_signal: False

VT11

VTI11: &VehicleTurningRoutePedestrian_-Townl1_Route27267_Weatherl2
env:
world :
town: Townll
Weather: 12
Route: 27267
name: VTI11
observation.enabled: [camera, collision, birdeye_wpt]
<<: =carla_wpt
lane_start_point: [52.0, 98.0, 0.1, -90.0]
ego_path: [[52.0, 98.0, O0.1], [-28, 76, 0.1]]
use_road_waypoints: [True, False]
use_signal: False

G.1 EXPERIMENTS RESULTS

Impact of Finetuning. The experiments evaluate AdaWM across a diverse set of challenging au-
tonomous driving scenarios, including highway maneuvers (cut-in and exit), emergency response
(yielding to emergency vehicles), intersection navigation (blocked intersections), and complex in-
teractions with pedestrians across different town environments and weather conditions. Looking
at the impact of finetuning in Tables[7]and [§] AdaWM demonstrates substantial improvements over
baseline methods (UniAD, VAD, and DreamerV3) across all scenarios. In highway scenarios (HC13
and HE12), AdaWM achieves remarkable gains, with the Success Rate (SR) improving from 0.33 to
0.73 in HC13 and from 0.52 to 0.89 in HE12, while Time-To-Collision (TTC) metrics show similar
impressive improvements. The performance gains extend to more complex scenarios, with AdaWM
showing particularly strong results in emergency vehicle response (YE12, SR from 0.15 to 0.52),
blocked intersection handling (BI12, SR from 0.42 to 0.59), and vehicle-pedestrian interactions
(VT11, SR from 0.58 to 0.88).
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HC13 HEI2 YEI2 BII2 VTI11

Algorithm | TTICT SR} | TICT SR | TTICT SR | TTCT SRT | TICT SRT
No Finetuing | 095 033 | 1.07 052 | 080 0.15 | 093 042 | 1.02 058
Policy-only | 132 052 | 1.92 072 | 133 044 | 130 049 | 1.09 0.6
Model-only | 1.98 070 | 182 070 | 121 038 | T0OI 032 | 092 044
Model+Policy | 1.68 060 | 194 080 | 142 047 | 121 042 | 1.01 0.70
AdaWM 192 074 | 22T 089 | 153 052 | 141 059 | 121  0.88

Table 9: Comparison on the effectiveness of different finetuning strategies.

Effectiveness of Finetuning Strategies. The comparative analysis of different finetuning strategies
in Table [9] demonstrates the superior effectiveness of AdaWM’s alignment-driven approach. While
conventional methods like policy-only, model-only, and alternating model+policy finetuning show
some improvements over the baseline, AdaWM consistently outperforms them across all scenarios.
For instance, in the highway exit scenario (HE12), AdaWM achieves an SR of 0.89 compared to
0.72 for policy-only and 0.70 for model-only approaches. This superior performance is particularly
evident in complex scenarios like VT11, where AdaWM maintains high performance (SR 0.88)
while other methods show significant degradation, with policy-only achieving 0.76 and model-only
dropping to 0.44. These results demonstrate that AdaWM’s integrated approach to alignment-driven
finetuning is more effective than traditional methods at adapting to diverse driving scenarios while

maintaining robust performance.
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