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ABSTRACT

Very large language models (LLMs) such as GPT-4 have shown the ability to han-
dle complex tasks by generating and self-refining step-by-step rationales. Smaller
language models (SLMs), typically with < 13B parameters, have been improved
by using the data generated from very-large LMs through knowledge distillation.
However, various practical constraints such as API costs, copyright, legal and eth-
ical policies restrict using large (often opaque) models to train smaller models for
commercial use. Limited success has been achieved at improving the ability of
an SLM to explore the space of possible rationales and evaluate them by itself
through self-deliberation. To address this, we propose COALITION, a trainable
framework that facilitates interaction between two variants of the same SLM and
trains them to generate and refine rationales optimized for the end-task. The
variants exhibit different behaviors to produce a set of diverse candidate ratio-
nales during the generation and refinement steps. The model is then trained via
Selective Rationale Optimization (SRO) to prefer generating rationale candidates
that maximize the likelihood of producing the ground-truth answer. During infer-
ence, COALITION employs a controller to select the suitable variant for gener-
ating and refining the rationales. On five different datasets covering mathemati-
cal problems, commonsense reasoning, and natural language inference, COALI-
TION outperforms several baselines by up to 5%. Our ablation studies reveal
that cross-communication between the two variants performs better than using the
single model to self-refine the rationales. We also demonstrate the applicability
of COALITION for LMs of varying scales (4B to 14B parameters) and model
families (Mistral, Llama, Qwen, Phi). We release the code for this work here.

1 INTRODUCTION

Modern large language models (LLMs) with hundreds of billions of parameters, such as GPT-
4 (Achiam et al., 2023) and PaLM-540B (Chowdhery et al., 2022) have shown a remarkable ability
to solve complex tasks by generating step-by-step rationales (Wei et al., 2022a;b; Kojima et al.,
2022) and refining them through self-correction (Wang et al., 2023b; Welleck et al., 2023). The
ability to think step-by-step becomes more prominent with scale, while smaller language models
(SLMs), typically ⪅ 13B, struggle to generate good quality rationales (Valmeekam et al., 2022;
Weng et al., 2023). However, owing to the advantages of SLMs such as lesser costs, latency, and
compute requirements, significant efforts have been made to improve their ability to handle complex
tasks by using feedback obtained through interactions with LLMs (Tunstall et al., 2023; Hsieh et al.,
2023; Gou et al., 2024; Wang et al., 2024b). While such approaches are suitable for research and
academic settings, lack of transparency in the training data of larger (often opaque) LMs limits their
use in commercial settings owing to legal, ethical and copyright concerns. For instance, OpenAI’s
usage terms prohibit using GPT-generated outputs to train other models for commercial use.

Consequently, efforts have been made to improve SLM performance without reliance on an external
teacher LLM. In the absence of supervision from external models, the SLM has to rely on its intrinsic
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Figure 1: Schematic flow of inference using COALITION which leverages two variants of the same
LM. The sample is fed to a controller (step 1) to select the variant (steps 2-3) that generates a
rationale (step 4). The generated rationale is then fed to the controller to select the variant (steps
5-6) to refine the rationale (step 7) that can be used to obtain the final answer (step 8).

knowledge to explore and refine (Madaan et al., 2023a) the space of possible reasoning paths (Hao
et al., 2023). However, due to limited scale and exploration capabilities, small models get trapped
in redundant reasoning paths (Valmeekam et al., 2023; Qi et al., 2024). Furthermore, commonly
used techniques such as prompt-based cross-communication between multiple LLMs for iteratively
refining diverse reasoning paths (Mousavi et al., 2023; Yin et al., 2023) or using LM-as-a-judge
paradigm to identify high-quality rationales to facilitate iterative refinement of rationales (Yuan et al.,
2024), fail to generalize in case of smaller models (as we show empirically in § 4). While training
the SLMs using task-specific ground-truth (GT) rationales has shown promise (Chen et al., 2024),
the lack of availability of GT rationales for a given task limits the applicability of such methods.

With this background, the key problem that we study is how to train the SLMs without relying on
external LLMs and task-specific GT rationales to (i) generate (and, refine) diverse rationales, and (ii)
select the high-quality rationales leading to improved performance on end-tasks. We posit that the
following two abilities (A) are critical to achieve this - (A1) ability to obtain distinct rationale can-
didates describing varied reasoning paths and diverse opinions about how to refine them; and (A2)
ability to discriminate high-quality rationales from the low-quality ones to enable the model to prefer
generating candidates which are more useful. Driven by this intuition, we propose COALITION
(TeaChing LLMs tO DeliberAte MutuaLly via SelectIve RaTIonale OptimisatiON), a trainable
framework that facilitates interaction between two distinct variants of the same SLM to learn to
selectively Generate and Refine better rationale choices guided by the performance of the end-task.

The key intuition in COALITION is to overcome the limited ability of SLMs to generate diverse and
high-quality rationales by employing different variants of the same LM that are designed to exhibit
distinct behavior by optimising them on separate data splits (§ 3.1). During training, different ratio-
nales generated by the variants are further refined by each variant through self and cross-refinement.
The generated and refined rationale candidates are assigned a utility score by estimating the likeli-
hood of generating the final GT answer conditioned on the rationale in input. The LM variants are
then tuned via preference optimization (DPO) (Rafailov et al., 2023) to prefer generating rationale
candidates with higher utility scores (§ 3.2). A typical inference step in COALITION is illustrated in
Figure 1 where a trained controller module (§ 3.3) is employed for selecting the appropriate model
variant for generating and refining the rationale before using it for answer generation.

Empirically, we demonstrate the effectiveness of COALITION across five different datasets cov-
ering mathematics problem-solving (GSM8K (Cobbe et al., 2021)), natural language inference
(PIQA (Bisk et al., 2020) and WinoGrande (Sakaguchi et al., 2020)) and commonsense reason-
ing (CSQA (Talmor et al., 2019) and HellaSwag (Zellers et al., 2019)). Using Llama3-8B as the
base model and without any supervision from external stronger models, COALITION leads to ab-
solute gains of up to 5% over several recent baselines (§ 4.1). We also demonstrate the efficacy of
COALITION for different language model families such as Phi3, Qwen 1.5, and Mistral across vary-
ing parameter-scales ranging from 4B to 14B (§ 4.2). We present results that offer evidence that
cross-communication between the two variants performs better than always using a single model
to self-refine the rationales (§ 4.3). Finally, we conduct extensive ablation studies to guide vari-
ous design choices such as 1) the use of distinct model variants to obtain diverse rationales over
sampling-based decoding through a single model and 2) task-guided rationale selection (§ 4.4).
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2 RELATED WORK

Prompt-Driven Reasoning Generation: Very large-scale LLMs have been made to elicit reasoning
chains by asking to generate step-by-step rationales via Chain-of-Thought (CoT) prompting (Wei
et al., 2022a; Kojima et al., 2022; Wei et al., 2022b). Subsequently, several works have attempted to
generate better reasoning through in-context learning (Li & Qiu, 2023a;b) by improving the quality
of exemplar rationales in the prompt (Zhang et al., 2023; Diao et al., 2024). On the other hand, self-
correction methods (Madaan et al., 2023a) prompt the LLM to iteratively refine its rationales using
its own feedback (Welleck et al., 2023; Wang et al., 2023a). However, it has been shown that LLMs
are unable to revise their own outputs without external feedback (Jiang et al., 2024b; Valmeekam
et al., 2023; Stechly et al., 2023; Huang et al., 2024) owing to the fact that using the same internal
representations for refinement yields redundant or incorrect reasoning paths (Yin et al., 2023).

Performance Enhancement using External LLMs: Various methods have explored improving an
LLM by facilitating interaction with other LLMs (Jiang et al., 2023b; Yu et al., 2024; Juneja et al.,
2023; Ulmer et al., 2024; Lu et al., 2024b). Exchange-of-Thought (EoT) (Yin et al., 2023) mimic
the way humans conduct discussions by enabling multiple LLMs to critic (Mousavi et al., 2023) and
refine each other’s outputs via prompting. Our experiments show that such methods work well only
with larger LLMs. Other methods distil information from a larger LM into a smaller one (Hsieh
et al., 2023; Kang et al., 2023) or personalise the feedback of teacher LLM based on weaknesses of
student LLM (Wang & Li, 2023; Saha et al., 2023; Jiang et al., 2023c). However, it is often argued
that training over GPT-generated outputs makes smaller LLM imitate just the style (Gudibande et al.,
2024) but not learn the reasoning process (Mukherjee et al., 2023). Some methods train the LLM
to prefer generating certain outputs (Zhang et al., 2024a) over others via preference optimisation
(DPO) (Rafailov et al., 2023). Mixture-of-Agents (Wang et al., 2024a) employs multiple open-
source LLMs based agents and comprises of multiple layers of such LLM agents such that responses
generated by agents in a layer are fed to LLM agents in the subsequent layer to refine the output.
COALITION creates multiple variants of same SLM without involving any external LLM.

Improving LLM Rationales through Self-Play: Some works improve an LLM by using it to ex-
plore the reasoning space and discriminate between outputs (Qu et al., 2024; Tian et al., 2024) by
itself. Tree-of-Thought (ToT) (Yao et al., 2023) organises candidates for each intermediate reasoning
step in the form of a tree to look-ahead to gauge the quality of initial steps and backtrack accord-
ingly. Zhang et al. (2024b) tunes the LLM on candidates obtained using ToT prompting through
DPO. Other methods leverage sampling-based decoding (Wang et al., 2024d; Zhang et al., 2024a;
Pang et al., 2024) to generate varied outputs. Such works rely on the scale of very-large LLMs to
obtain diverse responses and fail to generalise well using smaller LLMs (as shown in experiments).
Likewise, other works use very-large LLMs to rate the quality of different candidates for preference
optimisation (Yuan et al., 2024; Pang et al., 2024) via LLM-as-a-judge (Zheng et al., 2023). How-
ever, SCORE (Zhang et al., 2024c) shows that smaller LMs need superior LLMs to verify responses
for correction (Jiang et al., 2024b). On contrary, we leverage LLM’s likelihood of generating final
ground-truth answer conditioned on the rationale as a measure of its quality (Wang et al., 2024c).
Some methods align LLM’s output distribution with human-labelled data (Lai et al., 2024). SPIN
performs DPO by selecting the ground-truth answer over the LLM-generated response (Chen et al.,
2024). Lack of availability of GT rationales for a given task limits their applicability. Differently,
we employ different variants of the same LLM to generate and refine diverse rationales for selection.

3 METHODOLOGY

Overview of Approach: COALITION aims to improve the ability of an SLM M to generate and
refine reasoning chains for a given task without relying on any external model. To endow M with
the capability to generate rationales for any input instruction, we first instruction fine-tune (IFT)
M using the Chain-of-Thought (CoT) (Kim et al., 2023) dataset. The CoT data comprises general-
domain instruction-rationale-answer triples. Further, we augment the IFT data with rationale refine-
ment samples where the model is tuned to generate the rationale in the CoT data sample given the
model-generated rationale in the input. This augmentation teaches the model to generate and refine
rationales. Recall from the earlier discussion (§ 1) that a typical SLM has a limited capability to
explore and self-correct diverse reasoning paths. Hence, we create two distinct variants of the same
SLM by carrying out the IFT on separate data splits so that they exhibit different behaviors (§ 3.1).
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Figure 2: Training procedure of COALITION through Selective Rationale Optimisation (SRO). The
task-instruction is fed to the two LLM variants (step 1) to generate different rationale candidates -
(R̂Gen

1 , R̂Gen
2 ). The IFT model MIFT is used to score each candidate by estimating the likelihood

(l̂p) of generating the ground-truth (GT) answer conditioned on the rationale (steps 3-4). The score
is used to compare the rationales to determine the winning and the eliminated rationale candidates
(step 5) which are used to tune the LLM through DPO (step 6). During the refine stage, a generated
rationale candidate (R̂Gen

k ) is fed to both the variants to refine the rationale (step 7). The corre-
sponding refined rationale candidates (R̂Ref

k1 , R̂Ref
k2 ) are used to tune the model via SRO (step 8).

Subsequently, given an end-task without explicit rationale annotations, COALITION facilitates in-
teraction between the two variants to generate and refine the rationales. The resulting set of diverse
rationale candidates are then used for task-guided Selective Rationale Optimization (SRO) (§ 3.2)
to tune the variants to prefer rationales that can lead to an improved end-task performance.

Figure 2 presents the details of various components and steps involved in COALITION illustrating
rationale generation, refinement, and tuning of LM variants via SRO. Specifically, given a task-
specific instruction sample, it is fed to each variant of the LLM separately with the prompt to gener-
ate a rationale describing the steps to derive the final answer (steps 1-2 in fig. 2). Subsequently, the
rationales generated by each variant are fed again to both the variants for self-refinement and cross-
refinement. Owing to the distinct behavior of the variants, we obtain a set of diverse rationales at
both generate and refine steps. A utility score is assigned to each rationale candidate by estimating
the likelihood of generating the GT answer by the IFT model conditioned on the rationale in input
(steps 3-4 in fig. 2). The candidates are ranked based on the utility score for tuning the variant
LMs via DPO (Rafailov et al., 2023) (A.1) to prefer to output those generated and refined rationale
choices with higher scores (steps 5-6 in fig. 2). Note that the rationale candidates for generate and
refine steps are ranked and used separately for DPO training (steps 7-8 in fig. 2). We now describe
the details of each component of COALITION in the subsections to follow.

3.1 MULTI-MODE INSTRUCTION FINE-TUNING (IFT) TO OBTAIN MODEL VARIANTS

Conventional IFT aims at enabling an LLM to follow a given instruction to generate an answer ac-
cordingly. However, as outlined in the approach overview, we require the IFT model MIFT for three
additional purposes - 1) generate rationale describing how to derive the final answer given the in-
struction (I → R); 2) refine a rationale to improve its quality for a given instruction ([I;R′] → R);
and 3) generate/estimate the likelihood of producing an answer given the instruction and rationale as
input ([I;R] → A). To enable MIFT to perform these three additional roles, we leverage a dataset
Drationale

IFT which comprises of samples containing instruction-rationale-answer triples. We format
the samples using different prompt templates (A.3) to indicate the model about the mode in which
it needs to generate the output. The model is endowed with the ability to refine rationale by tuning
it to generate the rationale in the dataset sample (R) given the LLM-generated rationale (R′) in the
input. Formally, given an instruction I, rationale R and final answer A in a sample, we perform IFT
on four types of samples via cross-entropy loss and teacher forcing (Vaswani et al., 2017):
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LI→R = −log p(Rt| [PI→R; I;R<t], θIFT ) (1)

L[I;R′]→R = −log p(Rt| [P[I;R′]→R; I;R′;R<t], θIFT ) (2)

L[I;R]→A = −log p(At| [P[I;R]→A; I;R;A<t], θIFT ) (3)

LI→A = −log p(At| [PI→A; I;A<t], θIFT ) (4)

where, p represents probability, At and Rt depict the tth token in GT answer and rationale respec-
tively, < t indicates tokens before tth index, Pm and Lm are the prompt format and loss function
respectively for the mth mode; [; ] represents the operation to prepare LLM input after arranging the
instruction, answer and/or rationale into mode-specific prompt Pm, and θIFT is LLM parameters.
For samples in IFT data mix which do not contain the rationales, only loss LI→A is applied. MIFT

is obtained by training base LLM on entire IFT data. To obtain two LLM Variants (LV1, LV2), the
LLM M is tuned on separate data splits by randomly dividing IFT dataset into two equal splits and
assigning one split to each variant randomly. For an end-task without rationale annotations, variants
are used to generate and refine diverse rationales in task-guided manner as discussed subsequently.

3.2 TASK-GUIDED SELECTIVE RATIONALE OPTIMISATION (SRO)

For a given end-task T , we denote the corresponding dataset as DT which comprises of instruction-
answer pairs of the form (IT ,AT ). However, note that the dataset for the given task does not contain
the rationale annotations to tune the LLM. To address this, we leverage the distinct LLM variants
to construct a set of diverse rationales via Generate and Refine steps. Given a task-instruction, it
is given as input to each variant separately to generate a rationale. Each generated rationale is then
fed to both the variants for self-refinement and cross-refinement. Quality of rationales obtained at
each generate and refine step is determined based on its usefulness to enhance end-task performance
i.e. likelihood of generating the ground-truth answer AT . Each variant is then optimised to prefer
generating better rationale candidates via Direct Preference Optimisation (Rafailov et al., 2023).
The variant LLMs are tuned for numerous iterations by conducting multiple passes over DT .

Generate: We denote the distinct variants obtained through IFT as LV0
p (p ∈ {1, 2}). In particular,

consider the ith iteration (i ∈ {1, 2}) such that the task-instruction IT is given as input to each
variant - LV(i−1)

p (obtained till last (i− 1)th iteration) to generate rationale (steps 1-2 in fig. 2):

R̂Gen
p = LV(i−1)

p ([PI→R; IT ] | θLV(i−1)
p

); p ∈ {1, 2} (5)

Refine: Each generated rationale R̂Gen
p (p ∈ {1, 2}) is then fed as input to each variant LV(i−1)

q

(q ∈ {1, 2}) to refine the quality of the rationale as shown in following equation:

R̂Ref
pq = LV(i−1)

q ([P[I;R′]→R; IT ; R̂Gen
p ] | θLV(i−1)

q
); p, q ∈ {1, 2} (6)

where, R̂Ref
pq is the refined rationale produced by feeding the rationale generated by the pth variant

(during the generate step) to the qth variant for refinement. The case when a variant refines its own
rationale is referred to as self-refinement (p = q). Likewise, when a variant refines the rationale
generated by the other variant, it is referred to as cross-refinement (p ̸= q). Thus, we obtain a set
of generated ({R̂Gen

p ; p ∈ {1, 2}}) and refined ({R̂Ref
pq ; p, q ∈ {1, 2}}) rationale candidates. Each

rationale candidate (R̂) is assigned a utility score l̂ (steps 3-4 in fig. 2) by estimating the likelihood of
generating the ground-truth (GT) answer AT by the IFT model MIFT conditioned on the rationale
in input as: l̂ = πθIFT

(AT | [P[I;R]→A; IT ; R̂]). Based on the utility score, the rationale candidates
from generate and refine steps are ranked separately and used to tune the variants via DPO training.

Direct Preference Optimisation (DPO): To maintain the distinctness in the behaviour of LLM
variants, we tune them on separate data splits of DT by dividing the samples into two equal partitions
and randomly assign one partition to each variant. Without loss of generality, consider (IT ,AT ) ∈
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DT
k (split assigned to kth variant LVk). Two types of samples are used to tune the variant via DPO

(one sample corresponding to each generate and refine steps). For the generate step, we compare
the rationales R̂Gen

p (p ∈ {1, 2}) based on their utility score l̂p such that the candidate with higher
score is selected as the winner rationale (R̂Gen

w ) and the one with lower score is referred to as the
eliminated rationale (R̂Gen

e ). The kth variant LV(i)
k is tuned (in current iteration i) to prefer the

winner rationale over the eliminated one using the DPO loss LGen

LV(i)
k

(steps 5-6 in fig. 2):

LGen

LV(i)
k

= −logσ[β(log
πLV(i)

k

(R̂Gen
w )

πLV(i−1)
k

(R̂Gen
w )

− log
πLV(i)

k

(R̂Gen
e )

πLV(i−1)
k

(R̂Gen
e )

)] (7)

where, β = 0.1 is a hyper-parameter to control divergence from a reference model. The previous
iteration (i − 1) version of the variant - LV(i−1)

k is used as the reference to obtain LV(i)
k . For the

refine step, we consider the candidates obtained by refining the rationale generated by the kth variant
in the first turn i.e. R̂Ref

kq (q ∈ {1, 2}). We compare them based on their utility score to identify the
winner and eliminated rationales for the refine step as - R̂Ref

w and R̂Ref
e respectively. They are used

to train the kth variant via DPO using the following loss LRef

LV(i)
k

(steps 7-8 in fig. 2):

LRef

LV(i)
k

= −logσ[β(log
πLV(i)

k

(R̂Ref
w )

πLV(i−1)
k

(R̂Ref
w )

− log
πLV(i)

k

(R̂Ref
e )

πLV(i−1)
k

(R̂Ref
e )

)] (8)

Likelihood-based Sample Filtration: To ensure that high-quality samples are used to tune the vari-
ants for DPO training, we apply a filtration criteria to retain only those samples where the winning
rationale (R̂w = R̂Gen

w /R̂Ref
w ) enhances the likelihood of generating the GT as follows:

πθIFT
(AT | [P[I;R]→A; IT ; R̂w]) > πθIFT

(AT | [P[I→A]; IT ]) (9)

Equation 9 compares the likelihood of generating the ground-truth by MIFT for a given task in-
struction in the absence and presence of the winning rationale in the input. The sample is used for
DPO training if the winning rationale enhances the likelihood compared to not using any rationale.

3.3 CONTROLLER-BASED LLM VARIANT SELECTION DURING INFERENCE

Given an instruction sample during inference, COALITION employs a Controller module to choose
the variant LLM that should be used for the generate and refine steps. The controller is a small
encoder-only LM C that is trained using the preference data collected during the DPO training based
on which variant’s rationale was selected. Figure 3 shows a schematic diagram depicting training
procedure of the controller. Given the instruction sample IT , consider the generate step such that
the controller is trained using cross-entropy loss to perform a two-way classification between the
variants conditioned on IT as input. The output label is determined as the variant which generated
the winning rationale R̂Gen

w . Likewise, corresponding to the refine step, controller C is conditioned
on the instruction IT along with the winning rationale generated at the generate step as the input.
It is trained to predict the variant that generates the winning refined rationale R̂Ref

w amongst R̂Ref
kq

(q ∈ {1, 2}). Once trained, C is used during inference to select the variant to generate rationale
followed by choosing the variant for refinement conditioned on rationale obtained at generate step.

4 EXPERIMENTS AND EVALUATION

Datasets: We evaluate COALITION using five datasets belonging to three diverse reasoning task
domains - 1) Maths Problem Solving on GSM8K (Cobbe et al., 2021); 2) Natural Language
Inference (NLI) using PIQA (Bisk et al., 2020) and WinoGrande (Sakaguchi et al., 2020); and
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Figure 3: Training process of Controller C. Each LLM variant generates a rationale candidate (step
1). The variant that generates the winning rationale (step 2) is selected as the output label for C (steps
3-4). For the refine step, C is conditioned on the task instruction and rationale from the generate step,
and is trained to select the LLM variant that generates the better refined rationale (steps 5-8).

3) Commonsense Reasoning through CSQA (Talmor et al., 2019) and HellaSwag (Zellers et al.,
2019). GSM8K comprises of maths word problems which require a model to understand the prob-
lem text and perform a sequence of calculations. PIQA requires understanding of physical relation
between objects and comprises of samples with a goal text coupled with two candidate statements
with the task of identifying the statement that can lead to the goal. WinoGrande is a very chal-
lenging co-reference resolution task, comprising of a statement with two parts such that the latter
half refers to some entity in the first part. CSQA tests model’s ability to answer MCQ questions
by picking correct choice using commonsense knowledge. HellaSwag evaluates ability to predict
continuation of a context by choosing most plausible ending. Number of samples in train/test splits
of each dataset is GSM8k - 7.5k/1.3k, PIQA - 16k/3k, WinoGrande - 40k/1.7k, CSQA - 9.7k/1.2k
and HellaSwag - 39.9k/10k. Please refer to A.2 for examples present in each dataset.

Implementation Details: We use a batch size (BS) of 16 on 8 80GB A100 GPUs (BS of 2/GPU), a
learning rate (lr) of 1e-5, bfloat16 precision with cosine annealing (Loshchilov & Hutter, 2017) us-
ing AdamW optimizer (Loshchilov & Hutter, 2019). We leverage DeepSpeed Zero 2 with sharding
of optimizer states and gradients across GPUs and enable gradient check-pointing. For Multi-Mode
IFT, we experiment with different base-LLM backbones M (Phi3-3.8B, Qwen1.5-4B, Qwen1.5-
7B, Qwen1.5-14B, Mistral-7B and LLaMA3-8B) to obtain the corresponding IFT models. We
use a set of 140k samples selected randomly from CoT-Collection (Kim et al., 2023) as the data
Drationale

IFT to enable three additional IFT modes. Additionally, we use 40k samples from the Dolly-
HHRLHF (MosaicML, 2023) and the Open Assistant datasets combined to create data for the con-
ventional instruction-to-answer IFT mode. The IFT training is performed for 2 epochs. For task-
guided SRO, we carry out 2 iterations of task-guided DPO with 10 epochs in each iteration. Con-
troller C is deberta-v3-large (He et al., 2021) model trained for 30 epochs with a learning rate of
1e-5, BS of 128 (16 per GPU on 8 GPUs) using adam optimizer with cosine annealing.

Evaluation Protocol: To assess the usefulness of rationales, prompt containing the input-instruction
is appended (during inference) with the rationale generated by a method and fed to the instruct
version of the LLM. The accuracy achieved is indicative of the usefulness of rationales.

4.1 DOES COALITION HELP IMPROVE LLM PERFORMANCE?

Table 1 compares COALITION with two categories of baselines: (I) Prompting-Techniques
to (i) generate rationales using Chain-of-Thought (Wei et al., 2022b), (ii) explore the space of
rationales using Tree-of-Thought (Yao et al., 2023), (iii) refine the rationales using CoT Self-
Consistency (Wang et al., 2023b) & Self-Refine (Madaan et al., 2023b), or (iv) facilitate com-
munication between multiple LLMs to refine the rationales through Exchange-of-Thought (Yin
et al., 2023); and (II) Rationale Enhancement via Trainable Self-Play - (i) Distilling Step-by-
Step (Hsieh et al., 2023) where the IFT model is used to generate and refine the rationale, (ii) Self-
Rewarding LMs (Yuan et al., 2024) uses sampling-based decoding to obtain diverse rationales and
LLM-as-a-judge to rate their quality for DPO, and (iii) SPIN (Chen et al., 2024) performs DPO by
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Method Maths NLI Comonsense
GSM8K WinoGrande PIQA HellaSwag CSQA

Meta-Llama3-8B-Instruct w/o rationale (Dubey et al., 2024) 75.89 71.98 78.51 57.69 76.17

Prompt-Driven Rationale Refinement
Chain-of-Thought (Wei et al., 2022b) 62.39 60.17 68.48 45.33 65.28
CoT Self-Consistency (Wang et al., 2023b) 64.11 62.37 71.42 46.13 68.92
Tree-of-Thought (Yao et al., 2023) 68.11 70.62 75.14 53.18 74.37
Exchange-of-Thought (Yin et al., 2023) 69.19 66.47 73.11 52.22 75.48
Self-Refine (Madaan et al., 2023b) 77.26 72.81 79.49 60.48 78.22

Rationale Enhancement via Trainable Self-Play
Distilling Step-by-Step (Hsieh et al., 2023) 76.18 70.41 78.77 56.10 76.31
Self-Rewarding LMs (Yuan et al., 2024) 72.16 68.15 75.22 55.39 76.15
Self-Play Fine-Tuning (SPIN) (Chen et al., 2024) 77.01 71.85 79.02 58.22 76.48

COALITION (ours) 81.06 77.13 83.26 63.23 82.06

Table 1: COALITION significantly outperforms multiple categories of baselines on 5 datasets from
3 task domains - Maths Problem Solving, Natural Language Inference (NLI) and Commonsense
Reasoning. Same LLM-backbone (Llama3-8B) is used in all the methods for uniform comparison.

Rationales Generated by Best Baseline (SPIN) and LLM Variants - LV1 and LV2 in COALITION on GSM8K Sample
Instruction: A company pays each of its employees $600 in a month. The company has a policy of increasing the salaries of
each of its employees by 10% of the initial salary every year for those who’ve stayed in the company for five years. If Sylvie
just clocked 5 years in the company last December, what’s her annual salary after three more years of service?
Best Baseline: Sylvie’s annual salary after three more years will be $3600 because her salary increases by $600 every year for
5 years. So after three years, it will be $600*5+$600=$3600. ✗
Generate w LV1: Sylvie’s salary will increase by $600 every year for three years, so her annual salary after three more years
of service will be $600+($600*3)=$2,400. ✗
Generate w LV2: Sylvie receives a 10% increase in her salary every year after 5 years of service. Since her current salary is
$600, it will increase by $60 each year. After three more years, her new salary will be $600+(3*$60)=$780. ✗
Cross-Refine LV2 rationale w LV1: Sylvie’s initial monthly salary is $600. After completing five years, her salary increases by
10% of initial salary, making it $600*1.1=$660. After three more years of service, she will have received two additional annual
10% increases, which means her monthly salary will be $660+$60+$60=$780. Therefore, her annual salary after three more
years will be $780*12=$9360. ✓
Self-Refine LV2 rationale w LV2: Sylvie’s salary increases by 10% each year after her initial five years. Her monthly salary
after five years is $660, and in three more years, she will have received two additional 10% raises. Therefore, her monthly salary
will be $660(1.1)*(1.1)=$756, and her annual salary will be $756*12=$9072. ✗
Note: Controller selected LV2 for generate step and LV1 for refine step. Variant selection in this order yields correct rationale.

Table 2: COALITION yields better rationale using generate and refine steps via LLM variants.
Wrong and right parts in a rationale are in red and green. Baseline wrongly applies increase for
first five years. LV1 estimates wrong annual increase while LV2 gives correct monthly increase but
question asks annual salary. Cross-refining using LV1 (as selected by controller) rectifies this error.

selecting general-domain GT rationales from CoT data over LLM-generated rationales. We employ
same LLM backbone (Llama3-8B) for COALITION and all baselines for a uniform comparison.

COALITION outperforms all the baselines uniformly across the three task domains (Table 1). It per-
forms better than the best baseline (SPIN) by ∼ 4% on GSM8K indicating the utility of rationales
from COALITION for solving maths problems. Further, COALITION performs significantly better
than SPIN for NLI with a gain of 5.3% on challenging WinoGrande task and 4.2% on PIQA. On
commonsense reasoning, COALITION outperforms SPIN by more than 5% on both CSQA and Hel-
laSwag. Table 2 shows that COALITION generates better rationales than the best baseline (SPIN)
by the virtue of employing distinct LLM variants. Please refer to A.6 for more qualitative examples.

Additionally, COALITION gives a significant performance boost compared to the case where the
instruct model is evaluated without rationales, as well as using the rationales generated by the IFT
model (Distilling Step-by-Step). Moreover, the baseline ‘Self-Rewarding Language Models’ which
relies on the scale of very-large LMs to both generate and rate diverse rationales for DPO does
not generalise with 8B-parameter LM. COALITION performs better than this baseline by ∼ 9%
on GSM8K and WinoGrande, ∼ 8% on PIQA and HellaSwag, and ∼ 6% on CSQA. Finally, we
note that COALITION performs better by 3-4% than the best prompting-based baseline i.e. Self-
Refine (Madaan et al., 2023b) which uses same LLM as generator, refiner and feedback provider.
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Model Parameter Maths NLI Commonsense
Scale GSM8K WinoGrande PIQA HellaSwag CSQA

Phi3 (Abdin et al., 2024) 3.8B 10.36 73.32 80.30 59.01 72.48
w/ COALITION (ours) 3.8B 14.76 76.19 84.48 63.72 75.04

Qwen1.5 (Bai et al., 2023) 4B 3.49 67.01 75.57 52.01 74.61
w/ COALITION (ours) 4B 5.58 69.26 76.48 53.37 78.29

Qwen1.5 (Bai et al., 2023) 7B 57.01 69.53 79.54 61.06 81.00
w/ COALITION (ours) 7B 61.37 75.02 83.11 64.22 85.11

Qwen1.5 (Bai et al., 2023) 14B 69.37 76.01 81.45 65.57 84.19
w/ COALITION (ours) 14B 74.88 82.84 84.39 69.22 87.48

Mistral (Jiang et al., 2023a) 7B 48.52 74.43 81.66 64.78 69.21
w/ COALITION (ours) 7B 54.42 78.39 85.01 68.48 74.38

LLaMA3 (Dubey et al., 2024) 8B 75.89 71.98 78.51 57.69 76.17
w/ COALITION (ours) 8B 81.06 77.13 83.26 63.23 82.06

Table 3: Performance evaluation of COALITION with LMs of varying scale of parameters (4B to
14B) and different model families (Phi3, Qwen1.5, Mistral, Llama3). It is observed that COALI-
TION yields significant gains on all tasks for different model families and parameter scales.

4.2 HOW DOES COALITION WORK WITH DIFFERENT MODEL FAMILIES AND ACROSS
VARYING PARAMETER SCALES?

We study if COALITION improves performance of LMs with varying scale of parameters (ranging
from 4B to 14B) and belonging to different model families. We compare the accuracy achieved using
the rationales generated by COALITION vs. the rationales obtained from the IFT (MIFT ) version
of the LLM. Specifically, we experiment with 1) Phi3-3.8B (Abdin et al., 2024), 2) Qwen1.5-(4B,
7B, 14B) (Bai et al., 2023), 3) Mistral-7B (Jiang et al., 2023a), and 4) LLaMA3-8B (Dubey et al.,
2024). Table 3 summarises the results where it can be seen that COALITION improves performance
on all the tasks uniformly over different parameter-scales and LM families. In particular, consider
Qwen - at 14B parameter scale, COALITION improves accuracy by ∼ 5 − 7% on GSM8K and
WinoGrande, and by upto 4% on PIQA, HellaSwag and CSQA. For Qwen-7B, there is a similar
improvement of ∼ 4 − 5% on all the tasks. Likewise, performance increase is observed for Qwen-
4B model. For Phi3 model comprising of 3.8B parameters, ∼ 3 − 5% improvement is observed
for different tasks. For Mistral-7B, there is an improvement of 5 − 6% on GSM8K and CSQA,
and ∼ 4% on the remaining tasks. Appendix A.4 shows that COALITION is effective on general
benchmarks even when trained in a task-agnostic way on open-domain samples.

4.3 VARIANT SELECTION VIA CONTROLLER AND CROSS-REFINEMENT BOOSTS ACCURACY

Figure 4: Proportion of sam-
ples routed by Controller to 1)
Generate w/o Refine (5-10%), 2)
Self-Refine (15-25%), 3) Cross-
Refine (65-75%). Hence, gener-
ation with one variant and refin-
ing with other is preferred mode.

We analyse the usefulness of controller in Table 4 by evaluating
the rationales obtained during inference - I) w/o any refinement
(rows 1 and 2), II) w self-refinement using a single variant (rows
3 and 4), III) w cross-refinement using a fixed order of variants
for all samples (rows 5 and 6). Last row corresponds to dynamic
selection of the LM variants by the controller for generation and
refinement that yields the best performance. In particular, gen-
erating and self-refining the rationale using a single LM variant
usually (but not necessarily) performs better than not refining
(rows 3-4 vs rows 1-2). However, generating the rationale using
a variant and refining it with the other variant consistently per-
forms better than self-refinement (rows 5-6 vs rows 3-4). This
shows that having distinct LLM variants and taking second opin-
ion from the other variant through cross-communication is help-
ful. Finally, selecting the LLM variant via the controller to gen-
erate and refine rationales based on suitability for the given sam-
ple yields significantly better results (last row).
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Communication Mode Maths NLI Commonsense
GSM8K WinoGrande PIQA HellaSwag CSQA

Generate (w LV1) w/o Refine 77.26 75.10 80.11 59.22 78.47
Generate (w LV2) w/o Refine 77.21 74.89 79.24 59.31 78.33
Self-Refine (LV1 −→ LV1) 77.35 74.91 79.86 59.89 79.35
Self-Refine (LV2 −→ LV2) 77.23 74.70 79.60 59.70 79.25
Cross-Refine (LV1 −→ LV2) 79.94 75.52 81.31 61.21 80.16
Cross-Refine (LV2 −→ LV1) 79.53 75.83 81.02 60.87 80.21
COALITION (w Controller) 81.06 77.13 83.26 63.23 82.06

Table 4: Performance analysis of rationales inferred - 1) w/o refinement (rows 1-2), 2) w self-
refinement (rows 3-4), 3) w cross-refinement using fixed order of variants for all samples (rows
5-6), and 4) w controller (last row). Selecting LM variants using the controller for the generate
and refine steps yields best results. Cross-communication between the variants is better than both
self-refine (using a single variant) and not refining by directly using rationale generated by a variant.

Ablation Distinct LLM Likelihood-based DPO Sample Maths NLI Comonsense
ID Variants Rationale Selection Filtration GSM8K WinoGrande PIQA HellaSwag CSQA
1 No Yes Yes 71.74 69.28 76.15 54.22 75.22
2 Yes No Yes 78.24 75.69 80.14 60.21 77.49
3 Yes Yes No 75.46 72.28 76.92 58.55 77.43
4 Yes No No 73.19 71.37 76.16 56.92 77.01
5 No No No 72.16 68.15 75.22 55.39 76.15

COALITION Yes Yes Yes 81.06 77.13 83.26 63.23 82.06

Table 5: Ablation study to analyse the impact of different design choices - 1) In the absence of
distinct LLM variants, sampling-based decoding is performed using single LLM; 2) LLM-as-a-judge
is employed when likelihood-based rationale selection is omitted; 3) Entire train set is used for DPO
when sample filtration is skipped. It is observed that all components are critical for accuracy gains.

4.4 ABLATION STUDY - IMPACT OF DIFFERENT DESIGN CHOICES

We examine the effectiveness of following components (using Llama3-8B backbone) - 1) Distinct
LLM Variants, 2) Task-guided Likelihood-based Rationale Selection, and 3) Sample Filtration for
DPO. Table 5 shows the results where it can be seen that obtaining diverse refined rationales from
distinct LLM variants gives significantly better performance than sampling-based decoding using a
single model (COALITION vs. row 1). To analyse the importance of using likelihood of generating
the GT answer as the utility score to rate a rationale, we leverage LLM-as-a-judge paradigm as
an alternative where the IFT version of the LLM is prompted to rate rationales (row 2). Notable
drop in performance than COALITION indicates that prompt-based rating does not work at scale
of small LMs. Likewise, filtration of samples for task-guided DPO conditioned on whether the
best rationale enhances the likelihood of generating GT (than not using any rationale) is critical for
gains achieved by COALITION (vs. row 3). Additionally, omitting both likelihood-based rationale
selection and sample filtration leads to further accuracy degradation (row 4). Finally, excluding all
three components (row 5) gives significantly lower performance than COALITION.

5 CONCLUSION

We presented COALITION, a trainable framework to improve the performance of (smaller) lan-
guage models on complex tasks by employing distinct variants of the same LM and use them to
generate and refine high-quality diverse rationales without any supervision from external (stronger)
models and ground-truth rationale annotations. The model variants are made to exhibit distinct be-
haviour by training them on separate data splits. In addition to the cost advantages of using smaller
models, it has significant real-world advantages where legal and ethical constraints restrict the use
of external models for supervision. Rigorous empirical evaluation over five datasets demonstrated
the effectiveness of COALITION over several prompt-only and trainable self-play baselines. In fu-
ture work, it is worthwhile to explore the impact of adding more variants on the performance and
incorporating domain-specific models (specialized variants) to generate high-quality rationales.
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6 ETHICS AND REPRODUCIBILITY STATEMENT

We employ publicly available datasets and LLMs to conduct the study in our work which are com-
monly used for ML research without any potential concerns. We do not annotate any data manually
in this work. The rationales generated at different steps of the proposed method are of similar nature
and domain as that of the text present in the datasets used. To encourage reproducibility, we release
our code at this anonymous link and also upload it as part of the supplementary zip. We described
the details of the datasets in § 4 (under ‘Datasets’ in the Experiments section) and the LLMs used in
§ 4 (under ‘Implementation Details’). Further, we provide the implementation details of our method
in § 4 (under ‘Implementation Details’) and discuss baselines used for comparison in § 4.1. Finally,
we elaborate further details of our method in the Appendix - 1) Example of samples for each dataset
(A.2) and 2) prompt templates used to format the samples during the IFT (A.3).

Statement on Explainability: LLMs are commonly used to generate the final answer to an input
question/instruction for various NLP tasks. However, it was shown that eliciting the LLM to gener-
ate a rationale first followed by the final answer results in better accuracy. A rationale is a statement
in natural language that describes the steps which are required to derive the answer, or an explana-
tion about how the question/instruction needs to be approached to arrive at the right answer. The
proposed COALITION framework improves the reasoning ability of (smaller) LLMs by improving
their ability to generate better rationales. Since the rationales provide an explanation about why
the LLM generated the final answer instead of just generating the final answer, the rationales can
be used as a means of explainability while generating the answer to an input question/instruction.
Further, since COALITION generate and refine multiple rationales using variants of the same LLM,
the generated and the refined rationales can be compared to identify differences in their explanation
and quality. The identified differences can provide further insights about what needs to be modified
in the explanations.
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Dataset Task-Instruction and Ground-Truth Answers for Each Dataset used to evaluate COALITION

GSM8K Instruction: Betty is saving money for a new wallet which costs $100. Betty has only half of the money she needs. Her parents decided to
give her $15 for that purpose, and her grandparents twice as much as her parents. How much more money does Betty need to buy the wallet?
Ground-Truth Response: 5

WinoGrande Instruction: Terry tried to bake the eggplant in the toaster oven but the was too big. A. eggplant, B. toaster
Ground-Truth Response: A. eggplant

PIQA Instruction: How to dry flowers? sol1: Find a dark, moist area with good circulation, such as an attic or unused closet. With unflavored dental
floss, secure the bottom of the flowers’ stems to a hanger so that they hang upside down to dry. Leave flowers for two to three weeks until
completely dry, sol2: Find a dark, dry area with good circulation, such as an attic or unused closet. With unflavored dental floss, secure the
bottom of the flowers’ stems to a hanger so that they hang upside down to dry. Leave flowers for two to three weeks until completely dry.
Ground-Truth Response: sol2

HellaSwag Instruction: Then he takes a small stone from the flowing river and smashes it on another stone. He starts to crush the small stone to smaller
pieces. He . A. cuts the center stone in half and blow it on to make it bigger. B. grind it hard to make the pieces smaller, C.
eventually brings it back into view and adds it to the smaller ones to make a small triangular shaped piece, D. starts to party with them and
throw the pieces by hand while they celebrate.
Ground-Truth Response: B

CSQA

Instruction: When learning about the world and different cultures, what is important if you are committed to eliminating preconceived notions.
A. newness, B. loss of innocence, C. enlightenment, D. open mind, E. smartness
Ground-Truth Response: D. open mind

Table 6: Examples of instructions from different datasets belonging to diverse task domains used
in the experiments - (i) Maths Problem Solving (GSM8K), (ii) Natural Language Inference (Wino-
Grande and PIQA), and (iii) Commonsense Reasoning (HellaSwag and CSQA).

A APPENDIX

A.1 DIRECT PREFERENCE OPTIMISATION (DPO)

Direct Preference Optimisation (DPO) (Rafailov et al., 2023) was introduced as an alternative to Re-
inforcement Learning using Human Feedback (RLHF) (Ouyang et al., 2022) technique to alleviate
the need of training a reward model. RLHF depends on training a reward model to assign a score
to the outputs generated by an LLM to fine-tune the LLM through reinforcement learning to align
it with human preferences. On the other hand, DPO transforms the loss over the reward-function
to a loss over the LLM policy such that the reward is optimised implicitly by optimising the loss
over the policy. It does so by leveraging human preference data which compares two possible out-
puts generated by an LLM such that the better output is considered as the winner candidate - yw
while the inferior output is considered as the loser candidate - yl. Given a static dataset of the form
D = {x, yw, yl}, where x is the input, the loss is modeled as -

LR = −log[σ(r(x, yw)− r(x, yl))] (10)

r(x, y) = βlog(
πθ(y|x)
πref (y|x)

) (11)

where, πZ(y|x) is the likelihood of generating y given x as input to the model Z ∈ {Mref ,Mθ},
Mref is usually taken to be the instruction fine-tuned model in the case of an LLM to prevent the
LLM policy from deviating too much from the initial policy, Mθ represents the LLM policy being
optimised through DPO, σ is the sigmoid activation, and β is a coefficient that controls the amount of
deviation from the reference model. In summary, the algorithm optimises the LLM to learn to prefer
generating certain outputs over other candidates without requiring an explicit reward model. Please
refer to the original publication (Rafailov et al., 2023) for an elaborate discussion of the details.

A.2 DATASET SAMPLES

Details of datasets were discussed in the ‘Experiments’ section (§ 4) in the main paper. Table 6
in the appendix shows samples of instructions for each dataset from all task domains - (i) Maths
Problem Solving (GSM8K), (ii) Natural Language Inference (WinoGrande and PIQA), and (iii)
Commonsense Reasoning (HellaSwag and CSQA).

A.3 PROMPT TEMPLATES FOR MULTI-MODE INSTRUCTION FINE-TUNING

As discussed in the Methodology section (§ 3, § 3.1) in the main paper, the base model M is
instruction fine-tuned to enable the LLM to operate in four modes in total - (i) generate the rationale
given the instruction as input (I → R); (ii) refine a rationale to improve its quality for a given
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instruction ([I;R′] → R); (iii) generate the answer conditioned on the instruction and rationale
as input ([I;R] → A); and (iv) generate the final answer given the instruction as input (I → A).
The inputs to the LLM are formatted using corresponding prompts (PI→R; P[I;R′]→R; P[I;R]→A;
PI→A) for each of these modes so that the LLM can generate an appropriate output accordingly.
The textual instruction for each prompt template is specified as follows:

1. PI→R = “You are an AI assistant ‘M’. Provide a response to the given instruction denoted
by Task Description.

[TASK DESCRIPTION STARTS]
〈Task Description〉: In this task, you will be given an ‘Instruction’. Generate descriptive
reasoning on how to derive the correct answer for the instruction such that the descriptive
reasoning will be useful to another AI assistant to generate the correct answer.
‘Instruction’ - 〈instruction〉
[TASK DESCRIPTION ENDS]

For the given 〈Task Description〉, give your response. [M RESPONSE BEGINS]:
”

2. P[I;R′]→R = “You are an AI assistant ‘M’. Provide a response to the given instruction
denoted by Task Description.

[TASK DESCRIPTION STARTS]
〈Task Description〉: In this task, you will be given an ‘Instruction’ and a rationale denoted
by ‘Rationale’. The ‘Rationale’ may or may not be correct for the given ‘Instruction’.
Analyse the rationale for its correctness, modify the rationale, and provide the correct
elaborate descriptive reasoning or ‘Rationale’ which will be helpful to come up with the
correct answer for the given instruction.
‘Instruction’ - 〈instruction〉
‘Rationale’ - 〈rationale〉
[TASK DESCRIPTION ENDS]

For the given 〈Task Description〉, give your response. [M RESPONSE BEGINS]:
”

3. P[I;R]→A = “You are an AI assistant ‘M’. Provide a response to the given instruction
denoted by Task Description.

[TASK DESCRIPTION STARTS]
〈Task Description〉: In this task, you will be given an ‘Instruction’ and a rationale denoted
by ‘Rationale’. Analyse the rationale and come up with the correct answer for the given
instruction.
‘Instruction’ - 〈instruction〉
‘Rationale’ - 〈rationale〉
[TASK DESCRIPTION ENDS]

For the given 〈Task Description〉, give your response. [M RESPONSE BEGINS]:
”

4. PI→A = “You are an AI assistant ‘M’. Provide a response to the given instruction denoted
by Task Description.

[TASK DESCRIPTION STARTS]
〈Task Description〉: In this task, you will be given an ‘Instruction’. Generate the correct
answer for the given instruction.
‘Instruction’ - 〈instruction〉
[TASK DESCRIPTION ENDS]

For the given 〈Task Description〉, give your response. [M RESPONSE BEGINS]:
”
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Model Parameter MMLU HellaSwag ARC TruthfulQA WinoGrande PIQA GSM8k CSQAScale Easy Challenge MC1 MC2
Phi3 (Abdin et al., 2024) 3.8B 69.94 59.01 81.90 53.92 36.60 54.43 73.32 80.30 10.36 72.48

w/ COALITION (ours) 3.8B 72.01 60.19 82.45 55.79 37.38 56.19 74.48 82.01 12.15 73.69

Qwen1.5 (Bai et al., 2023) 4B 59.93 52.01 60.73 34.73 29.38 44.79 67.01 75.57 3.49 74.61
w/ COALITION (ours) 4B 62.19 54.11 62.10 36.94 30.33 45.83 70.62 77.18 4.12 75.14

Qwen1.5 (Bai et al., 2023) 7B 69.94 61.06 80.35 50.94 40.51 57.35 69.53 79.54 57.01 81.00
w/ COALITION (ours) 7B 71.27 62.86 82.19 53.11 42.48 58.91 70.87 81.29 59.36 83.14

Qwen1.5 (Bai et al., 2023) 14B 78.78 65.57 85.98 60.49 51.53 68.99 76.01 81.45 69.37 84.19
w/ COALITION (ours) 14B 84.26 69.91 88.48 63.14 53.15 71.28 80.31 83.48 72.08 86.39

Mistral (Jiang et al., 2023a) 7B 59.60 64.78 84.26 57.42 41.98 59.71 74.43 81.66 48.52 69.21
w/ COALITION (ours) 7B 65.08 67.42 87.76 59.01 44.79 62.89 76.92 85.01 53.35 74.02

LLaMA3 (Dubey et al., 2024) 8B 62.23 60.14 80.13 50.17 26.81 43.89 73.24 79.54 50.11 68.96
w/ COALITION (ours) 8B 69.85 61.35 83.57 56.07 38.38 54.95 75.17 83.10 78.85 79.00

Table 7: Analysis of generality of COALITION trained in a task-agnostic manner by performing
SRO on general open-domain samples (instruction-answer pairs). The table summarises the accu-
racy achieved on general benchmarks comprising of 10 tasks from the open-llm leaderboard. Ra-
tionales generated by COALITION uniformly improves the performance on all the tasks for all the
LMs belonging to different model families (Phi3, Qwen1.5, Mistral, Llama3) and varying parameter-
scales (ranging from 4B to 14B).

In the above prompt templates, 〈instruction〉 is a placeholder for the actual task instruction IT and
〈rationale〉 is a placeholder for the rationale text.

A.4 EVALUATION ON GENERAL BENCHMARKS VIA TASK-AGNOSTIC SRO

We measure the generality and effectiveness of COALITION on general benchmarks (comprising
of 10 tasks) in the open-llm leaderboard by performing selective rationale optimisation (SRO) of the
LLM in a task-agnostic manner on a randomly selected subset of CoT data comprising of general
open-domain samples (instruction-answer pairs). Given a sample from the test-split of a dataset from
the open-llm leaderboard, the LLM trained using COALITION is leveraged to obtain the rationales
through the generate and the refine steps for evaluation. In particular, the generated rationale is ap-
pended to the prompt after the sample-instruction. Table 7 summarises the results for different LLM
backbones where it can be seen that rationales generated using COALITION uniformly increases the
performance on all the 10 tasks for LLMs belonging to all the model families and parameter-scales.
This demonstrates the generality of COALITION framework to improve the performance on tasks
even when the training (SRO) is performed on general-domain samples in a task-agnostic manner.

Notably, for Mistral-7B, there is a significant increase of ∼ 5.5% on the MMLU task which measures
the ability of the model to answer questions related to the world-knowledge. Similarly, there is
an improvement of ∼ 3% on truthful-QA, PIQA and close to 5% improvement on GSM8K and
CSQA. Likewise for Llama3-8B, there is a huge increase of more than 7% on MMLU, 6% on the
Challenging version of the ARC task, 11 − 12% on truthful-QA and similar improvements on the
other tasks. Similar improvements are observed for the Qwen model at different parameter-scales.

A.5 ADDITIONAL RELATED WORK

Mixture-of-Agents (Wang et al., 2024a) uses multiple open-source LLMs based agents to improve
the output quality at inference-time by generating intermediate output simultaneously using each
agent independently. Their framework comprises of multiple such layers of LLM agents such that
the outputs generated by agents in a layer are fed to the LLM agents in the subsequent layer which
are prompted to analyze the information in the responses generated by LLM agents in the previous
layer. It is observed that the accuracy on several benchmarks improve by prompting multiple LLM
agents in such a manner across multiple layers of agents. COALITION creates and uses multiple
variants of same SLM to improve its ability to generate and refine rationales in a trainable manner
without involving any external LLM.

Zephyr (Tunstall et al., 2023) rates the responses generated by Falcon (Penedo et al., 2023),
Llama (Touvron et al., 2023), etc. using GPT-4 (Achiam et al., 2023) to tune Mistral-7B (Jiang
et al., 2023a) via DPO. Legal liabilities and lack of transparency in the pre-training data of larger
models restrict their use to train smaller models for commercial use. Some methods use mixture-
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Dataset Rationales Generated by Best Baseline (SPIN) and LLM Variants of COALITIONfor Generate and Refine Steps

GSM8K

Instruction: John takes care of 10 dogs. Each dog takes .5 hours a day to walk and take care of their business. How many hours a week does
he spend taking care of dogs?
Best Baseline: John spends 0.5 hours a day taking care of each dog, and he has 10 dogs. So, for one day, the total time spent is .5*10=50.
Since there are 7 days in a week, we multiply the daily total by 7, the total time spent is 7*50=250.✗
Generate: John spends 0.5 hours a day for each of the 10 dogs, so for one day he spends .5*10=5 hours. To find the time spent in a week,
multiply by 7 days: 5*7=25 hours a week.✗
Refine: Each dog requires 0.5 hours of care per day, and John has 10 dogs. So, the total time spent per day is .5*10=5 hours. Since there are 7
days in a week, the total time spent per week is 5*7=35 hours. ✓

WinoGrande

Instruction: Terry tried to bake the eggplant in the toaster oven but the was too big. A. eggplant, B. toaster
Best Baseline: The word that “was too big” is referring to the toaster because it is the object Terry was using to bake. Therefore, the correct
answer is B. toaster. ✗
Generate: The sentence says Terry tried to bake the eggplant, but something was too big. The word “was too big” is referring to the toaster, as
it couldn’t fit the eggplant inside. So the answer is B. toaster. ✗
Refine: The sentence implies that Terry tried to bake the eggplant, but it “was too big” for the toaster oven. Since the eggplant is the item being
placed into the toaster oven, and the issue is with its size, the correct answer is A. eggplant. ✓

PIQA

Instruction: How to dry flowers? sol1: Find a dark, moist area with good circulation, such as an attic or unused closet. With unflavored dental
floss, secure the bottom of the flowers’ stems to a hanger so that they hang upside down to dry. Leave flowers for two to three weeks until
completely dry, sol2: Find a dark, dry area with good circulation, such as an attic or unused closet. With unflavored dental floss, secure the
bottom of the flowers’ stems to a hanger so that they hang upside down to dry. Leave flowers for two to three weeks until completely dry.
Best Baseline: Sol 1 is correct because flowers need a dark and moist environment to dry properly. Moisture will help retain the natural beauty
of the flowers. So, Solution 1 is the better method for drying flowers. ✗
Generate: Solution 1 mentions finding a dark, moist area, which could help preserve the flowers’ freshness for a while before they dry. ✗
Refine: Solution 2 is the correct approach because it suggests finding a dark, dry area with good air circulation, which is ideal for drying
flowers without mold or decay. ✓

HellaSwag

Instruction: Then he takes a small stone from the flowing river and smashes it on another stone. He starts to crush the small stone to smaller
pieces. He . A. cuts the center stone in half and blow it on to make it bigger. B. grind it hard to make the pieces smaller, C.
eventually brings it back into view and adds it to the smaller ones to make a small triangular shaped piece, D. starts to party with them and
throw the pieces by hand while they celebrate.
Best Baseline: The best answer is A. cuts the center stone in half and blows it on to make it bigger because cutting the stone and blowing on it
would magically enlarge the pieces. ✗
Generate: The correct answer is C. eventually brings it back into view and adds it to the smaller ones to make a small triangular-shaped piece.
This suggests he’s shaping the stone into smaller pieces and eventually creating a triangle, which aligns with the idea of breaking the stone
down. ✗
Refine: The best answer is B. grinds it hard to make the pieces smaller. This accurately matches the action described in the scenario, where the
small stone is being smashed and crushed into smaller pieces. The goal is to break it down, and ”grinding it hard” reflects that process. ✓

CSQA

Instruction: When learning about the world and different cultures, what is important if you are committed to eliminating preconceived notions.
A. newness, B. loss of innocence, C. enlightenment, D. open mind, E. smartness
Best Baseline: The correct answer is A. newness because when you learn about different cultures, everything you encounter will feel new and
unfamiliar. Newness is what eliminates preconceived notions. ✗
Generate: The best answer is C. enlightenment because as you learn more about different cultures, you become enlightened, which helps you
overcome your preconceived ideas. ✗
Refine: The correct answer is D. open mind because if you’re committed to eliminating preconceived notions, the most important factor is
being receptive and willing to accept new ideas and perspectives. ✓

Table 8: Qualitative analysis and comparison of rationales generated by COALITION with the best
baseline - SPIN on all the five datasets on the three task domains. COALITION yields better ratio-
nales using generate and refine steps by leveraging the distinct LLM variants.

of-experts where the task-instruction is routed to suitable LLM expert either at the query-level (Lu
et al., 2024a), in latent space (Jiang et al., 2024a) or at the output-layer (Si et al., 2023). On similar
lines, COALITION employs a controller that is trained using the preference data collected during
the DPO training to select the LLM variants for generate and refine steps. COALITION creates
labelled data to train the controller based on which LLM variants’s rationale gets selected during
selective rationale optimisation.

A.6 QUALITATIVE ANALYSIS

Table 8 shows a qualitative comparison of rationales generated by COALITION with the best base-
line - SPIN on all the five datasets on the three task domains. COALITION yields better rationales
using generate and refine steps by leveraging the distinct LLM variants.

A.7 HUMAN STUDY FOR RATIONALE EVALUATION

We conducted a human study to evaluate the effectiveness of rationales obtained using the proposed
COALITION framework. The following steps describe creation of data for human evaluation:

Dataset Creation for Human Evaluation

1. We collected a total of 75 samples by taking an equal number of samples for each task i.e.
15 samples randomly from the test sets of each of the 5 task datasets.

2. For each sample, we obtain the rationales R1g , R2g from the two LLM variants at the
generate step. Based on the variant selected by the controller for the generate step, the
corresponding generated rationale Rg is considered for refinement.
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3. The selected generated rationale Rg is used by the controller to determine the variant that
should be used to refine the selected generated rationale. Once the variant is selected, it is
used to refine the selected generated rationale to obtain the refined rationale – Rr.

Once the above rationales are obtained, we employed two paid human annotators and presented
them with the instruction in each sample along with different rationales obtained above. The human
evaluators are asked to judge the quality of different rationales based on the following questions and
guidelines:

Questions and Guidelines

1. Question 1: Is the final rationale obtained from COALITION useful for answering the
question correctly? The rationale is useful if it is correct and provides the correct explana-
tion on how the answer for the instruction in the sample should be derived. Provide a label
out of 0 or 1 such that 0 means that the final rationale is totally wrong; and 1 means that
the final rationale is totally correct.

2. Question 2: Compare the selected generated rationale Rg with the refined rationale Rr

obtained after refining Rg . Provide a label of 0 or 1 where 1 means that the refinement
improved the generated rationale and 0 means there was no improvement.

3. Question 3: Compare the two rationales obtained using the two variants at the generate step
- R1g and R2g . Provide a label of 0 or 1 where 0 means that none of the rationales is better
than the other and 1 means that one rationale is better than the other.

4. Question 4: In Question 3, in case one rationale is better than the other (between the ratio-
nales obtained from two variants at generate step), select the better rationale.

Definition of Metrics Estimated from Human Labels

Different rationales were presented to human evaluators in jumbled order to avoid biases while com-
paring rationales. Based on the judgement labels provided by the human evaluators for 4 questions
above for the 75 samples, we estimate the following metrics:

1. Final Rationale Alignment – % proportion of samples which were assigned label 1 i.e.
totally correct.

2. Improvement using Refinement - % proportion of samples where the refined rationale Rr

was judged to be improving the generated rationale Rg .
3. Diversity b/w two Rationales from Generate Step - % proportion of samples where the two

rationales R1g and R2g obtained from two variants at generate step are different i.e. cases
where one of the two rationales is better than the other (label 1). This metric is estimated
to verify if the variants truly generate distinct rationales.

4. Better Rationale Alignment with Likelihood based Selection: We consider samples where
label 1 is provided to Question 3 i.e. one of the generated rationales is judged better than
the other generated rationale (comparing R1g and R2g). We estimate the metric as %
proportion cases from these samples where better rationale determined using likelihood-
based utility score matches the better rationale from human judgement.

Human Study Results and Discussion

We compute the above metrics using the 75 samples used for human evaluation. We report the aver-
age of metrics obtained for the two human evaluators in Table 9. We discuss following observations
from the results in Table 9:

1. From Table 9, we can observe that the final rationale alignment is 87.33% which means that
final rationale obtained from COALITION is reliable and aligns with human preferences.

2. Rationale refinement helps since refinement improved the generated rationales for 36%
cases. Thus, obtaining better rationales through refinement would also enable accuracy
improvement on the final tasks as observed in the paper.

3. Rationales from Two Variants are diverse: It is observed that for 62.67% cases, one ratio-
nale obtained at generate step was judged to be better than the other generated rationale.
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Metric Name Value (in %)
Final Rationale Alignment 87.33
Improvement using Refinement 36.0
Diversity b/w two Rationales from Generate Step 62.67
Better Rationale Alignment with Likelihood-based Selection 80.85

Table 9: Human study results summarizing values of different metrics evaluated using human labels.
It is observed that for good proportion of cases, final rationale obtained from COALITION aligns
with human preferences, refinement helps improving generated rationales, the rationales obtained
from two variants are diverse and better rationale judged by humans matches with winner rationale
selected using likelihood based utility score.

This means that employing two variants of same LLM is useful to obtain distinct and di-
verse rationales which are useful to improve quality of preference data for DPO.

4. Likelihood based rationale selection aligns with human preferences: For 80.85% cases,
better generated rationale determined based on human preferences matches the better ratio-
nale based on likelihood-based utility score. This shows that our choice of using likelihood
of final GT answer for selecting winner rationale aligns with human preferences and is
suitable to obtain the preference data.

Inter-Annotator Agreement: We also report the inter-annotator agreement by estimating the Co-
hen’s kappa coefficient which is commonly used to measure agreement between two annotators.
For the human study, following is the Cohen-kappa coefficient for questions used to estimate each
metric:

Cohen-Kappa coefficient for Final Rationale Alignment: 0.7112
Cohen-Kappa coefficient for Improvement using Refinement: 0.4851
Cohen-Kappa coefficient for Diversity b/w two Rationales from Generate Step: 0.7331
Cohen-Kappa coefficient for Better Rationale Alignment with Likelihood based Selection: 0.5105

Following is mapping of cohen-kappa coefficient value ranges with interpretation:

0 – 0.2: Slight agreement
0.21 - 0.4: Fair agreement
0.41 - 0.6: Moderate agreement
0.61 - 0.8: Substantial agreement
0.81 - 1.0: Almost Perfect agreement

Based on the coefficient obtained for different metrics and the above scale, it can be seen that human
labels for final rationale alignment (0.7112) and diversity b/w rationales (0.7331) have substan-
tial agreement while human labels for improvement using refinement (0.4851) and better rationale
alignment with likelihood based selection (0.5105) have moderate agreement.

A.8 RATIONALE EVALUATION USING LLM-AS-A-JUDGE

We perform the same evaluation as done for human study but instead of human evaluators, we use
GPT-4o as the judge. GPT-4o is prompted with questions as used for human study for all the samples
in the test split of each task dataset. Table 10 summarizes the values of metrics obtained using GPT-
4o as judge where we report combined as well as dataset-wise metrics also since the number of
samples for each dataset evaluated using GPT-4o is large.

It can be seen that using GPT-4o-as-a-judge yields similar (even more profound) trends as were ob-
served from human study where quality of the final rationale obtained from COALITION is judged
to be good for majority cases (for 82.55% samples on average) and refinement improves rationale
quality (for ∼60% cases on average). Further, the rationales obtained from LLM variants are di-
verse (for 71.21% cases on average) such that better rationale judged by GPT-4o aligns with winner
rationale determined using likelihood-based utility score (for 88% cases on average).
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Metric Name Combined across Tasks GSM8K WinoGrande PIQA HellaSwag CSQA
Final Rationale Alignment 82.55 77.69 77.83 85.29 83.40 88.53
Improvement using Refinement 59.66 69.19 61.29 57.33 53.47 57.01
Diversity b/w two Rationales from Generate Step 71.21 80.18 72.24 74.27 61.21 68.13
Better Rationale Alignment with Likelihood-based Selection 88.01 92.71 85.11 88.29 89.41 85.20

Table 10: LLM-as-a-judge results for evaluating the rationales using GPT-4o as a judge to estimate
(i) Final Rationale Alignment, (ii) Improvement using Refinement, (iii) Diversity b/w two Rationales
from Generate Step, and (iv) Better Rationale Alignment with Likelihood-based Selection.

Method GSM8K WinoGrande PIQA HellaSwag CSQA
COALITION w 2 LLM Variants 81.06 77.13 83.26 63.23 82.06
COALITION w 3 LLM Variants 83.41 79.58 85.24 65.48 83.35

Table 11: Comparison of results by employing 3 LLM variants vs. 2 LLM variants (as done in main
paper) in COALITION. Employing more variants improves the accuracy further.

A.9 VARYING NUMBER OF LLM VARIANTS IN COALITION

The number of LLM variants is a hyper-parameter. We experimented with 2 LLM variants in the
paper. As an ablation study, we perform an experiment where we employ and train three LLM
variants and compare the accuracy with 2 LLM variants in table 11. It is observed that the accuracy
on all the tasks improve uniformly with an average increase of 2% across different tasks. Thus,
accuracy improvements over different baselines also get enhanced further with using 3 variants. We
leave increasing the number of variants further to explore if it yields additional improvements as
future work.

A.10 AUTOMATED DIVERSITY ESTIMATION BETWEEN RATIONALES FROM TWO VARIANTS

To measure diversity between the rationales obtained from the two variants (for both generate as
well as refine step), we estimate normalized lexical overlap between the rationales and take its com-
plement as a measure of how distinct the rationales are. BLEU (Papineni et al., 2002) is commonly
used metric in the NLP field to estimate overlap between two text sequences. Using Bleu, we esti-
mate corresponding diversity metric i.e. Bleu-Diversity b/w rationales r1, r2 generated by the two
variants respectively by taking complement of Bleu as follows:

Bleu-Diversity = 1 – Average[ Bleu(r1, r2)), Bleu(r2, r1) ]

Note: The values obtained using the overlap metric (BLEU) lie in the range of 0 to 1.

Table 12 shows the values of diversity metric for rationales obtained from two variants in COALI-
TION for generate as well as refine steps respectively on all the tasks where it is observed that the
diversity metric for all the tasks (for both generate and refine step) lie in the range of 0.68-0.80
(which is high on a scale of 0-to-1) which shows that the rationales obtained using the two variants
are distinct from each other.

A.11 ADDITIONAL MEASUREMENT OF RATIONALES USING PERPLEXITY

We conduct additional measurement of the rationales by estimating the perplexity of generating GT
answer conditioned on rationales obtained at both generate and refine steps (for Llama-3-8B back-
bone). We also compare with the setting where no rationale is used. Lower perplexity means that
training COALITION on winner/eliminated rationale using DPO enhances the LLM’s confidence
and chances of generating the correct answer. Table 13 summarizes the results where it is observed
that using COALITION rationales reduces perplexity of GT answer. Also, using refined rationales
results in lower perplexity compared to using rationales obtained from generate step highlighting
the importance of refinement.
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Metric GSM8K WinoGrande PIQA HellaSwag CSQA
Diversity b/w rationales obtained at Generate Step 0.7525 0.7995 0.6893 0.8018 0.6827
Diversity b/w rationales obtained at Refine Step 0.7369 0.8048 0.6974 0.8149 0.7011

Table 12: Bleu-diversity metric b/w rationales from two variants for generate and refine steps re-
spectively. Since Bleu overlap metric lies in range [0, 1], Bleu-diversity is also between 0-to-1. It
can be seen that rationales from two variants are lexically diverse due to high value of the diversity
metric for both generate and refine steps.

Method GSM8K WinoGrande PIQA HellaSwag CSQA
w/o any rationale 11.29 6.92 6.73 8.47 8.84
w COALITION rationales from Generate Step 9.61 5.24 5.19 7.28 7.38
w COALITION rationales from Refine Step 8.47 4.48 4.46 5.37 6.53

Table 13: Perplexity (lower is better) of generating GT answer - (i) w/o any rationale, (ii) rationale
from generate step in COALITION, and (iii) rationale from refine step in COALITION. It can be
seen that COALITION’s rationales reduces perplexity compared to not using any rationale. Further,
refined rationales results in lower perplexity compared to using rationales from generate step.

A.12 NUMBER OF SAMPLES USED TO TRAIN VARIANTS

We report the number of samples used for each of the two variants to train them during the IFT stage
as well as different iterations of DPO. During IFT, as discussed in implementation details section,
a total of 180K samples were used. This IFT data was divided into two equal partitions such that
90K samples were used to train and obtain each LLM variant. IFT is performed in a task-agnostic
manner. We summarize the number of training samples used for each variant during task-guided
DPO in Table 14.

Training Stage GSM8K WinoGrande PIQA HellaSwag CSQA
DPO iteration-1 Generate Step 1317 7297 2949 7649 1728
DPO iteration-1 Refine Step 1626 8934 3140 9795 1993
DPO iteration-2 Generate Step 1489 8379 3529 8029 1979
DPO iteration-2 Refine Step 1724 10093 3896 10764 2252

Table 14: Summary of number of samples used to train each variant for each DPO iteration for the
generate and refine steps for different tasks.
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