
A Missing statements and proofs521

A.1 Statements for Section 3.1522

Claim A.1. Let a two-player Markov game where both players affect the transition. Further, consider523

a correlated policy σ and its corresponding marginalized product policy πσ = πσ
1 × πσ

2 . Then, for524

any π′
1,π

′
2,525

V
π′

1,σ−1

k,1 (s1) = V
π′

1,π
σ
2

k,1 (s1),

V
σ−2,π

′
2

k,2 (s1) = V
πσ

1 ,π′
2

k,2 (s1).

Proof. We will effectively show that the problem of best-responding to a correlated policy σ is526

equivalent to best-responding to the marginal policy of σ for the opponent. The proof follows from527

the equivalence of the two MDPs.528

As a reminder,529

π1,h(a|s) =
∑
b∈A2

σh(a, b|s)

π2,h(b|s) =
∑
a∈A1

σh(a, b|s)

As we have seen in Section 2.1, in the case of unilateral deviation from joint policy σ, an agent530

faces a single agent MDP. More specifically, agent 2, best-responds by optimizing a reward function531

r̄2,h(s, b) under a transition kernel P̄2 for which,532

r̄2,h(s, b) = Eb∼σ [r2,h(s, a, b)] = Eb∼πσ
1
[r2,h(s, a, b)] = r2,h(s,π

σ
1 , b).

Similarly,533

r̄1,h(s, b) = r1,h(s, a,π
σ
2 ).

Analogously, for each of the transition kernels,534

P̄2,h(s
′|s, b) = Ea∼σ [P2,h(s

′|s, a, b)] = Ea∼πσ
2
[P2,h(s

′|s, a, b)] = P2,h(s
′|s,πσ

1 , b),

as for agent 1,535

P̄1,h(s
′|s, a) = P1,h(s

′|s, a,πσ
2 ).

Hence, it follows that, V
σ−2×π′

2
2,1 (s1) = V

πσ
1 ×π′

2
2,1 (s1), ∀π′

2 and V
π′

1×σ−1

1,1 (s1) =536

V
π′

1×πσ
2

1,1 (s1), ∀π′
2.537

538

Before that, given a (possibly correlated) joint policy σ we define a nonlinear program, (PBR), whose539

optimal solutions are best-response policies of each agent k to σ−k and the values for each state s540

and timestep h:541

A.2 Proof of Theorem 3.2542

The best-response program. First, we state the following lemma that will prove useful for several543

of our arguments,544

Lemma A.1 (Best-response LP). Let a (possibly correlated) joint policy σ̂. Consider the following545

linear program with variables w ∈ Rn×H×S ,546
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(PBR)

min
∑

k∈[n]

wk,s(s1)− e⊤s1

H∑
h=1

(
h∏

τ=1
Pτ (σ̂τ )

)
rk,h(σ̂h)

s.t. wk,h(s) ≥ rk,h(s, a, σ̂−k,h) + Ph(s, a, σ̂−k,h)wk,h+1,

∀s ∈ S,∀h ∈ [H],∀k ∈ [n],∀a ∈ Ak;

wk,H(s) = 0, ∀k ∈ [n],∀s ∈ S.

547

The optimal solution w† of the program is unique and corresponds to the value function of each548

player k ∈ [n] when player k best-responds to σ̂.549

Proof. We observe that the program is separable to n independent linear programs, each with550

variables wk ∈ Rn×H ,551

min wk,1(s1)

s.t. wk,h(s) ≥ rk,h(s, a, σ̂−k,h) + Ph(s, a, σ̂−k,h)wk,h+1,

∀s ∈ S,∀h ∈ [H],∀a ∈ Ak;

wk,H(s) = 0, ∀k ∈ [n],∀s ∈ S.

Each of these linear programs describes the problem of a single agent MDP (Neu and Pike-Burke,552

2020, Section 2) —that agent being k— which, as we have seen in Best-response policies, is553

equivalent to the problem of finding a best-response to σ̂−k. It follows that the optimal w†
k for every554

program is unique (each program corresponds to a set of Bellman optimality equations).555

Properties of the NE program. Second, we need to prove that the minimum value of the objective556

function of the program is nonnegative.557

Lemma A.2 (Feasibility of (P′
NE) and global optimum). The nonlinear program (P′

NE) is feasible,558

has a nonnegative objective value, and its global minimum is equal to 0.559

Proof. Analogously to the finite-horizon case, for the feasibility of the nonlinear program, we invoke560

the theorem of the existence of a Nash equilibrium. We let a NE product policy, π⋆, and a vector561

w⋆ ∈ Rn×S such that w⋆
k(s) = V

†,π⋆
−k

k (s), ∀k ∈ [n]× S .562

By Lemma A.1, we know that (π⋆,w⋆) satisfies all the constraints of (PNE). Additionaly, because563

π⋆ is a NE, V π⋆

k,h(s1) = V
†,π⋆

−k

k,h (s1) for all k ∈ [n]. Observing that,564

w⋆
k,1(s1)− e⊤s1

H∑
h=1

(
h∏

τ=1

Pτ (π
⋆
τ )

)
rk,h(π

⋆
h) = V

†,π⋆
−k

k,h (s1)− V π⋆

k,h(s1) = 0,

concludes the argument that a NE attains an objective value equal to 0.565

Continuing, we observe that due to (1) the objective function can be equivalently rewritten as,566

∑
k∈[n]

(
wk,1(s1)− e⊤s1

H∑
h=1

(
h∏

τ=1

Pτ (πτ )

)
rk,h(πh)

)

=
∑
k∈[n]

wk,1(s1)− e⊤s1

H∑
h=1

(
h∏

τ=1

Pτ (πτ )

) ∑
k∈[n]

rk,h(πh)

=
∑
k∈[n]

wk,1(s1).

Next, we focus on the inequality constraint567

wk,h(s) ≥ rk,h(s, a,π−k,h) + Ph(s, a,π−k,h)wk,h+1

which holds for all s ∈ S, all players k ∈ [n], all a ∈ Ak, and all timesteps h ∈ [H − 1].568
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By summing over a ∈ Ak while multiplying each term with a corresponding coefficient πk,h(a|s),569

the display written in an equivalent element-wise vector inequality reads:570

wk,h ≥ rk,h(πh) + Ph(πh)wk,h+1.

Finally, after consecutively substituting wk,h+1 with the element-wise lesser term rk,h+1(πh+1) +571

Ph+1(πh+1)wk,h+2, we end up with the inequality:572

wk,1 ≥
H∑

h=1

(
h∏

τ=1

Pτ (πτ )

)
rk,h(πh). (5)

Summing over k, it holds for the s1-th entry of the inequality,573

∑
k∈[n]

wk,1 ≥
∑
k∈[n]

H∑
h=1

(
h∏

τ=1

Pτ (πτ )

)
rk,h(πh) = 0.

Where the equality holds due to the zero-sum property, (1).574

An approximate NE is an approximate global minimum. We show that an ϵ-approximate NE,575

π⋆, achieves an nϵ-approximate global minimum of the program. Utilizing Lemma A.1, setting576

w⋆
k(s1) = V

†,π⋆
−k

k,1 (s1), and the definition of an ϵ-approximate NE we see that,577

∑
k∈[n]

(
w⋆

k,1(s1)− e⊤s1

H∑
h=1

(
h∏

τ=1

Pτ (π
⋆
τ )

)
rk,h(π

⋆
h)

)
=
∑
k∈[n]

(
w⋆

k,1(s1)− V π⋆

k,1 (s1)
)

≤
∑
k∈[n]

ϵ = nϵ.

Indeed, this means that π⋆,w⋆ is an nϵ-approximate global minimizer of (PNE).578

An approximate global minimum is an approximate NE. For the opposite direction, we let a579

feasible ϵ-approximate global minimizer of the program (PNE), (π⋆,w⋆). Because a global minimum580

of the program is equal to 0, an ϵ-approximate global optimum must be at most ϵ > 0. We observe581

that for every k ∈ [n],582

w⋆
k,1(s1) ≥ e⊤s1

H∑
h=1

(
h∏

τ=1

Pτ (π
⋆
τ )

)
rk,h(π

⋆
h), (6)

which follows from induction on the inequality constraint over all h similar to (5).583

Consequently, the assumption that584

ϵ≥
∑
k∈[n]

(
w⋆

k,1(s1)− e⊤s1

H∑
h=1

(
h∏

τ=1

Pτ (π
⋆
τ )

)
rk,h(π

⋆
h)

)
,

and Equation (6), yields the fact that585

ϵ ≥ w⋆
k,1(s1)− e⊤s1

H∑
h=1

(
h∏

τ=1

Pτ (π
⋆
τ )

)
rk,h(π

⋆
h)

≥ V
†,π⋆

−k

k,1 (s1)− V π⋆

k,1 (s1),

where the second inequality holds from the fact that w⋆ is feasible for (PBR). The latter concludes586

the proof, as the display coincides with the definition of an ϵ-approximate NE.587
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A.3 Proof of Claim 3.1588

Proof. The value function of s1 for h = 1 of players 1 and 2 read:589

V σ
1,1(s1) = e⊤s1 (r1(σ) + P(σ)r1(σ))

= −9σ(a1, b1|s1)
20

+
σ(a1, b2|s1)

20
+

(1− σ(a1, b1|s1)) (σ(a1, b1|s2) + σ(a1, b2|s2))
20

,

and,590

V σ
2,1(s1) = e⊤s1 (r2(σ) + P(σ)r2(σ))

= −9σ(a1, b1|s1)
20

+
σ(a2, b2|s1)

20
+

(1− σ(a1, b1|s1)) (σ(a1, b1|s2) + σ(a2, b1|s2))
20

.

We are indifferent to the corresponding value function of player 3 as they only have one available591

action per state and hence, cannot affect their rewards. For the joint policy σ, the corresponding592

value functions of both players 1 and 2 are V σ
1,1(s1) = V σ

2,1(s1) =
1
20 .593

Deviations. We will now prove that no deviation of player 1 manages to accumulate a reward594

greater than 1
20 . The same follows for player 2 due to symmetry.595

When a player deviates unilaterally from a joint policy, they experience a single agent Markov596

decision process (MDP). It is well-known that MDPs always have a deterministic optimal policy.597

As such, it suffices to check whether V π1,σ−1

1,1 (s1) is greater than 1
20 for any of the four possible598

deterministic policies:599

• π1(s1) = π1(s2) = (1 0),600

• π1(s1) = π1(s2) = (0 1),601

• π1(s1) = (1 0) , π1(s2) = (0 1),602

• π1(s1) = (0 1) , π1(s2) = (1 0).603

Finally, the value function of any deviation π′
1 writes,604

V
π′

1×σ−1

1,1 (s1) = −π′
1(a1|s1)

5
− π′

1(a1|s2) (π′
1(a1|s1)− 2)

40
.

We can now check that for all deterministic policies V π′
1×σ−1

1,1 (s1) ≤ 1
20 . By symmetry, it follows605

that V π′
2×σ−2

2,1 (s1) ≤ 1
20 and as such σ is indeed a CCE.606

A.4 Proof of Claim 3.2607

Proof. In general, the value functions of each player 1 and 2 are:608

V π1×π2
1,1 (s1) =− π1(a1|s1)π2(b1|s1)

2
+

π1(a1|s1)
20

− π1(a1|s2) (π1(a1|s1)π2(b1|s1)− 1)

20
,

and609

V π1×π2
2,1 (s1) =− π1(a1|s1)π2(b1|s1)

2
+

π1(b1|s1)
20

− π1(b1|s2) (π1(a1|s1)π2(b1|s1)− 1)

20
.

Plugging in πσ
1 ,π

σ
2 yields V πσ

1 ×πσ
2

1,1 (s1) = V
πσ

1 ×πσ
2

2,1 (s1) = − 13
160 . But, if player 1 deviates to say610

π′
1(s1) = π′

1(s2) = (0 1), they get a value equal to 0 which is clearly greater than − 13
160 . Hence,611

πσ
1 × πσ

2 is not a NE.612

A.5 Proof of Theorem 3.4613

Proof. The proof follows from the game of Example 1, and Claims 3.1 and 3.2.614
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B Proofs for infinite-horizon Zero-Sum Polymatrix Markov Games615

In this section we will explicitly state definitions, theorems and proofs relating to the infinite-horizon616

discounted zero-sum polymatrix Markov games.617

B.1 Definitions of equilibria for the infinite-horizon618

Let us restate the definition specifically for infinite-horizon Markov games. They are defined as a619

tuple Γ(H,S, {Ak}k∈[n],P, {rk}k∈[n], γ,ρ).620

• H = ∞ denotes the time horizon621

• S, with cardinality S := |S|, stands for the state space,622

• {Ak}k∈[n] is the collection of every player’s action space, while A := A1 × · · · × An623

denotes the joint action space; further, an element of that set —a joint action— is generally624

noted as a = (a1, . . . , an) ∈ A,625

• P : S ×A → ∆(S) is the transition probability function,626

• rk : S,A → [−1, 1] yields the reward of player k at a given state and joint action,627

• a discount factor 0 < γ < 1,628

• an initial state distribution ρ ∈ ∆(S).629

Policies and value functions. In infinite-horizon Markov games policies can still be distinguished630

in two main ways, Markovian/non-Markovian and stationary/nonstationary. Moreover, a joint policy631

can be a correlated policy or a product policy.632

Markovian policies attribute a probability over the simplex of actions solely depending on the running633

state s of the game. On the other hand, non-Markovian policies attribute a probability over the634

simplex of actions that depends on any subset of the history of the game. I.e., they can depend on any635

sub-sequence of actions and states up until the running timestep of the horizon.636

Stationary policies are those that will attribute the same probability distribution over the simplex637

of actions for every timestep of the horizon. Nonstationary policies, on the contrary can change638

depending on the timestep of the horizon.639

A joint Markovian stationary policy σ is said to be correlated when for every state s ∈ S, attributes640

a probability distribution over the simplex of joint actions A for all players, i.e., σ(s) ∈ ∆(A).641

A Markovian stationary policy π is said to be a product policy when for every s ∈ S, π(s) ∈642 ∏n
k=1 ∆(Ak). It is rather easy to define correlated/product policies for the case of non-Markovian643

and nonstationary policies.644

Given a Markovian stationary policy π, the value function for an infinite-horizon discounted game is645

defined as,646

V π
k (s1) = Eπ

[
H∑

h=1

γh−1rk,h(sh,ah)
∣∣s1] = e⊤s1

H∑
h=1

(
γh−1

h∏
τ=1

Pτ (πτ )

)
rk,h(πh).

It is possible to express the value function of each player k in the following way,647

V π
k (s1) = e⊤s1 (I− γ P(π))−1

r(π).

Where I is the identity matrix of appropriate dimensions. Also, when the initial state is drawn from648

the initial state distribution, we denote, the value function reads V π
k (ρ) = ρ⊤ (I− γ P(π))−1

r(π).649

Best-response policies. Given an arbitrary joint policy σ (which can be either a correlated or650

product policy), a best-response policy of a player k is defined to be π†
k ∈ ∆(Ak)

S such that651

π†
k ∈ argmaxπ′

k
V

π′
k×σ−k

k (s). Also, we will denote V
†,σ−k

k (s) = maxπ′
k
V

π′
k,σ−k

k (s). It is rather652

straightforward to see that the problem of computing a best-response to a given policy is equivalent653

to solving a single-agent MDP problem.654
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Notions of equilibria. Now that best-response policies have been defined, it is straightforward to655

define the different notions of equilibria. First, we define the notion of a coarse-correlated equilibrium.656

Definition B.1 (CCE—infinite-horizon). A joint (potentially correlated) policy σ ∈ ∆(A)S is an657

ϵ-approximate coarse-correlated equilibrium if it holds that for an ϵ,658

V
†,σ−k

k (ρ)− V σ
k (ρ) ≤ ϵ, ∀k ∈ [n].

Second, we define the notion of a Nash equilibrium. The main difference of the definition of the659

coarse-correlated equilibrium, is the fact that a NE Markovian stationary policy is a product policy.660

Definition B.2 (NE—infinite-horizon). A joint (potentially correlated) policy π ∈
∏

k∈[n] ∆(Ak)
S661

is an ϵ-approximate coarse-correlated equilibrium if it holds that for an ϵ,662

V †,π−k
k (ρ)− V π

k (ρ) ≤ ϵ, ∀k ∈ [n].

As it is folklore by now, infinite-horizon discounted Markov games have a stationary Markovian Nash663

equilibrium.664

C Main results for infinite-horizon games665

The workhorse of our arguments in the following results is still the following nonlinear program with666

variables π,w,667

(P′
NE)

min
∑
k∈[n]

ρ⊤ (wk − (I− γ P(π))−1rk(π)
)

s.t. wk(s) ≥ rk(s, a,π−k) + γ P(s, a,π−k)wk,

∀s ∈ S,∀k ∈ [n],∀a ∈ Ak;

πk(s) ∈ ∆(Ak),

∀s ∈ S,∀k ∈ [n],∀a ∈ Ak.

668

As we will prove, approximate NE’s correspond to approximate global minima of (P′
NE) and vice-669

versa. Before that, we need some intermediate lemmas. The first lemma we prove is about the670

best-response program.671

The best-response program. Even for the infinite-horizon, we can define a linear program for the672

best-responses of all players. That program is the following, with variables w,673

(P′
BR)

min
∑
k∈[n]

ρ⊤ (wk − (I− γ P(σ̂))−1rk(σ̂)
)

s.t. wk(s) ≥ rk(s, a, σ̂−k) + P(s, a, σ̂−k)wk,

∀s ∈ S,∀k ∈ [n],∀a ∈ Ak.

674

Lemma C.1 (Best-response LP—infinite-horizon). Let a (possibly correlated) joint policy σ̂. Con-675

sider the linear program (P′
BR). The optimal solution w† of the program is unique and corresponds676

to the value function of each player k ∈ [n] when player k best-responds to σ̂.677

Proof. We observe that the program is separable to n independent linear programs, each with678

variables wk ∈ Rn,679

min ρ⊤wk

s.t. wk(s) ≥ rk(s, a, σ̂−k) + γ P(s, a, σ̂−k)wk,

∀s ∈ S,∀a ∈ Ak.

Each of these linear programs describes the problem of a single agent MDP —that agent being k.680

It follows that the optimal w†
k for every program is unique (each program corresponds to a set of681

Bellman optimality equations).682
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Properties of the NE program. Second, we need to prove that the minimum value of the objective683

function of the program is nonnegative.684

Lemma C.2 (Feasibility of (P′
NE) and global optimum). The nonlinear program (P′

NE) is feasible,685

has a nonnegative objective value, and its global minimum is equal to 0.686

Proof. For the feasibility of the nonlinear program, we invoke the theorem of the existence of687

a Nash equilibrium. i.e., let a NE product policy, π⋆, and a vector w⋆ ∈ Rn×H×S such that688

w⋆
k,s(s) = V

†,π⋆
−k

k (s), ∀k ∈ [n]× S .689

By Lemma C.1, we know that (π⋆,w⋆) satisfies all the constraints of (P′
NE). Additionally, because690

π⋆ is a NE, V π⋆

k (ρ) = V
†,π⋆

−k

k (ρ) for all k ∈ [n]. Observing that,691

ρ⊤ (w⋆
k − (I− γ P(π⋆))−1rk(π

⋆)
)
= V

†,π⋆
−k

k (ρ)− V π⋆

k (ρ) = 0,

concludes the argument that a NE attains an objective value equal to 0.692

Continuing, we observe that due to (1) the objective function can be equivalently rewritten as,693 ∑
k∈[n]

(
ρ⊤wk − ρ⊤(I− γ P(π))−1rk(π)

)
=
∑
k∈[n]

ρ⊤wk − ρ⊤(I− γ P(π))−1
∑
k∈[n]

rk(πh)

=
∑
k∈[n]

ρ⊤wk.

Next, we focus on the inequality constraint694

wk(s) ≥ rk(s, a,π−k) + γ P(s, a,π−k)wk

which holds for all s ∈ S, all players k ∈ [n], and all a ∈ Ak.695

By summing over a ∈ Ak while multiplying each term with a corresponding coefficient πk(a|s), the696

display written in an equivalent element-wise vector inequality reads:697

wk ≥ rk,h(π) + γ P(π)wk.

Finally, after consecutively substituting wk with the element-wise lesser term rk(π) + γ P( π)wk,698

we end up with the inequality:699

wk ≥ (I− γ P(π))−1
rk(π). (9)

We note that I+ γ P(π) + γ2 P2(π) + · · · = (I− γ P(π))−1.700

Summing over k, it holds for the s1-th entry of the inequality,701 ∑
k∈[n]

wk ≥
∑
k∈[n]

(I− γ P(π))−1
rk(π) = (I− γ P(π))−1

∑
k∈[n]

rk(π) = 0.

Where the equality holds due to the zero-sum property, (1).702

Theorem C.1 (NE and global optima of (P′
NE)—infinite-horizon). If (π⋆,w⋆) yields an ϵ-703

approximate global minimum of (P′
NE), then π⋆ is an nϵ-approximate NE of the infinite-horizon704

zero-sum polymatrix switching controller MG, Γ. Conversely, if π⋆ is an ϵ-approximate NE of the705

MG Γ with corresponding value function vector w⋆ such that w⋆
k(s) = V π⋆

k (s)∀(k, s) ∈ [n]× S,706

then (π⋆,w⋆) attains an ϵ-approximate global minimum of (P′
NE).707

Proof.708

An approximate NE is an approximate global minimum. We show that an ϵ-approximate NE,709

π⋆, achieves an nϵ-approximate global minimum of the program. Utilizing Lemma C.1 by setting710

w⋆
k = V†,π⋆

−k(ρ), feasibility , and the definition of an ϵ-approximate NE we see that,711
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∑
k∈[n]

(
ρ⊤w⋆

k − ρ⊤ (I− γ P(π⋆))
−1

rk(π
⋆)
)
=
∑
k∈[n]

(
ρ⊤w⋆

k − V π⋆

k (ρ)
)

≤
∑
k∈[n]

ϵ = nϵ.

Indeed, this means that π⋆,w⋆ is an nϵ-approximate global minimizer of (P′
NE).712

An approximate global minimum is an approximate NE. For this direction, we let a feasible713

ϵ-approximate global minimizer of the program (P′
NE), (π⋆,w⋆). Because a global minimum of the714

program is equal to 0, an ϵ-approximate global optimum must be at most ϵ > 0. We observe that for715

every k ∈ [n],716

ρ⊤w⋆
k ≥ ρ⊤ (I− γ P(π⋆))

−1
rk(π

⋆), (10)
which follows from induction on the inequality constraint (9).717

Consequently, the assumption that718

ϵ≥ρ⊤w⋆
k − ρ⊤ (I− γ P(π⋆))

−1
rk(π

⋆)

and Equation (10), yields the fact that719

ϵ ≥ ρ⊤w⋆
k − ρ⊤ (I− γ P(π⋆))

−1
rk(π

⋆)

≥ V
†,π⋆

−k

k (ρ)− V π⋆

k (ρ),

where the second inequality holds from the fact that w⋆ is also feasible for (P′
BR). The latter720

concludes the proof, as the display coincides with the definition of an ϵ-approximate NE.721

Theorem C.2 (CCE collapse to NE in polymatrix MG—infinite-horizon). Let a zero-sum polymatrix722

switching-control Markov game, i.e., a Markov game for which Assumptions 1 and 2 hold. Further,723

let an ϵ-approximate CCE of that game σ. Then, the marginal product policy πσ, with πσ
k (a|s) =724 ∑

a−k∈A−k
σ(a,a−k), ∀k ∈ [n] is an nϵ-approximate NE.725

Proof. Let an ϵ-approximate CCE policy, σ, of game Γ. Moreover, let the best-response value-vectors726

of each agent k to joint policy σ−k, w†
k.727

Now, we observe that due to Assumption 1,728

w†
k(s) ≥ rk(s, a,σ−k) + Ph(s, a,σ−k)w

†
k

=
∑

j∈adj(k)

r(k,j),h(s, a,π
σ
j ) + P(s, a,σ−k)w

†
k.

Further, due to Assumption 2,729

P(s, a,σ−k)w
†
k = P(s, a,πσ

argctrl(s))w
†
k,

or,730

P(s, a,σ−k)w
†
k = P(s, a,πσ)w†

k.

Putting these pieces together, we reach the conclusion that (πσ,w†) is feasible for the nonlinear731

program (P′
NE).732

What is left is to prove that it is also an ϵ-approximate global minimum. Indeed, if
∑

k ρ
⊤w†

k≤ϵ733

(by assumption of an ϵ-approximate CCE), then the objective function of (P′
NE) will attain an734

ϵ-approximate global minimum. In turn, due to Theorem C.1 the latter implies that πσ is an735

nϵ-approximate NE.736

C.1 No equilibrium collapse with more than one controllers per-state737

Example 2. We consider the following 3-player Markov game that takes place for a time horizon738

H = 3. There exist three states, s1, s2, and s3 and the game starts at state s1. Player 3 has a739

single action in every state, while players 1 and 2 have two available actions {a1, a2} and {b1, b2}740

respectively in every state. The initial state distribution ρ is the uniform probability distribution over741

S.742
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Reward functions. If player 1 (respectively, player 2) takes action a1 (resp., b1), in either of the743

states s1 or s2, they get a reward equal to 1
20 . In state s3, both players get a reward equal to − 1

2744

regardless of the action they select. Player 3 always gets a reward that is equal to the negative sum745

of the reward of the other two players. This way, the zero-sum polymatrix property of the game is746

ensured (Assumption 1).747

Transition probabilities. If players 1 and 2 select the joint action (a1, b1) in state s1, the game748

will transition to state s2. In any other case, it will transition to state s3. The converse happens if749

in state s2 they take joint action (a1, b1); the game will transition to state s3. For any other joint750

action, it will transition to state s1. From state s3, the game transition to state s1 or s2 uniformally751

at random.752

At this point, it is important to notice that two players control the transition probability from one state753

to another. In other words, Assumption 2 does not hold.754

s1 s2

s3

1/2 1/2

1− π1(a1|s1)π2(b1|s1)

π1(a1|s1)π2(b1|s1) π1(a1|s2)π2(b1|s2)

1− π1(a1|s2)π2(b1|s2)

Figure 2: A graph of the state space with transition probabilities parametrized with respect to the
policy of each player.

Next, we consider the joint policy σ,755

σ(s1) = σ(s2) =

b1 b2( )
a1 0 1/2
a2 1/2 0

.

Claim C.1. The joint policy σ that assigns probability 1
2 to the joint actions (a1, b2) and (a2, b1) in756

both states s1, s2 is a CCE and V σ
1 (ρ) = V σ

2 (ρ) = − 1
10 .757

Proof.

V σ
1 (ρ) = ρ⊤ (I− γ P(σ))−1

r1(σ)

=
(
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1
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) 9
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5 0
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 1
40
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= − 1

10
.

We check every deviation,758

• π1(s1) = π1(s2) = (1 0) , V π1×σ−1(ρ) = − 2
5 ,759

• π1(s1) = π1(s2) = (0 1) , V π1×σ−1(ρ) = − 1
6 ,760

• π1(s1) = (1 0) , π1(s2) = (0 1) , V π1×σ−1(ρ) = − 5
16 ,761

• π1(s1) = (0 1) , π1(s2) = (1 0) , V π1×σ−1(ρ) = − 5
16 .762
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For every such deviation the value of player 1 is smaller than − 1
10 . For player 2, the same follows by763

symmetry. Hence, σ is indeed a CCE.764

765

Yet, the marginalized product policy of σ which we note as πσ
1 × πσ

2 does not constitute a NE. The766

components of this policy are,767 
πσ

1 (s1) = πσ
1 (s2) =

a1 a2( )
1/2 1/2 ,

πσ
2 (s1) = πσ

2 (s2) =
b1 b2( )
1/2 1/2 .

I.e., the product policy πσ
1 × πσ

2 selects any of the two actions of each player in states s1, s2768

independently and uniformally at random. With the following claim, it can be concluded that in769

general when more than one player control the transition the set of equilibria do not collapse.770

Claim C.2. The product policy πσ
1 × πσ

2 is not a NE.771

Proof. For πσ = πσ
1 × πσ

2 we get,772

V πσ

1 = ρ⊤ (I− γ P(πσ))
−1

r1(π
σ)

=
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.

But, for the deviation π1(a1|s1) = π1(a1|s2) = 0, the value funciton of player 1, is equal to − 1
6 .773

Hence, πσ is not a NE.774

In conclusion, Assumption 1 does not suffice to ensure equilibrium collapse.775

Theorem C.3 (No collapse—infinite-horizon). There exists a zero-sum polymatrix Markov game776

(Assumption 2 is not satisfied) that has a CCE which does not collapse to a NE.777

Proof. The proof follows from the game of Example 2, and Claims C.1 and C.2.778
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