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Supplementary Materials:
A Closer Look at Self-supervised Lightweight Vision Transformers

A EXPERIMENTAL DETAILS

A.1 EVALUATION DETAILS FOR MAE AND MOCO-V3 ON IMAGENET

We follow the common practice of supervised ViT training (Touvron et al., 2021a) for fine-tuning
evaluation except for some hyper-parameters of augmentation. The default setting is in Tab. A1. We
use the linear lr scaling rule (Goyal et al., 2017): lr = base lr×batchsize / 256. We use layer-wise
lr decay following (Bao et al., 2021; He et al., 2021) and the decay rate is tuned respectively for
MAE-lite and MoCo-v3. For the fine-tuning evaluation without layer-wise lr decay, we decrease
the base learning rate to 2.5e-4. Besides, we use global average pooling (GAP) for MAE-lite after
the final block during fine-tuning, while using a class token for MoCo-v3 following their original
practices.

Our linear probing evaluation follows (Chen et al., 2021a). Tab. A1 also summaries its details. We
adopt an extra BatchNorm layer (Ioffe & Szegedy, 2015) without affine transformation between the
output of the pre-trained encoder and the linear classifier following (He et al., 2021). Besides, the
class token is used for both methods in linear probing evaluation.

Table A1: Fine-tuning and linear probing evaluation settings.

config value (fine-tuning) value (linear probing)

optimizer AdamW AdamW
base learning rate 1e-3 0.1

weight decay 0.05 0
optimizer momentum β1, β2 = 0.9, 0.999 β1, β2 = 0.9, 0.999

layer-wise lr decay (Bao et al., 2021) 0.85 (MAE), 0.75 (MoCo-v3) -
batch size 1024 4096

learning rate schedule cosine decay (Loshchilov & Hutter, 2016) cosine decay (Loshchilov & Hutter, 2016)
warmup epochs 5 10
training epochs {100, 300, 1000} 90
augmentation RandAug(10, 0.5) (Cubuk et al., 2020) RandomResizedCrop

colorjitter 0.3 0
label smoothing 0 0

mixup (Zhang et al., 2018) 0.2 0
cutmix (Yun et al., 2019) 0 0

drop path (Huang et al., 2016) 0 0

A.2 MAE

Our experimental setup on MAE largely follows those of MAE (He et al., 2021), including the
optimizer, learning rate, batch size, argumentation, etc. But several basic factors and components
are adjusted to fit the smaller encoder. We find MAE prefers a much more lightweight decoder when
the encoder is small, thus a decoder with only one Transformer block is adopted by default and the
width is 192. We sweep over 5 masking ratios {0.45, 0.55, 0.65, 0.75, 0.85} and find 0.75 achieves
best performance.

A.3 MOCO-V3

We reimplement MoCo-v3 (Chen et al., 2021a) with ViT-Tiny as encoder and largely follow the
original setups. The default setting is in Tab. A2. We adopt fine-tuning and linear probing evaluation
on ImageNet (see Appendix A.1).

Chen et al. (2021a) observes that instability is a major issue that impacts self-supervised ViT train-
ing and causes mild degradation in accuracy, and a simple trick by adopting fixed random patch
projection (the first layer of a ViT model) is proposed to improve stability in practice. However,
we find that stability is not the main issue for small networks. Higher performance is achieved in
both fine-tuning and linear probing evaluation with a learned patch projection layer. Besides, we
observe that no matter whether this first layer is random or learned, it always reduces a large amount
of high-frequency signals in the ultimate pre-trained models, as shown in Fig. A1.
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Table A2: Pre-training setting for MoCo-v3.

config value (fine-tuning)

optimizer AdamW
base learning rate 1.5e-4

weight decay 0.1
optimizer momentum β1, β2 = 0.9, 0.999

batch size 1024
learning rate schedule cosine decay

warmup epochs 10
training epochs 400

momentum coefficient 0.99
temperature 0.2
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Figure A1: Fourier analysis for MoCo-v3
with learned or random patch projection.

A.4 TRANSFER EVALUATION DETAILS ON CLASSIFICATION TASKS

We evaluate several pre-trained models with transfer learning in order to measure the generalization
ability of these models. We use 6 popular vision datasets: Flowers-102 (Flowers for short) (Nilsback
& Zisserman, 2008), Oxford-IIIT Pets (Pets) (Parkhi et al., 2012), FGVC-Aircraft (Aircraft) (Maji
et al., 2013), Stanford Cars (Cars) (Krause et al., 2013), Cifar100 (Krizhevsky et al., 2009), iNatu-
ralist 2018 (iNat18) (Van Horn et al., 2018). For all these datasets except iNat18, we fine-tune with
SGD and the momentum and batch size are set to 0.9 and 512 respectively. The learning rates are
swept over 3 candidates and the training epochs are swept over 2 candidates per dataset as detailed
in Tab. A3. We adopt a cosine decay learning rate schedule with a linear warm-up. we resize im-
ages to 224 × 224. We adopt random resized crop and random horizontal flipping as augmentations
and do not use any regularization (e.g., weight decay, dropout, or the stochastic depth regularization
technique (Huang et al., 2016)). For iNat18, we follow the same training configurations as those on
ImageNet.

Table A3: Transfer evaluation details.

Dataset Learning rate Total epochs and warm-up epochs layer-wise lr decay

Flowers {0.01, 0.03, 0.1} {(150,30),(250,50)} {1.0, 0.75}
Pets {0.01, 0.03, 0.1} {(70,14),(150,30)} {1.0, 0.75}

Aircraft {0.01, 0.03, 0.1} {(50,10),(100,20)} {1.0, 0.75}
Cars {0.01, 0.03, 0.1} {(50,10),(100,20)} {1.0, 0.75}

Cifar100 {0.03, 0.1, 0.3} {(25, 5),(50,10)} {1.0, 0.75}

A.5 TRANSFER EVALUATION DETAILS ON DENSE PREDICTION TASKS

Figure A2: Transformer block.

We reproduce the setup in (Li et al., 2021), except replacing the
backbone with ViT-Tiny and decreasing the input image size from
1024 to 768 to make it trainable on a single machine with 8
NVIDIA V100. We fine-tune for up to 100 epochs on COCO (Lin
et al., 2014), with different pre-trained models as initialization of
the backbone.

A.6 ANALYSIS METHODS

Representation similarity. We adopt the Centered Kernel
Alignment (CKA) metric to analyze the representation similarity
(Srep) within and across networks. Specifically, CKA takes two
feature maps (or representations) X and Y as input and com-
putes their normalized similarity in terms of the Hilbert-Schmidt
Independence Criterion (HSIC) as

Srep(X,Y ) = CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
,

(A1)
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where K = XXT and L = Y Y T denote the Gram matrices for the two feature maps. A mini-
batch version is adopted by using an unbiased estimator of HSIC (Nguyen et al., 2020) to work
at scale with our networks. For the sake of conciseness, we only select the representation after
each Transformer block (consisting of a multi-head self-attention (MHA) block and an MLP block).
Specifically, we select the feature map after the first LayerNorm (LN) (Ba et al., 2016) as the repre-
sentation of the last Transformer block as depicted in Fig. A2.

B MORE ANALYSES ON THE PRE-TRAINING

B.1 ANALYSES WITH MORE MODELS AS REFERENCE

(a) DeiT-Base (supervised trained on IN1K) as the reference model.

(b) ViT-Base-21k (supervised trained on IN21K) as the reference model.

(c) ViT-Base-21k-1k (supervised pre-trained on IN21K and fine-tuned on IN1K) as the reference model.

Figure A3: Layer attention and representation similarity analyses with more reference models.

In Sec. 4, the analyses are mainly conducted by adopting the supervised trained DeiT-Tiny as the
reference model. Here, we additionally introduce more stronger recognition models as references
to demonstrate the generalizability of our analyses. Specifically, we use ViT-Base models trained
with various recipes as references, e.g., DeiT-Base (supervised trained on IN1K following Touvron
et al. (2021a) and achieves 82.0 top1 accuracy on ImageNet), ViT-Base-21k (supervised trained on
IN21K following Steiner et al. (2021)), ViT-Base-21k-1k (first pre-trained on IN21K and then fine-
tuned on IN1K following Steiner et al. (2021), achieving 84.5 top1 accuracy on ImageNet). The
layer representation similarity are presented in Fig. A3.

First, we observe that DeiT-Tiny is aligned well with these larger models (as shown in the left
column of Fig. A3). We conjecture that the supervised trained ViTs generally have similar layer
representation structures. Based on these stronger reference models, we observe similar phenomena
as discussed in Sec. 4, which demonstrates the robustness of our analyses and conclusions w.r.t.
different reference models.

Then, we analyze the larger MAE-Base with these newly introduced models as references, as shown
in Fig. A4. We observe that MAE-Base still aligns relatively well to these much stronger recog-
nition models, which supports our claim in Sec. 5 that it is possible to extract features relevant to
recognition in higher layers for the scaled-up encoder in MAE pre-training. It is the prerequisite for
the improvement of the pre-trained models from the proposed distillation.
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Figure A4: Similarity analyses for MAE-Base with more reference models.

B.2 DISTILLING WITH LARGER TEACHERS

We further distill our lightweight pre-trained models with a larger teacher than our used MAE-Base,
i.e., MAE-Large (He et al., 2021). However, we find the large pre-trained model MAE-Large is
not a good teacher though it achieves superior fine-tuning performance on ImageNet, as shown in
Tab. A4.

Table A4: Distilling with larger pre-trained teachers. We report the achieved accuracy after fine-tuning on
ImageNet. Top-1 accuracy for the teacher and top-1/5 accuracy for the student are presented.

Teacher Student
Model Top-1 Top-1 Top-5

- - 76.2 93.1

MAE-Base He et al. (2021) 83.6 77.1 (+0.9) 93.5 (+0.4)
MAE-Large He et al. (2021) 85.9 76.7 (+0.5) 93.4 (+0.3)

B.3 ATTENTION MAP ANALYSES FOR THE DISTILLED PRE-TRAINED MODELS

Figure A5: Attention distance and entropy analyses for the distilled MAE-Tiny.

we analyze the attention distance and entropy of the distilled MAE-Tiny introduced in Sec. 5, which
is only applied distillation on the attention map of the last layer during the pre-training with MAE.
As shown in Fig. A5, we observe more global and broad attention in the higher layers of the distilled
MAE-Tiny compared with MAE-Tiny, which behaves more like the teacher, MAE-Base. We reckon
that it may be useful to capture semantic features and improve downstream performance. We also
find the attention distance of the last layer shows more diversity: some attention heads are rather
global and the others are local, and all of them are concentrated. We reckon that it shows odd
behaviors for the reason that the layer can not handle both training targets from the reconstruction
task and distillation restricted to the model size. But the more plentiful supervision indeed improves
the quality of previous layers and thus achieves better downstream performance.
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Figure A6: Analyses on the layer behaviors during the fine-tuning based on the CKA similarity.

B.4 ANALYSES ON THE LAYER BEHAVIORS DURING THE FINE-TUNING

In this section, the analyses on the layer behaviors during the fine-tuning of the pre-trained model,
MAE-Tiny is present. First, we focus on the fine-tuning experiments on the IN1K, which is consid-
ered to have comparatively sufficient training data. We analyze the CKA representation similarity of
corresponding layers between MAE-Tiny and MAE-Tiny-FT as shown in Fig. A6. We find higher
layers are largely changed, which is in accordance with the analysis in Sec. 4.1, that the higher layers
of MAE-Tiny are less relevant to recognition and thus can be further enhanced by fine-tuning as in
MAE-Tiny-FT. Then, we compare MAE-Tiny-FT with DeiT-Tiny and find their difference mainly
lies in the higher layers. We conjecture that by initializing the lower layers properly with MAE-Tiny,
the model may be more concentrated on the training of higher layers during the fine-tuning phase,
and can achieve better results if training data is sufficient.

Then, we focus on the fine-tuning process of MAE-Tiny on small-scale datasets. We compare the
fine-tuned models on various downstream datasets with the pre-trained model, MAE-Tiny. The
larger the downstream data scale, the more the higher layers change. We conjecture that the higher
layers require more data to learn high-quality representation, considering the pre-training only pro-
vides initialization for higher layers with poor semantics for recognition. Thus, it may be hard for
MAE-Tiny to adapt the higher layers to the data-insufficient downstream tasks, and then resulting in
inferior transfer results for MAE-Tiny as shown in Tab. 4.

B.5 ANALYSES FOR MORE SELF-SUPERVISED PRE-TRAINING METHODS

In the main paper, our analyses mainly focus on MAE He et al. (2021) and MoCov3 Chen et al.
(2021a). In this section, more self-supervised pre-training methods are involved. Specifically, an-
other MIM-based method, SimMIM Xie et al. (2022), and another CL-based method, DINO Caron
et al. (2021), are evaluated based on the lightweight ViT-Tiny. After pre-training, we obtain the
pre-trained models SimMIM-Tiny and DINO-Tiny respectively.
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Figure A7: Fourier analysis for
more pre-trained models.

We first evaluate their downstream performance on ImageNet
and other classification tasks, and object detection and seg-
mentation tasks, as shown in Tab. A5 and Tab. A6. They
are also revised version of Tab. 1 and Tab. 4 in the main
paper. According to the results, we find that MIM-based
methods are generally superior to CL-based methods on data-
sufficient tasks, e.g., ImageNet and iNat18, while inferior on
data-insufficient tasks. Downstream data scale matters for all
these methods and none of them achieve consistent superiority
on all downstream tasks.

Then we explore the layer representation of these models by
CKA-based similarity analysis and Fourier analysis, as shown
in Fig. A8 and Fig. A7. We observe similar layer representation structures for both MIM family
and CL family. For instance, SimMIM-Tiny also learns poor semantics on higher layers. As for
the Fourier analysis, we conjecture the multi-crop strategy used in DINO improves its frequency
appearance, which forces the model to focus on some details.

Finally, we carry out the attention analyses for these models, as shown in Fig. A9. We also observe
consistent properties for MIM family and CL family. SimMIM-Tiny also tends to focus on local
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Table A5: Comparisons on more pre-training methods. It is a revised version of Tab. 1 in the main paper
with more self-supervised pre-training methods.

Pre-training Fine-tuning
Methods Data Epochs Time (hour) recipe Top-1 Acc. (%)

from scratch - - - ori. 74.5
from scratch - - - impr. 75.8

Supervised (Steiner et al., 2021) IN21K w/ labels 30 20 impr. 76.9
Supervised (Steiner et al., 2021) IN21K w/ labels 300 200 impr. 77.8
MoCo-v3 (Chen et al., 2021a) IN1K w/o labels 400 52 impr. 73.7

MAE (He et al., 2021) IN1K w/o labels 400 23 impr. 78.0
DINO Caron et al. (2021) IN1K w/o labels 300 62 impr. 76.7
SimMIM Xie et al. (2022) IN1K w/o labels 400 40 impr. 77.9

Table A6: Transfer evaluation on classification tasks and dense-prediction tasks for more pre-training
methods. It is a revised version of Tab. 4 in the main paper with more self-supervised pre-training methods.

Init.
Datasets Flowers Pets Aircraft Cars Cifar100 iNat18 COCO(det.) COCO(seg.)

(2k/6k/102) (4k/4k/37) (7k/3k/100) (8k/8k/196) (50k/10k/100) (438k/24k/8142) (118k/50k/80)

supervised
DeiT-Tiny 96.4 93.1 73.5 85.6 85.8 63.6 40.7 36.5

self-supervised
MoCov3-Tiny 94.8 87.8 73.7 83.9 83.9 54.5 40.0 36.0

MAE-Tiny 85.8 76.5 64.6 78.8 78.9 60.6 38.9 35.1
DINO-Tiny 95.6 89.3 73.6 84.5 84.7 58.7 40.2 36.1

SimMIM-Tiny 77.2 68.9 55.9 70.4 77.7 60.8 39.1 35.2

Figure A8: Layer representation similarity analyses for more self-supervised pre-trained models.

Figure A9: Attention analyses for more self-supervised pre-trained models.

pattern with concentrated attention in higher layers like MAE-Tiny, while DINO-Tiny behaves like
MoCov3-Tiny and has broad and global attention in higher layers.
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