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S1 Derivation of the contrastive meta-learning rule

Our contrastive meta-learning rule relies on the equilibrium propagation theorem [29, 30]. We review
this result and how we use it to derive the different instances of our rule.

S1.1 Equilibrium propagation theorem

First, we restate the equilibrium propagation theorem as presented in Scellier [30]. Recall the
definition of the augmented loss

L(ϕ, θ, β) = Llearn(ϕ, θ) + βLeval(ϕ, θ). (8)

Note that compared to the main text, we omit the subscript τ for conciseness. Given the augmented
loss, the equilibrium propagation theorem states the following:
Theorem S1 (Equilibrium propagation). Let Llearn and Leval be two twice continuously differentiable
functions. Let ϕ∗ be a fixed point of L( · , θ̄, β̄), i.e.

∂L
∂ϕ

(ϕ∗, θ̄, β̄) = 0,

such that ∂2ϕL(ϕ∗, θ̄, β̄) is invertible. Then, there exists a neighborhood of (θ̄, β̄) and a continuously
differentiable function (θ, β) 7→ ϕ∗θ,β such that ϕ∗

θ̄,β̄
= ϕ∗ and for every (θ, β) in this neighborhood

∂L
∂ϕ

(ϕ∗θ,β , θ, β) = 0.

Furthermore,
d

dθ

∂L
∂β

(
ϕ∗θ,β , θ, β

)
=

d

dβ

∂L
∂θ

(
ϕ∗θ,β , θ, β

)⊤
.

Proof. The first point follows from the implicit function theorem [24]. Let (θ, β) be in a neighborhood
of (θ̄, β̄) in which ϕ∗θ,β is differentiable.

The symmetry of second order derivatives of a scalar function implies that

d

dθ

d

dβ
L
(
ϕ∗θ,β , θ, β

)
=

d

dβ

d

dθ
L
(
ϕ∗θ,β , θ, β

)⊤
. (9)

We then simplify the two sides of the equation. First, we look at the left-hand side and simplify
dβL(ϕ∗θ,β , θ, β) using the chain rule and the fixed point condition

d

dβ
L(ϕ∗θ,β , θ, β) =

∂L
∂β

(ϕ∗θ,β , θ, β) +
∂L
∂ϕ

(ϕ∗θ,β , θ, β)
dϕ∗θ,β
dβ

=
∂L
∂β

(ϕ∗θ,β , θ, β).

(10)

Similarly, the dθL(ϕ∗θ,β , θ, β) term on the right-hand side is equal to ∂θL(ϕ∗θ,β , θ, β) and we obtain
the required result2.

S1.2 The contrastive meta-learning rule

Equilibrium propagation can be used to compute the gradient associated with the bilevel optimization
problem studied in this paper

min
θ

Leval(ϕ∗θ) s.t. ϕ∗θ ∈ argmin
ϕ

Llearn(ϕ, θ). (11)

To do so, we first characterize ϕ∗θ through the stationarity condition

∂Llearn

∂ϕ
(ϕ∗θ, θ) = 0. (12)

2Note that we use ∂ to denote partial derivatives and d to denote total derivatives.
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As Llearn(ϕ, θ) = L(ϕ, θ, 0) we can define an implicit function ϕ∗θ,β if ∂2ϕL
learn(ϕ∗θ, θ) is invertible

for which ϕ∗θ,0 = ϕ∗θ , and that satisfies, for β close to 0,

∂L
∂ϕ

(ϕ∗θ,β , θ, β) = 0. (13)

The gradient associated with the bilevel optimization problem (11) is then equal to

∇θ :=

(
d

dθ
Leval(ϕ∗θ, θ)

)⊤

=
d

dθ

∂L
∂β

(ϕ∗θ,β , θ, β)

∣∣∣∣⊤
β=0

=
d

dβ

∂L
∂θ

(ϕ∗θ,β , θ, β)

∣∣∣∣
β=0

. (14)

Since β is a scalar, we can use finite difference methods to efficiently estimate

∆θ = −∇̂θ = − 1

β

(
∂L
∂θ

(ϕ̂β , θ, β)−
∂L
∂θ

(ϕ̂0, θ, 0)

)⊤

, (15)

in which ϕ̂0 and ϕ̂β denote the estimates of ϕ∗θ,0 and ϕ∗θ,β . If those estimates are exact, we are
guaranteed that the update converges to the true gradient. In some of our experiments, we use a more
sophisticated center difference approximation similar to [87], that is

∆θsym = −∇̂sym
θ = − 1

2β

(
∂L
∂θ

(ϕ̂β , θ, β)−
∂L
∂θ

(ϕ̂−β , θ,−β)
)⊤

. (16)

We refer to (16) as the symmetric variant of our contrastive rule. When the estimates for the fixed
points are exact, it reduces the meta-gradient estimation bias from O(β) for the forward difference
above to O(β2) at the expense of having to run a third phase.

S1.3 Application to the complex synapse model

We can now derive the meta-learning rules for the complex synapse model of Section 4.1. Recall that

Llearn(ϕ, θ) = llearn(ϕ) +
1

2

|ϕ|∑
i=1

λi(ωi − ϕi)
2 (17)

and
Leval(ϕ) = leval(ϕ), (18)

where leval(ϕ) and llearn(ϕ) are two data-dependent loss functions.

For the complex synapse model, only the learning loss depends on the meta-parameters, hence
∂θL = ∂θL

learn and

∂L
∂ω

(ϕ, θ, β) = λ(ω − ϕ)

∂L
∂λ

(ϕ, θ, β) =
1

2
(ω − ϕ)2,

(19)

where all the operations are carried out elementwise. Plugging the last equation in the contrastive
update (15) yields

∆ω = −λ
β

(
(ω − ϕ̂β)− (ω − ϕ̂0)

)
=
λ

β

(
ϕ̂β − ϕ̂0

)
∆λ = − 1

2β

(
(ω − ϕ̂β)

2 − (ω − ϕ̂0)
2
)
=

1

2β

(
(ω − ϕ̂0)

2 − (ω − ϕ̂β)
2
)
.

(20)

S1.4 Application to the top-down modulation model

The structure of the learning and evaluation losses for the top-down modulation model is the following:

Llearn(ϕ, θ) = llearn(h(ϕ, θ))

Leval(ϕ, θ) = leval(h(ϕ, θ)),
(21)

3



where llearn(ψ) and leval(ψ) are two data-driven losses that use learning and evaluation datasets to
evaluate the performance of a network parametrized by ψ, and h(ϕ, θ) produces the parameters ψ
by modulating a base network parametrized by θ. Specifically, we modulate the rectified linear unit
(ReLU) activation function for each neuron i with a gain gi and shift bi, σϕ(xi) = gi((θ · x)i − bi)+,
with the gain and shift parameters of all neurons defining the fast parameters ϕ = {g, b} .

Applying our contrastive update (15) to this model we obtain the following equations:

∆θ = − 1

β

(
∂L
∂θ

(ϕ̂β , θ, β)−
∂L
∂θ

(ϕ̂0, θ, 0)

)⊤

= − 1

β

(
∂[llearn + βleval]

∂ψ
(h(ϕ̂β , θ))

∂h

∂θ
(ϕ̂β , θ)−

∂llearn

∂ψ
(h(ϕ̂0, θ))

∂h

∂θ
(ϕ̂0, θ)

)⊤

.

(22)

Let us now decompose what this update means. The losses llearn(ψ) and [llearn +βleval](ψ) measure
the performance of a network parametrized by ψ on the learning data, and on a weighted mix
of learning and evaluation data. The derivatives ∂ψllearn and ∂ψ[llearn + βleval] can therefore be
computed using the backpropagation-of-error algorithm, or any biologically plausible alternative to it.
Those derivatives are then multiplied by ∂θh, which is a diagonal matrix as the modulation does not
combine weights together, but only individually changes them. As a result, the update (22) contrasts
two elementwise modulated gradients with respect to the weights.
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S2 Review of implicit gradient methods for meta-learning

The gradient associated with the bilevel optimization problem of Eq. 11 can be calculated analytically
using the implicit function theorem [24]. This insight forms the basis for implicit gradient methods
for meta-learning which we shortly review in the following. We additionally provide a comparison of
the computational and memory complexity of different meta-learning methods in Table S1.

As for the derivation of the contrastive meta-learning rule, we start by characterizing the implicit
function ϕ∗θ of θ through its corresponding first-order stationarity condition

∂Llearn

∂ϕ
(ϕ∗θ, θ) = 0. (23)

Then, when the Hessian ∂2ϕL
learn(ϕ∗θ, θ) is invertible, we have

d

dθ
Leval(ϕ∗θ, θ) =

∂Leval

∂θ
(ϕ∗θ, θ) +

∂Leval

∂ϕ

dϕ∗θ
dθ

=
∂Leval

∂θ
(ϕ∗θ, θ)−

∂Leval

∂ϕ

(
∂2Llearn

∂ϕ2
(ϕ∗θ, θ)

)−1
∂2Llearn

∂ϕ∂θ
(ϕ∗θ, θ),

(24)

where in the first line we used the chain rule and in the second line the differentiation formula
provided by the implicit function theorem [24].

In most practical applications, ϕ is high dimensional rendering the computation and inversion of
the Hessian ∂2ϕL

learn(ϕ∗θ, θ) intractable. In order to obtain a practical algorithm, implicit gradient
methods numerically approximate the row vector

µ := −∂L
eval

∂ϕ
(ϕ∗θ, θ)

(
∂2Llearn

∂ϕ2
(ϕ∗θ, θ)

)−1

. (25)

The simplest algorithm, T1-T2 [53], replaces the inverse Hessian by the identity, i.e.
µ ≈ ∂ϕL

eval(ϕ∗θ, θ), which yields an estimate relying only on first derivatives.

The recurrent backpropagation algorithm [RBP, 49–51], also known as Neumann series approxima-
tion [23, 51], builds on the insight that µ is the solution of the linear system

x
∂2Llearn

∂ϕ2
(ϕ∗θ, θ) = −∂L

eval

∂ϕ
(ϕ∗θ, θ). (26)

which can be solved via fixed point iteration.

Finally, µ can be seen as the solution of the optimization problem

min
x

x
∂2Llearn

∂ϕ2
(ϕ∗θ, θ)x

⊤ + x
∂Leval

∂ϕ
(ϕ∗θ, θ)

⊤ (27)

when the Hessian of Llearn is positive definite. This optimization problem can be efficiently solved
via the conjugate gradient method [22, 91].

The three algorithms described above provide different estimates for µ but all follow the same basic
procedure: (1) minimize the learning loss to approximate ϕ∗θ; (2) estimate µ; and (3) update the
meta-parameters using (24) with the estimated µ.

Compared to our contrastive meta-learning rule, these algorithms require a second phase that is
completely different from the first one and which involves second derivatives (apart from the biased
T1-T2). Additionally, as mentioned in Section 5.2, the conjugate gradient method is faster in theory,
but was reported to be unstable by several studies [51, 54]. We confirm those findings in our
experiments (cf. Section S3.6 and S4.1).
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Table S1: Comparison of computational and memory complexity of meta-learning methods.
T denotes the number of steps in the base learning process andK refers to steps taken in an algorithm-
specific second phase. “HVP” abbreviates “Hessian-vector product” and “cross der. VP” denotes
“cross derivative vector product”. An algorithm is “exact in the limit” if it computes the meta-gradient
or can approximate it with arbitrary precision given enough compute. The algorithms compared in
this table are contrastive meta-learning (CML), conjugate gradients (CG; used in iMAML), recurrent
backpropagation (RBP), T1-T2, backpropagation-through-learning (BPTL; used in MAML), its
truncated version (TBPTL) and its first-order version where all Hessians are replaced by the identity
(FOBPTL; also known as FOMAML) and Reptile. The first four algorithms assume that the base
learning process reaches an equilibrium, whereas the last four require no such assumption. * Reptile
is not a general-purpose meta-learning method as it is restricted to meta-learn the initialization of the
learning process.

Method # gradients w.r.t. # 2nd-order terms Memory Exact in the limit
ϕ θ HVP cross der. VP

CML (ours) T +K 2 0 0 O(|ϕ|+ |θ|) ✓
CG [21, 22, 52] T + 1 1 K 1 O(|ϕ|+ |θ|) ✓
RBP [23, 49–51] T + 1 1 K 1 O(|ϕ|+ |θ|) ✓
T1-T2 [53] T + 1 1 0 1 O(|ϕ|+ |θ|) ✗

BPTL [18] T + 1 T + 1 T 0 O(T |ϕ|+ |θ|) ✓
TBPTL [54] T + 1 K + 1 K 0 O(K|ϕ|+ |θ|) ✗
FOBPTL [18] T + 1 T + 1 0 0 O(T |ϕ|+ |θ|) ✗
Reptile* [58] T 0 0 0 O(|ϕ|) ✗
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S3 Theoretical results

The contrastive meta-learning rule (15) only provides an approximation ∇̂θ to the meta-gradient
∇θ due to the limited precision of the fixed points and the finite difference estimator. We can in
principle arbitrarily improve the approximation by spending more compute to refine the quality of
the solutions ϕ̂0 and ϕ̂β and decreasing the nudging strength β. The purpose of this section is to
theoretically analyze the impact of such a refinement on the quality of the meta-gradient estimate. We
state Theorem 1 formally, present a corollary of this result, and verify that it holds experimentally.

S3.1 Meta-gradient estimation error bound

We start by upper bounding the meta-gradient estimation error ∥∇̂θ − ∇θ∥, given the value of β
and the error made in the approximation of the solutions of the lower-level learning process. Two
conflicting phenomena impact the estimation error. First, our meta-learning rule uses potentially
inexact solutions. Second, the finite difference approximation of the β-derivative yields the so-called
finite difference error. To study those two errors in more detail, we introduce

∇̂∗
θ :=

1

β

(
∂L
∂θ

(ϕ∗θ,β , θ, β)−
∂L
∂θ

(ϕ∗θ,0, θ, 0)

)
,

the contrastive estimate of the meta-gradient ∇θ, but evaluated at the exact solutions ϕ∗θ,0 and ϕ∗θ,β
(recall that ∇̂θ has the same structure, but it is evaluated on the approximate solutions ϕ̂0 and ϕ̂β).
Equipped with ∇̂∗

θ , we now have a way to quantify the two errors described above: ∥∇θ − ∇̂∗
θ∥

measures the finite difference error and ∥∇̂∗
θ − ∇̂θ∥ measures the solution approximation induced

error, that is the consequence of the imperfect solutions.

Informally, higher β values will reduce the sensitivity to crude approximations to the lower-level
solutions while increasing the finite difference error. Theorem 1 theoretically justifies this intuition
under the idealized regime of strong convexity and smoothness defined in Assumption 1. This result
holds for every rule induced by equilibrium propagation.
Assumption 1. Assume that Llearn and Leval are three-times continuously differentiable and that
they, as functions of ϕ, verify the following properties.

i. ∂θLlearn is Blearn-Lipschitz and ∂θLeval is Beval-Lipschitz.

ii. Llearn and Leval are L-smooth and µ-strongly convex.

iii. their Hessians are ρ-Lipschitz.

iv. ∂ϕ∂θLlearn and ∂ϕ∂θLeval are σ-Lipschitz.
Theorem 1 (Formal). Let β > 0 and (δ, δ′) be such that

∥ϕ∗θ,0 − ϕ̂0∥ ≤ δ, and ∥ϕ∗θ,β − ϕ̂β∥ ≤ δ′.

Under Assumption 1, there exists a θ-dependent constant C such that

∥∇θ − ∇̂θ∥ ≤ Blearn(δ + δ′)

β
+Bevalδ′ + C

β

1 + β
=: B(δ, δ′, β).

If we additionally assume that θ lies in a compact set, we can choose C to be independent of θ.

We visualize our bound in Fig. S1, as a function of β and of the solution approximation errors δ and δ′.
When δ and δ′ are fixed, the estimation error quickly increases when β deviates from its optimal value
and it saturates for large β values (cf. Fig. S1A and B). A better solution approximation naturally
improves the quality of the meta-gradient estimate for β held constant (cf. Fig. S1C). However, the
benefits saturate above some β-dependent value: investing extra compute in the approximation of the
fixed point does not pay off if β is not decreased accordingly.

S3.2 Proof of Theorem 1

As mentioned above, Theorem 1 can be proved by individually bounding the two kind of errors
that compose the meta-gradient estimation error, that are the finite difference error and the solution
approximation induced error.
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A B C

Figure S1: Theorem 1 (C = 1), as a function of β (A, B) and as a function of δ = δ′ (C). (A) We
take Blearn = Beval = 1 and δ = δ′. (B) Bound for the setting in which δ′ is fixed to 0.01 and Leval

is independent of θ (as for the complex synapse model). (C) We use the same setting as for (A).

The Blearn(δ + δ′)/β +Bevalδ′ part of the bound stems from the solution approximation error, and
can be obtained by using the assumption that the partial derivatives of Llearn and Leval are Lipschitz
continuous.

Bounding the finite difference error requires more work. We use Taylor’s theorem to show that
∇̂∗
θ −∇θ is equal to some integral remainder. It then remains to bound what is inside the integral

remainder, which is the second order derivative d2β∂θL(ϕ∗β , β). This is done in the Lemmas presented
in this section: Lemma 1 allows us to get uniform bounds, Lemmas 2 and 3 bound the first and
second order derivatives of β 7→ ϕ∗β and Lemma 4 bounds d2β∂θL(ϕ∗β , β) with the norm of the two
derivatives we have just bounded. We present the proofs for those four lemmas in Section S3.3.

Lemma 1. Under Assumption 1.ii, if θ lies in a compact set D the function (θ, β) 7→ ϕ∗θ,β is
uniformly bounded.

Lemma 2. Under Assumption 1.ii, there exists a θ-dependent constant R s.t., for every positive β,∥∥∥∥dϕ∗βdβ

∥∥∥∥ ≤ LR

(1 + β)2µ
.

If we additionally assume that θ lies in a compact set, we can choose R to be independent of θ.

Remark 1. A side product of the proof of Lemma 2 is a bound on the distance between the minimizer
of L and the minimizers of Llearn and Leval. We have

∥ϕ∗β − ϕ∗∞∥ ≤ 1

1 + β

and

∥ϕ∗β − ϕ∗0∥ ≤ β

1 + β

up to some constant factors.

Lemma 3. Under Assumptions 1.ii and 1.iii,∥∥∥∥∥d2ϕ∗βdβ2

∥∥∥∥∥ ≤ ρ

µ

∥∥∥∥dϕ∗βdβ

∥∥∥∥2 + 2L

(1 + β)µ

∥∥∥∥dϕ∗βdβ

∥∥∥∥.
When Lemma 3 is combined with Lemma 2,∥∥∥∥∥d2ϕ∗βdβ2

∥∥∥∥∥ ≤ 1

(1 + β)3
. (28)

up to some constant factor.
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Lemma 4. Under Assumptions 1.ii, 1.iii and 1.iv, there exists a constant M such that∥∥∥∥ d2

dβ2

∂L
∂θ

(ϕ∗β , β)

∥∥∥∥ ≤M

(∥∥∥∥dϕ∗βdβ

∥∥∥∥+ (1 + β)

(∥∥∥∥dϕ∗βdβ

∥∥∥∥2 +
∥∥∥∥∥d2ϕ∗βdβ2

∥∥∥∥∥
))

.

We can now prove Theorem 1 using the four lemmas that we have just presented. Note that we omit
the θ-dependency whenever θ is fixed, for the sake of conciseness.

Proof of Theorem 1. We separate the sources of error within the meta-gradient estimation error using
the triangle inequality:

∥∇̂θ −∇θ∥ ≤ ∥∇̂θ − ∇̂∗
θ∥︸ ︷︷ ︸

a)

+ ∥∇̂∗
θ −∇θ∥︸ ︷︷ ︸
b)

, (29)

and bound the two terms separately:

a) Recall that

∇̂θ =
1

β

(
∂L
∂θ

(ϕ̂β , β)−
∂L
∂θ

(ϕ̂0, 0)

)
(30)

and that a similar formula holds for ∇̂∗
θ (evaluated at the true solutions instead of the

approximations). It follows

∥∇̂θ − ∇̂∗
θ∥ ≤ 1

β

(∥∥∥∥∂L∂θ (ϕ̂β , β)− ∂L
∂θ

(
ϕ∗β , β

)∥∥∥∥ +

∥∥∥∥∂L∂θ (ϕ̂0, 0)− ∂L
∂θ

(ϕ∗0, 0)

∥∥∥∥). (31)

Since ϕ 7→ ∂θL(ϕ, β) is a (Blearn + βBeval)-Lipschitz function as a sum of ∂θLlearn and
∂θL

eval, two Lipschitz continuous functions with constants Blearn and Beval,

∥∇̂θ − ∇̂∗
θ∥ ≤ Blearn + βBeval

β
∥ϕ̂β − ϕ∗β∥+

Blearn

β
∥ϕ̂0 − ϕ∗0∥ (32)

≤ Blearn + βBeval

β
δ′ +

Blearn

β
δ. (33)

b) Taylor’s theorem applied to β 7→ ∂θL(ϕ∗β , β) up to the first order of differentiation yields

∂L
∂θ

(
ϕ∗β , β

)
=
∂L
∂θ

(ϕ∗0, 0) + β
d

dβ

∂L
∂θ

(ϕ∗0, 0) +

∫ β

0

(β − t)
d2

dβ2

∂L
∂θ

(ϕ∗t , t) dt. (34)

The equilibrium propagation theorem (Theorem S1), which is applicable thanks to Assump-
tion 1.ii, gives

∇θ =
d

dβ

∂L
∂θ

(ϕ∗0, 0), (35)

hence

∥∇̂∗
θ −∇θ∥ =

∥∥∥∥∥
∫ β

0

(β − t)
d2

dβ2

∂L
∂θ

(ϕ∗t , t) dt

∥∥∥∥∥. (36)

Using the integral version of the Cauchy-Schwartz inequality, we have

∥∇̂∗
θ −∇θ∥ ≤

∫ β

0

(β − t)

∥∥∥∥ d2

dβ2

∂L
∂θ

(ϕ∗t , t)

∥∥∥∥dt. (37)

We now use Lemma 4 combined with Lemmas 2 and 3 to bound d2β∂θL(ϕ∗t , t). We focus
on the β dependencies and omitting constant factors:∥∥∥∥ d2

dβ2

∂L
∂θ

(ϕ∗t , t)

∥∥∥∥ ≤
∥∥∥∥dϕ∗tdβ

∥∥∥∥+ (1 + t)

(∥∥∥∥dϕ∗tdβ

∥∥∥∥2 + ∥∥∥∥d2ϕ∗tdβ2

∥∥∥∥
)

≤ 1

(1 + t)2
+ (1 + t)

(
1

(1 + t)3
+

1

(1 + t)4

)
≤ (1 + t)−2.
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It follows that

∥∇̂∗
θ −∇θ∥ ≤

∫ β

0

(β − t)

(1 + t)2
dt

= (1 + β)

∫ β

0

1

(1 + t)2
dt−

∫ β

0

1

(1 + t)
dt

= (1 + β)
β

1 + β
− ln(1 + β)

≤ β − β

1 + β

=
β2

1 + β
.

(38)

where the inequality comes from the well-known ln(x) ≥ 1− 1
x inequality for positive x

(applied to x = 1 + β). There hence exists a constant C such that

∥∇̂∗
θ −∇θ∥ ≤ C

β

1 + β
. (39)

If θ lies in a compact set, the bound in Lemma 2 is uniform over θ. This is the only constant factor
that depends on θ, so the bound is uniform.

S3.3 Proof of technical lemmas

In this section, we prove the four technical lemmas that we need for Theorem 1.

Proof of Lemma 1
Lemma 1. Under Assumption 1.ii, if θ lies in a compact set D the function (θ, β) 7→ ϕ∗θ,β is
uniformly bounded.

Proof. Let α ∈ [0, 1]. Define

L′(ϕ, θ, α) := (1− α)Llearn(ϕ, θ) + αLeval(ϕ, θ). (40)

As Llearn and Leval are strongly-convex, there exists a unique minimizer ϕ∗′θ,α of ϕ 7→ L′(ϕ, θ, α).
The implicit function theorem ensures that the function (θ, α) 7→ ϕ∗′θ,α, defined on D × [0, 1], is
continuous. As D × [0, 1] is a compact set, ϕ∗′θ,α is then uniformly bounded. Now, remark that

L(ϕ, θ, β) = (1 + β)L′
(
ϕ, θ,

β

1 + β

)
(41)

and thus ϕ∗θ,β = ϕ∗′θ,β/(1+β). It follows that ϕ∗θ,β is uniformly bounded.

Proof of Lemma 2
Lemma 2. Under Assumption 1.ii, there exists a θ-dependent constant R s.t., for every positive β,∥∥∥∥dϕ∗βdβ

∥∥∥∥ ≤ LR

(1 + β)2µ
.

If we additionally assume that θ lies in a compact set, we can choose R to be independent of θ.

Proof. The function ϕ 7→ L(ϕ, β) is (1 + β)µ-strongly convex so its Hessian ∂2ϕL is invertible and
its inverse has a spectral norm upper bounded by 1/((1 + β)µ). The use of the implicit function
theorem follows and gives∥∥dβϕ∗β∥∥ = ∥−

(
∂2ϕL(ϕ∗β , β)

)−1
∂β∂ϕL(ϕ∗β)∥

= ∥−
(
∂2ϕL(ϕ∗β , β)

)−1
∂ϕL

eval(ϕ∗β)∥

≤ 1

(1 + β)µ
∥∂ϕLeval(ϕ∗β)∥.

(42)
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It remains to bound the gradient of Leval. Since β 7→ ϕ∗β is continuous and has finite limits in 0 and
∞ (namely the minimizers of Llearn and Leval), it evolves in a bounded set. There hence exists a
positive constant R such that, for all positive β,

max
(∥∥ϕ∗β − ϕ∗0

∥∥ ,∥∥ϕ∗β − ϕ∗∞
∥∥) ≤ R

2
. (43)

If θ lies in a compact set, Lemma 1 guarantees that there exists such a constant that doesn’t depend
on the choice of θ. We then bound the gradient of Leval using the smoothness properties of Llearn

and Leval, either directly

∥∂ϕLeval(ϕ∗β)∥ ≤ L∥ϕ∗β − ϕ∗∞∥ ≤ LR

2
(44)

or indirectly, using the fixed point condition ∂ϕL(ϕ∗β , β) = 0,

∥∂ϕLeval(ϕ∗β)∥ =
1

β
∥−∂ϕLlearn(ϕ∗β)∥ ≤

L∥ϕ∗β − ϕ∗0∥
β

≤ LR

2β
. (45)

The required result is finally obtained by remarking

∥∂ϕLeval(ϕ∗β)∥ ≤ min

(
1,

1

β

)
LR

2
≤ LR

1 + β
. (46)

Proof of Remark 1 We now prove Remark 1, which directly follows from the previous proof.
Recall that we have just proved

∥∂ϕLeval(ϕ∗β)∥ ≤ LR

1 + β
. (47)

With the strong convexity of Leval, the gradient is also lower bounded

∥∂ϕLeval(ϕ∗β)∥ ≥ µ∥ϕ∗β − ϕ∗∞∥, (48)

meaning that

∥ϕ∗β − ϕ∗∞∥ ≤ LR

µ(1 + β)
. (49)

Similarly, one can show that

∥ϕ∗0 − ϕ∗β∥ ≤ β

1 + β
(50)

up to some constant factor. This can be proved with

∥ϕ∗0 − ϕ∗β∥ ≤
∥∂ϕLlearn(ϕ∗β)∥

µ
=
β∥∂ϕLeval(ϕ∗β)∥

µ
≤ βLR

(1 + β)µ
. (51)

Proof of Lemma 3
Lemma 3. Under Assumptions 1.ii and 1.iii,∥∥∥∥∥d2ϕ∗βdβ2

∥∥∥∥∥ ≤ ρ

µ

∥∥∥∥dϕ∗βdβ

∥∥∥∥2 + 2L

(1 + β)µ

∥∥∥∥dϕ∗βdβ

∥∥∥∥.
Proof. The starting point of the proof is the implicit function theorem, that we differentiate with
respect to β as a product of functions

d2ϕ∗β
dβ2

=
d

dβ

(
−
(
∂2L
∂ϕ2

(ϕ∗β , β)

)−1
∂Leval

∂ϕ
(ϕ∗β)

)

= −
(

d

dβ

∂2L
∂ϕ2

(ϕ∗β , β)
−1

)
∂Leval

∂ϕ
(ϕ∗β)︸ ︷︷ ︸

a)

− ∂2L
∂ϕ2

(ϕ∗β , β)
−1

(
d

dβ

∂Leval

∂ϕ
(ϕ∗β)

)
︸ ︷︷ ︸

b)

.
(52)

We now individually calculate and bound each term.
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a) The differentiation of the inverse of a matrix gives

a) = −∂2ϕL(ϕ∗β , β)−1
(
dβ∂

2
ϕL(ϕ∗β , β)

)
∂2ϕL(ϕ∗β , β)−1∂ϕL

eval(ϕ∗β), (53)

which we can rewrite as

a) = ∂2ϕL(ϕ∗β , β)−1
(
dβ∂

2
ϕL(ϕ∗β , β)

)
dβϕ

∗
β . (54)

The derivative term in the middle of the right hand side is equal to

dβ∂
2
ϕL(ϕ∗β , β) = dβ

[
∂2ϕL

learn(ϕ∗β) + β∂2ϕL
eval(ϕ∗β)

]
= dβ∂

2
ϕL

learn(ϕ∗β) + βdβ∂
2
ϕL

eval(ϕ∗β) + ∂2ϕL
eval(ϕ∗β).

(55)

Using the Lipschitz continuity of the Hessians,∥∥dβ∂2ϕLlearn(ϕ∗β) + βdβ∂
2
ϕL

eval(ϕ∗β)
∥∥ ≤ (1 + β)ρ

∥∥dβϕ∗β∥∥ . (56)

We can upper bound the norm of the Hessian of Leval by L as Leval is L-smooth. The last
two equations hence give∥∥dβ∂2ϕL(ϕ∗β , β)∥∥ ≤ (1 + β)ρ

∥∥dβϕ∗β∥∥+ L. (57)

We finally have

∥a)∥ ≤ 1

µ(1 + β)

(
(1 + β)ρ

∥∥dβϕ∗β∥∥+ L
) ∥∥dβϕ∗β∥∥

≤ ρ

µ

∥∥dβϕ∗β∥∥2 + L

(1 + β)µ

∥∥dβϕ∗β∥∥ . (58)

b) With the chain rule,
dβ∂ϕL

eval(ϕ∗β) = ∂2ϕL
eval(ϕ∗β)dβϕ

∗
β (59)

so
∥b)∥ ≤

∥∥∂2ϕL(ϕ∗β , β)−1
∥∥ ∥∥∂2ϕLeval(ϕ∗β)

∥∥∥∥dβϕ∗β∥∥
≤ L

(1 + β)µ

∥∥dβϕ∗β∥∥ . (60)

Proof of Lemma 4
Lemma 4. Under Assumptions 1.ii, 1.iii and 1.iv, there exists a constant M such that∥∥∥∥ d2

dβ2

∂L
∂θ

(ϕ∗β , β)

∥∥∥∥ ≤M

(∥∥∥∥dϕ∗βdβ

∥∥∥∥+ (1 + β)

(∥∥∥∥dϕ∗βdβ

∥∥∥∥2 +
∥∥∥∥∥d2ϕ∗βdβ2

∥∥∥∥∥
))

.

Proof. We want to bound the norm of d2β∂θL(ϕ∗β , β). The first order derivative can be calculated
with the chain rule of differentiation

dβ∂θL(ϕ∗β , β) = ∂β∂θL(ϕ∗β , β) + ∂ϕ∂θL(ϕ∗β , β)dβϕ∗β . (61)

We then once again differentiate this equation with respect to β. The ∂β∂θL(ϕ∗β , β) term has in fact,
due to the nature of L, no direct dependence on β and is equal to ∂θLeval(ϕ∗β). Hence

dβ∂β∂θL(ϕ∗β , β) = ∂ϕ∂θL
eval(ϕ∗β)dβϕ

∗
β . (62)

Differentiating the other term yields

dβ
[
∂ϕ∂θL(ϕ∗β , β)dβϕ∗β

]
=
[
∂β∂ϕ∂θL(ϕ∗β , β) + ∂2ϕ∂θL(ϕ∗β , β)⊗ dβϕ

∗
β

]
dβϕ

∗
β+

∂ϕ∂θL(ϕ∗β , β)d2βϕ∗β . (63)

Therefore,

d2β∂θL(ϕ∗β , β) = 2∂ϕ∂θL
eval(ϕ∗β)dβϕ

∗
β + ∂2ϕ∂θL(ϕ∗β , β)⊗ dβϕ

∗
β ⊗ dβϕ

∗
β+

∂ϕ∂θL(ϕ∗β , β)d2βϕ∗β . (64)

We now individually bound each term:
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– due to Assumption 1.i, ϕ 7→ ∂θL
eval(ϕ) is Beval-Lipschitz continuous, so ∥∂ϕ∂θLeval∥ ≤

Beval and ∥∥2∂ϕ∂θLeval(ϕ∗β)dβϕ
∗
β

∥∥ ≤ 2Beval
∥∥dβϕ∗β∥∥. (65)

– similarly to the previous point,∥∥∂ϕ∂θL(ϕ∗β)d2βϕ∗β∥∥ ≤ (Blearn + βBeval)
∥∥d2βϕ∗β∥∥. (66)

– Assumption 1.iv ensures that ϕ 7→ ∂ϕ∂θL(ϕ, β) is (1 + β)σ-Lipschitz continous and∥∥∂2ϕ∂θL(ϕ∗β , β)⊗ dβϕ
∗
β ⊗ dβϕ

∗
β

∥∥ ≤ (1 + β)σ
∥∥dβϕ∗β∥∥2. (67)

Take M := max(2Beval, Blearn, σ): we now have the desired result.

S3.4 A corollary of Theorem 1

Theorem 1 highlights the importance of considering β as a hyperparameter of the learning rule that
needs to be adjusted to yield the best possible meta-gradient estimate. Corollary 1 removes the
dependence in β and considers the best achievable bound under given fixed point approximation
errors.
Corollary 1. Under Assumption 1, if we suppose that for every strictly positive β we approximate
the two fixed points with precision δ and δ′ and if (δ + δ′) < C/Blearn, the best achievable bound in
Theorem 1 is smaller than

Bevalδ′ + 2
√
CBlearn(δ + δ′)

and is attained for β equal to

β∗(δ, δ′) =

√
Blearn(δ + δ′)√

C −
√
Blearn(δ + δ′)

.

A B

Figure S2: Visualization of Corollary 1. (A) β value that minimizes the bound, as a function of
δ = δ′. (B) Best achievable bound as a function of δ = δ′ in blue (more precisely the one before
the last upper bound in the proof). The grey lines are the bounds from Theorem 1 we laid out on
Fig. S1C.

The most limiting part of the bound depends on the sum δ + δ′ and not on the individual quantities,
suggesting that the two errors should be of the same magnitude to avoid unnecessary computations.

Proof. The β derivative of the bound B obtained in Theorem 1 is

∂B
∂β

(δ, δ′, β) = −B
learn(δ + δ′)

β2
+

C

(1 + β)2
(68)

and vanishes for β verifying

β

(√
C −

√
Blearn(δ + δ′)

)
=
√
Blearn(δ + δ′). (69)
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As (δ + δ′) < C/Blearn, the previous criterion is met when β is equal to the positive

β∗ :=

√
Blearn(δ + δ′)√

C −
√
Blearn(δ + δ′)

. (70)

The optimal bound is then

B(δ, δ′, β∗) = Bevalδ′ +
√
Blearn(δ + δ′)

(√
C −

√
Blearn(δ + δ′)

)
+
√
CBlearn(δ + δ′)

≤ Bevalδ′ + 2
√
CBlearn(δ + δ′).

S3.5 Verification of the theoretical results on an analytical problem

We investigate a quadratic approximation of the complex synapse model, in which everything can be
calculated in closed form and where the assumptions needed for the theory hold. Define Llearn and
Leval as follows3:

Llearn(ϕ, ω) =
1

2
(ϕ− ϕl)⊤H(ϕ− ϕl) +

λ

2
∥ϕ− ω∥2

Leval(ϕ) =
1

2
(ϕ− ϕe)⊤H(ϕ− ϕe)

where λ is a scalar that controls the strength of the regularization that we consider fixed, ϕl and
ϕe two vectors and H a positive definite diagonal matrix. The rationale behind this approximation
is the following: the data-driven learning and evaluation losses share the same curvature but have
different minimizers, respectively ϕl and ϕe. The matrix H then models the Hessian and we consider
it diagonal for simplicity. Thanks to the quadratic approximation, many quantities involved in our
contrastive meta-learning rule can be calculated in closed form.

Calculation of the finite difference error. A formula for the minimizer of L = Llearn + βLeval

can be derived analytically. The derivative of L vanishes if and only if

((1 + β)H + λId)ϕ−Hϕl − βHϕe − λω = 0,

hence
ϕ∗θ,β =

(
(1 + β)Id + λH−1

)−1 (
ϕl + βϕe + λH−1ω

)
.

λH−1 is an interesting quantity in this example. It acts as the effective per-coordinate regularization
strength: regularization will be stronger on flat directions.

The meta-gradient calculation follows. As

∂ωL(ϕ, ω, β) = −λ(ϕ− ω),

the use of the equilibrium propagation theorem (Theorem S1) gives

∇ω =
d

dβ

∂L
∂ω

(ϕ∗θ,β , ω, β)

∣∣∣∣
β=0

=
∂2Llearn

∂ϕ∂ω
(ϕ∗θ,0, ω)

dϕ∗θ,β
dβ

∣∣∣∣
β=0

+ 0

= −λ
dϕ∗θ,β
dβ

∣∣∣∣
β=0

.

3In our experiments, we take the dimension of the parameter space N to be equal to 50. The Hessian is
taken to be diag(1, ..., 1/N). ω is randomly generated according to ω ∼ N (0, σω) with σω = 2. ϕl and ϕe are
drawn around ϕτ ∼ N (0, στ ) (with στ = 1).
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It now remains to calculate the derivative of ϕ∗θ,β with respect to β using the formula of ϕ∗θ,β :

dϕ∗θ,β
dβ

=
(
(1 + β)Id + λH−1

)−1
ϕe

−
(
(1 + β)Id + λH−1

)−2
(ϕl + βϕe + λH−1ω)

=
(
(1 + β)Id + λH−1

)−2 (
(1 + β)ϕe + λH−1ϕe − ϕl − βϕe − λH−1ω

)
=
(
(1 + β)Id + λH−1

)−2 (
(ϕe − ϕl) + λH−1(ϕe − ω)

)
Define ψ := (ϕe − ϕl) + λH−1(ϕe − ω); the meta-gradient finally is

∇ω = −λ(Id + λH−1)−2ψ.

We can now calculate the finite difference error. Recall the equilibrium propagation estimate at fixed
points

∇̂∗
ω =

1

β

(
∂L
∂ω

(ϕ∗θ,β , ω, β)−
∂L
∂ω

(ϕ∗θ,0, ω, 0)

)
.

In this formulation, it is equal to

∇̂∗
ω = −λ

β
(ϕ∗θ,β − ϕ∗θ,0)

= −λ
(
(Id + λH−1)((1 + β)Id + λH−1)

)−1
ψ

= (Id + λH−1)
(
(1 + β)Id + λH−1)

)−1 ∇ω.

The finite difference can now be lower and upper bounded. First,

∇ω − ∇̂∗
ω = β

(
(1 + β)Id + λH−1

)−1 ∇ω.

Introduce µ the smallest eigenvalue of H and L its largest one. We then have

µβ

(1 + β)µ+ λ
∥∇ω∥ ≤ ∥∇ω − ∇̂∗

ω∥ ≤ Lβ

(1 + β)L+ λ
∥∇ω∥. (71)

This shows that the finite difference error part of Theorem 1 is tight and, in this case, accurately
describes the behavior of the finite difference error as a function of β.

A B C

Figure S3: Empirical verification of the theoretical results on an analytical quadratic approximation
of the synaptic model. We plot the normalized error between the meta-gradient estimate ∇̂θ and the
true one ∇θ, as a function of β (A), of the number of steps in the two phases (which is a proxy for
− log δ and − log δ′ used in the theory) (B), and as a function of the allocation of the computational
resources between the two phases, the total number of steps being fixed to 100 (C).

Empirical results. The solution approximation induced error part of the bound cannot be treated
analytically as it depends on δ and δ′, which are in essence empirical quantities. We cannot directly
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control them either. Instead, we use the number of gradient descent steps to minimize L as a proxy,
that is closely related to − log δ when gradient descent has a linear convergence rate. We choose the
number of steps to be the same in the two phases, for the sake of simplicity, even though it may not
be optimal. We plot the evolution of the normalized error

∥∇ω − ∇̂ω∥
∥∇ω∥

between the meta-gradient and the contrastive estimate (15) in Fig. S3. The qualitative behavior of
this error, as a function of β (Fig. S3A) and of number of steps (Fig. S3B), is accurately captured by
Theorem 1 (compare with Fig. S1A and C).

We finish the study of this quadratic model by probing the (δ, δ′) space in a different way, by fixing
the total number of steps and then modifying the allocation across the two phases (Fig. S3C). The best
achievable error, as a function of β, decreases before some β∗ value and then increases, following the
predictions of Theorem 1: too small β values turn out to hurt performance when the solutions cannot
be approximated arbitrarily well. Interestingly, the error plateaus for large β values and the size of
the plateau decreases with β until reaching a critical value where it disappears. A conservative choice
in practice is therefore to overestimate β, as it reduces the meta-gradient estimation sensitivity to a
sub-optimal allocation, with only a minor degradation in the best achievable quality.

S3.6 Verification the theoretical results on a simple hyperparameter optimization task

We now move to a more complicated setting that is closer to problems of practical interest, and in
which we are not guaranteed that the assumptions of the theory hold. Still, it is simple enough such
that we can calculate the exact value of the meta-gradient ∇θ using the analytical formula (24). This
problem is a single-task regularization-strength learning problem [20, 21, 23, 52, 94] on the Boston
housing dataset [98] (70% learning and 30% evaluation split). We study a nonlinear neural network
model fϕ with a small hidden layer (20 neurons, hyperbolic tangent transfer function). The bilevel
optimization problem we are solving here is the one we consider in Section 5.2, that is:

min
λ

1

|Deval|
∑

(x,y)∈Deval

l(fϕ∗
λ
(x), y)

s.t. ϕ∗λ ∈ argmin
ϕ

1

|Dlearn|
∑

(x,y)∈Dlearn

l(fϕ(x), y) +
1

2

|ϕ|∑
i=1

λiϕ
2
i .

(72)

Meta-gradient estimation error. We plot the normalized error between the meta-gradient estimate
and its true value on Fig S4. The qualitative behavior closely matches the one we obtained for the
quadratic analytical model in the last section, as well as the ones predicted by our theory.

Comparison with other implicit gradient methods. We also use this problem to directly compare
the meta-gradient approximation error made by our contrastive meta-learning rule (CML) to other
implicit gradient methods, namely recurrent backpropagation (RBP) and conjugate gradient (CG). To
make the comparison fair, we pick the hyperparameters that yield the smallest error for each method
(β and the parameters of the optimizer minimizing the second phase for CML, a scaling parameter for
RBP, none for CG). Fig S5 characterizes the meta-gradient estimation errors by the different methods.

We first perfectly solve the first phase so that ϕ̂λ = ϕ∗λ and compare how efficient the second phase
of those algorithms is. The Hessian of the learning loss ∂2ϕL

learn is positive definite as shown in
Fig. S6A. The conjugate gradient method is therefore much more efficient than the other methods
as its assumptions are met, and quickly reaches the numerical accuracy limit. Our rule compares
favorably to recurrent backpropagation, even though the theoretical bound is weaker (

√
δ′ for our rule

compared to δ′ for implicit methods [21]). A possible explanation comes from the fact that we are
using Nesterov accelerated gradient descent for the second phase of our contrastive update, whereas
the fixed point iteration of RBP is a form of gradient descent.

We repeat our analysis in the more realistic setting in which ϕ̂λ is not equal to ϕ∗λ. We use the
same number of steps in the two phases (and the same estimate for ϕ̂λ and find that recurrent
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A B C

Figure S4: Empirical verification of the theoretical results on a regularization-strength learning
problem on the Boston dataset. We plot the normalized error between the meta-gradient estimate
∇̂λ and the true one ∇λ, as a function of β (A), of the number of steps in the two phases (which is
a proxy for − log δ and − log δ′ used in the theory) (B), and as a function of the allocation of the
computational resources between the two phases, the total number of steps being fixed to 750 (C).

A B C

Figure S5: Comparison of the meta-gradient estimation errors provided our contrastive meta-learning
rule (CML), recurrent backpropagation (RBP) and conjugate gradients (CG), on a regularization-
strength learning problem on the Boston dataset. The hyperparameters for each value of the x axis,
such that the normalized error is minimized. (A) Error as a function of the number of steps in the
second phase, the first phase being perfectly solved. (B) Error as a function of the number of steps
performed in the two phase, which is fixed. (C) Error as a function of the fraction of steps in the first
phase, the total number of steps for the two phases being fixed to 75.

A B

Figure S6: Eigenvalues of the Hessian of the learning loss ∂2ϕL
learn(ϕ̂λ, λ) on the regularization-

strength learning problem on the Boston dataset. (A) Spectrum of the Hessian when the first phase is
perfectly solved, i.e., ϕ̂λ = ϕ∗λ. (B) Smallest and biggest eigenvalue of the Hessian, as a function of
the number of steps in the first phase. The higher the number of steps, the close ϕ̂λ is to ϕ∗λ.
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backpropagation and our contrastive meta-learning rule improve their estimate of the meta-gradient
as the number of steps for both phases increases, cf. Fig. S5.B. In contrast, conjugate gradient is
unstable when the number of steps is low. In Fig. S6B, we check whether the needed assumptions are
satisfied by plotting the smallest eigenvalue of the Hessian of the learning loss ∂2ϕL

learn(ϕ̂λ, λ), as a
function of the number of steps. We find that this eigenvalue is negative on the range of the number
of steps we consider, the Hessian is therefore not positive definite so the conjugate gradient method
cannot approximate µ well. We obtain the same qualitative behavior when we fix the total number of
steps, and vary the faction of steps in the first phase, cf. Fig. S5C.
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S4 Experimental details

S4.1 Supervised meta-optimization

Table S2: Meta-learning a per-synapse regulariza-
tion strength meta-parameter (cf. Section 4.1) on
MNIST. Average accuracies (acc.) ± s.e.m. over
10 seeds.

Method Validation acc. (%) Test acc. (%)

T1-T2 98.70±00.08 97.63±00.03

CG 97.02±00.28 96.96±00.15

RBP 99.53±00.01 97.31±00.02

CML 99.45±00.16 97.92±00.11

Task details. For the supervised meta-
optimization experiments we meta-learn
parameter-wise l2-regularization strengths
(ω = 0) on the CIFAR-10 image classification
task [48] starting each learning phase from a
fixed neural network initialization. The dataset
comprises 60000 32x32 RGB images divided
into 10 classes, with 6000 images per class. We
split the 50000 training images randomly in half
to obtain a training set and a validation set for
meta-learning and use the remaining 10000 test
images for testing. In Tab. S2 we report additional results on the simpler MNIST image classification
task [100] for which we use the same data splitting strategy.

Additional results. We perform an additional experiment investigating how the number of lower-
level parameter updates affects the meta-learning performance of our method and comparison methods.
We consider a simplified data regime for this experiment, using a random subset of 1000 examples of
CIFAR-10 split into 50 samples for the learning loss and 950 samples for the evaluation loss which
allows us to fit all samples into a single batch during learning and meta-learning. Results shown in
Fig. S7 demonstrate that our contrastive meta-learning rule is able to fit the meta-parameters to the
validation set across different number of lower-level parameter updates while competing methods
require more updates to obtain similar performance. We found the conjugate gradient method (CG)
to be unstable in this setting. To obtain these results, we tuned the hyperparameters for each method
for each number of lower-level parameter updates.
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Figure S7: Dependence of the final validation ac-
curacy on the number of lower-level parameter up-
dates obtained after meta-optimizing per-synapse
regularization strength meta-parameters on a sub-
set of CIFAR-10. A random subset of 1000 exam-
ples from CIFAR-10 are split into 50 samples for
the learning loss and 950 samples for the evalua-
tion loss. Mean over 10 random seeds with error
bars indicating ±1 s.e.m.

Architecture details. For CIFAR-10 experi-
ments we use a modified version of the classic
LeNet-5 model [101] where we insert batch nor-
malization layers [102] before each nonlinearity
and replace the hyperbolic tangent nonlinearities
with rectified linear units. For MNIST experi-
ments we use a feedforward neural network with
5 hidden layers of size 256 and hyperbolic tan-
gent nonlinearity.

Hyperparameters. We perform a comprehen-
sive random hyperparameter search for each
method with the search space for CIFAR-10 ex-
periments specified in Tab. S5 and the search
space for MNIST experiments specified in
Tab. S6.

In Fig. 1B, we furthermore investigate the inter-
action of β and the number of first phase steps
on the validation loss, keeping all other hyperpa-
rameters fixed. We compare it to the correspond-
ing theoretical prediction visualized in Fig. S1B,
for the case where Leval is independent of θ and δ′ is fixed.
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S4.2 Few-shot image classification

Task details. We follow the standard experimental setup [18, 22, 103, 104] for our Omniglot [57]
and miniImageNet [56] experiments.

Additional results. The results of related work reported in the main text (Tabs. 2 and 3) are taken
from the original papers, except for Omniglot first-order MAML which is reported in ref. [58]. In
Tab. S3 we provide results for additional 5-way Omniglot variants that are easier than the 20-way
ones studied in the main text.

Architecture details. For Omniglot, we use max-pooling instead of stride in the convolutional
layers, as we found the latter led to optimization instabilities, as previously reported [109]. We
evaluate the statistics of batch normalization units [102] on the test set as in ref. [18], which yields a
transductive classifier. More complex architectures whereby a second modulatory neural network
which generates task-specific parameters is explicitly modeled [a hypernetwork; 110–112] can be
easily accommodated into our framework, but here for simplicity we implement our top-down
modulation model by taking advantage of existing batch normalization layers in our neural networks
and consider the gain and shift parameters of these units as well as the synaptic weights and biases of
the output layer as our task-specific parameters ϕ.

Optimization details. We used the symmetric version of our contrastive rule for meta-learning
and the Kaiming scheme for parameter initialization [113]. The task-specific learning and evaluation
losses are both taken to be the cross-entropy with dataset splits into learning and evaluation data
following the setup considered by Finn et al. [18]. In order to stabilize results, we used Polyak
averaging [114] for the meta-parameters to compute final performance. Specifically, we started
averaging meta-parameters after a certain number of meta-parameter updates (5 for Omniglot, 50
for miniImageNet). Note that the performance of the non-averaged meta-parameters performs only
slightly differently averaged over iterations but is considerably more noisy.

Hyperparameters. We perform a comprehensive grid-search over hyperparameters with search
ranges and optimal hyperparameters found reported in Tab. S7.

Table S3: Few-shot learning of Omniglot characters. We report results obtained with contrastive
meta-learning for the synaptic and modulatory models. We present test set classification accuracy
(%) averaged over 5 seeds ± std.

Method 5-way 1-shot 5-way 5-shot 20-way 1-shot 20-way 5-shot

MAML [18] 98.7±0.4 99.9±0.1 95.8±0.3 98.9±0.2

First-order MAML [18] 98.3±0.5 99.2±0.2 89.4±0.5 97.9±0.1

Reptile [58] 97.68±0.04 99.48±0.06 89.43±0.14 97.12±0.32

iMAML [22] 99.16±0.35 99.67±0.12 94.46±0.42 98.69±0.1

CML (synaptic) 98.11±0.34 99.49±0.16 94.16±0.12 98.06±0.26

CML (modulatory) 98.05±0.06 99.45±0.04 94.24±0.39 98.60±0.27
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S4.3 Few-shot regression in recurrent spiking network

Task details. We consider a standard sinusoidal 10-shot regression problem. For each task a
sinusoid with random amplitude sampled uniformly from [0.1, 5.0] and random phase sampled
uniformly from [0, π] is generated. 10 data points are drawn uniformly from the range [−5, 5] both
for the learning loss and for the evaluation loss.

Architecture details. We encode the input with a population of 100 neurons similar to Bellec et al.
[61]. Each neuron i has a Gaussian response field with the mean values µi evenly distributed in the
range [0, 1] across neurons and a fixed variance σ2 = 0.0002. The firing probability of each neuron
at a single time step is given by pi = exp(−(µi−z)2

2σ2 ) where z is the input value standardized to the
range [0, 1]. We generate 20 time steps for each data point by sampling spikes from a Bernoulli
distribution given the firing probabilities pi for each neuron.

We use a singe-layer recurrent spiking neural network with leaky integrate and fire neurons that
follow the time-discretized dynamics with step size ∆t = 1.0 (notation taken from Bellec et al. [59]):

ht+1
j = αhtj +

∑
i ̸=j

W rec
ji z

t
i +

∑
i

W in
jix

t+1
i − ztjvth (73)

ztj = Θ(htj − vth) (74)

yt+1
k = κytk +

∑
j

W out
kj z

t
j (75)

where W in,W rec,W out are the synaptic input, recurrent and output weights, α = exp(− ∆t
τhidden

) and
κ = exp(−∆t

τout
) are decay factors with τhidden = τout = 30.0 , vth = 0.1 is the threshold potential,

and Θ(·) denotes the Heaviside step function. The weights are initialized using the Kaiming normal
scheme [113] and scaled down by a factor of 0.1, 0.01, 0.1 for W in,W rec,W out respectively.

Optimization details. The weights are updated according to e-prop [59]:

∆W out
kj ∝

∑
t

(y∗,tk − ytk)
∑
t′≤t

(κt−t
′
zt

′

j ) (76)

∆W rec
ji ∝

∑
t

(
∑
k

W out
kj (y

∗,t
k − ytk))

∑
t′≤t

(κt−t
′
ht

′

j

∑
t′′≤t′

(αt
′−t′′zt

′′

i )) (77)

∆W in
ji ∝

∑
t

(
∑
k

W out
kj (y

∗,t
k − ytk))

∑
t′≤t

(κt−t
′
ht

′

j

∑
t′′≤t′

(αt
′−t′′xt

′′

i )) (78)

The loss is computed as the mean-squared error between the target and the prediction given by the
average output over time. Note that the output of the network is non-spiking. We add a regularization
term to the loss that is computed as the mean squared difference between the average neuron firing
rate and a target rate and decrease the learning rate for updating W out with e-prop by a factor of 0.1.
We use the symmetric version of our contrastive rule to obtain meta-updates.

Comparison methods. We compare our method to a standard baseline where both fast parameter
updates and slow meta-parameter updates are computed by backpropagating through the synaptic
plasticity process (BPTT+BPTT) using surrogate gradients to handle spiking nonlinearities [60]. As
this biologically-implausible process is computationally expensive, we restrict the number of update
steps on the learning loss to 10 changes as done by prior work [18]. For a second comparison method,
we compute the fast parameter updates using the e-prop update stated above and use backpropagation
through 10 e-prop updates for meta-parameter updates (BPTT+e-prop).

Hyperparameters. For each method we employ an extensive random hyperparameter search
over the search space defined in Tab. S8 using a meta-validation set to select the optimal set of
hyperparameters.
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S4.4 Meta-reinforcement learning

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

Figure S8: The wheel bandit task tiles
the context space into an inner low-
reward region (blue) and a high-reward
outer rim (purple). Across tasks the
radius δ of the inner low-reward region
is varied. The high-reward region is
divided into 4 quadrants, depending
on which the optimal action changes.

Task details. The contextual wheel bandit was introduced
by Riquelme et al. [64] to parametrize the task difficulty
of a contextual bandit task in terms of its exploration-
exploitation trade-off. Each task consists of a sequence
of context coordinates X randomly drawn from the unit
circle and a scalar radius δ ∈ [0, 1]. The radius δ tiles
the unit circle into a low-reward region and a high-reward
region, see Fig. S8. If the current context lies within the
low-reward region, ∥X∥ ≤ δ, all actions a ∈ {1, 2, 3, 4}
return reward r ∼ N (1.0, 0.012) except for the last action
a = 5 which returns r ∼ N (1.2, 0.012) and is thus op-
timal. If the current context lies within the high-reward
region, one of the first four actions is optimal returning
a high reward r ∼ N (50.0, 0.012), the last arm still re-
turns r ∼ N (1.2, 0.012) and the remaining arms return
r ∼ N (1.0, 0.012). Which of the first four actions returns
the high reward depends on the quadrant of the high-reward
region in which the current context lies. Action 1 is optimal
in the upper right quadrant, action 2 in the lower right quad-
rant, action 3 in the upper left quadrant and action 4 in the
lower left quadrant.

Additional results. Following previous work [65, 66], we treat the contextual wheel bandit as a
meta-learning problem. During meta-learning, we sample M = 64 different wheel tasks {δi}Mi=1,
δi ∼ U(0, 1) for each of which we sample a sequence of N = 562 random contexts, random actions
and corresponding rewards {(Xj , aj , rj)}Nj=1. We use 512 observations for the learning loss and 50

observations for the evaluation loss. Both the learning llearn and the evaluation loss leval are measured
as the mean-squared error between observed reward and the predicted value for the corresponding
action. For each meta-learning step, we randomly sample from the M tasks such that specific
tasks may be encountered multiple times. After meta-learning, we evaluate the agent online on a
long episode with 80000 contexts and track its cumulative reward relative to the cumulative reward
obtained by an agent that chooses its actions at random. As done by Riquelme et al. [64], each action
is initially explored twice before choosing actions according to the agent’s policy. The extended
results over more settings for δ can be seen in Tab. S4. Results for the NeuralLinear baseline reported
here and in the main text are taken from the original paper [64].

Architecture results. For all methods including the synaptic consolidation and modulatory network
model, we consider as a base a multilayer perceptron with ReLU nonlinearites and two hidden layers
with 100 units. For the modulatory network model, each hidden unit is multiplied by a gain and
shifted by a bias prior to applying the nonlinearity. The non-meta-learned baseline NeuralLinear we
report from Riquelme et al. [64] additionally uses a Bayesian regression head for each action and
applies Thompson sampling to choose actions.

Optimization and evaluation details. During online evaluation, we take the greedy action with
respect to the predicted expected rewards on each context and store each observation (Xj , aj , rj) in

Table S4: Cumulative regret on the wheel bandit problem for different values of δ. Values are
normalized by the cumulative regret of a uniformly random agent. Averages over 50 seeds ± s.e.m.

δ 0.5 0.7 0.9 0.95 0.99

NeuralLinear [64] 0.95±0.02 1.60±0.03 4.65±0.18 9.56±0.36 49.63±2.41

MAML 0.45±0.01 0.62±0.03 1.02±0.76 1.56±0.62 15.21±1.69

CML (synaptic) 0.40±0.02 0.45±0.01 0.82±0.02 1.42±0.07 12.27±1.02

CML (modulatory) 0.42±0.01 0.65±0.03 1.83±0.11 3.68±0.59 16.46±1.80
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a replay buffer. This data is used to train the fast parameters every tf contexts for ts steps, where
tf , ts are hyperparameters tuned for every method.

Hyperparameters. We perform a comprehensive random hyperparameter search for each method
with the search space specified in Tab. S9. Optimal parameters are selected on 5 validation tasks with
δ = 0.95.

23



Ta
bl

e
S5

:H
yp

er
pa

ra
m

et
er

se
ar

ch
sp

ac
e

fo
rt

he
su

pe
rv

is
ed

m
et

a-
op

tim
iz

at
io

n
ex

pe
rim

en
to

n
C

IF
A

R
-1

0.
Fo

ra
ll

m
et

ho
ds

50
0

sa
m

pl
es

w
er

e
ra

nd
om

ly
dr

aw
n

fr
om

th
e

se
ar

ch
sp

ac
e

an
d

A
sy

nc
hr

on
ou

s
H

yp
er

B
an

d
fr

om
ra

y
tu

ne
[1

20
]w

as
us

ed
fo

rs
ch

ed
ul

in
g

w
ith

a
gr

ac
e

pe
ri

od
of

10
.B

es
tf

ou
nd

pa
ra

m
et

er
s

ar
e

m
ar

ke
d

in
bo

ld
.

H
yp

er
pa

ra
m

et
er

C
M

L
C

G

ba
tc

h_
si

ze
50

0
50

0
β

{0
.0
1
,0
.0
3,
0.
1,
0.
3,
1.
0,
3.
0,
1
0
.0
}

-
λ

{1
0−

5
,1
0
−
4
,1
0−

3
,1
0
−
2
,1

0
−
1
}

{1
0
−
5
,1
0
−
4
,1
0−

3
,1
0
−
2
,1
0−

1
}

lr
_i

nn
er

{0
.0
00
1
,0
.0
0
0
3
,0
.0
0
1
,0
.0
0
3
,0
.0
1
,0
.0
3
,0
.1
}

{0
.0
0
0
1,
0.
0
0
0
3,
0
.0
0
1
,0
.0
0
3
,0
.0
1
,0
.0
3
,0
.1
}

lr
_n

ud
ge

d
{0
.0
0
0
1
,0
.0
00
3
,0
.0
0
1
,0
.0
0
3
,0
.0
1
,0
.0
3,
0.
1}

-
lr

_o
ut

er
{0
.0
00
1,
0.
00
03
,0
.0
0
1
,0
.0
0
3
,0
.0
1,
0
.0
3
,0
.1
}

{0
.0
0
0
1,
0.
0
0
0
3,
0
.0
0
1
,0
.0
0
3
,0
.0
1
,0
.0
3,
0.
1}

op
ti

mi
ze

r_
in

ne
r

{a
da

m
,s

gd
_n

es
te

ro
v_

0.
9}

{a
da

m
,s

gd
_n

es
te

ro
v_

0.
9}

op
ti

mi
ze

r_
ou

te
r

ad
am

ad
am

st
ep

s_
cg

-
{1

0
0
,5
0
0
,1
0
0
0
,2
0
0
0
}

st
ep

s_
in

ne
r

{2
00
0,
30
00
,5

0
0
0
}

{2
0
0
0
,3
0
0
0,
5
0
0
0}

st
ep

s_
nu

dg
ed

{1
00
,2

0
0
,5
00
}

-
st

ep
s_

ou
te

r
10

0
10

0

H
yp

er
pa

ra
m

et
er

N
SA

T
1T

2

ba
tc

h_
si

ze
50

0
50

0
λ

{1
0
−
5
,1
0−

4
,1
0
−
3
,1
0
−
2
,1
0
−
1
}

{1
0−

5
,1

0
−
4
,1
0
−
3
,1
0
−
2
,1
0
−
1
}

lr
_i

nn
er

{0
.0
00
1
,0
.0
00
3
,0
.0
0
1
,0
.0
0
3
,0
.0
1
,0
.0
3
,0
.1
}

{0
.0
0
0
1
,0
.0
0
0
3
,0
.0
0
1
,0
.0
0
3
,0
.0
1
,0
.0
3
,0
.1
}

lr
_o

ut
er

{0
.0
00
1
,0
.0
00
3
,0
.0
0
1
,0
.0
0
3
,0
.0
1
,0
.0
3
,0
.1
}

{0
.0
0
0
1,
0.
0
0
0
3
,0
.0
0
1
,0
.0
0
3
,0
.0
1
,0
.0
3
,0
.1
}

ns
a_

al
ph

a
{0
.0
00
00
1
,0
.0
0
0
0
0
3
,0
.0
0
0
0
1,
0
.0
0
0
0
3
,0
.0
0
0
1
,0
.0
0
0
3
}

-
op

ti
mi

ze
r_

in
ne

r
{a

da
m

,s
gd

_n
es

te
ro

v_
0.

9}
{a

da
m

,s
gd

_n
es

te
ro

v_
0.

9}
op

ti
mi

ze
r_

ou
te

r
ad

am
ad

am
st

ep
s_

in
ne

r
{2

0
0
0
,3
00
0,
50
0
0}

{2
0
0
0,
3
0
0
0
,5
0
0
0}

st
ep

s_
ns

a
50

0
-

st
ep

s_
ou

te
r

10
0

10
0

H
yp

er
pa

ra
m

et
er

T
B

PT
L

no
-m

et
a

ba
tc

h_
si

ze
50

0
50

0
λ

{1
0
−
5
,1

0
−
4
,1
0
−
3
,1
0
−
2
,1
0
−
1
}

{1
0
−
5
,1
0−

4
,1
0
−
3
,1

0
−
2
,1
0
−
1
}

lr
_i

nn
er

{0
.0
00
1,
0.
00
03
,0
.0
0
1
,0
.0
0
3
,0
.0
1
,0
.0
3,
0
.1
}

{0
.0
0
0
1,
0.
0
0
0
3,
0
.0
0
1
,0
.0
0
3
,0
.0
1
,0
.0
3,
0
.1
}

lr
_o

ut
er

{0
.0
00
1,
0
.0
00
3,
0
.0
0
1
,0
.0
0
3
,0
.0
1,
0.
0
3,
0
.1
}

-
op

ti
mi

ze
r_

in
ne

r
{a

da
m

,s
gd

_n
es

te
ro

v_
0.

9}
{a

da
m

,s
gd

_n
es

te
ro

v_
0.

9}
op

ti
mi

ze
r_

ou
te

r
ad

am
-

st
ep

s_
in

ne
r

{2
00

0,
30

00
,5

00
0}

50
00

st
ep

s_
ou

te
r

10
0

0

24



Ta
bl

e
S6

:H
yp

er
pa

ra
m

et
er

se
ar

ch
sp

ac
e

fo
rt

he
su

pe
rv

is
ed

m
et

a-
op

tim
iz

at
io

n
ex

pe
ri

m
en

to
n

M
N

IS
T.

Fo
ra

ll
m

et
ho

ds
50

0
sa

m
pl

es
w

er
e

ra
nd

om
ly

dr
aw

n
fr

om
th

e
se

ar
ch

sp
ac

e
an

d
A

sy
nc

hr
on

ou
s

H
yp

er
B

an
d

fr
om

ra
y

tu
ne

[1
20

]w
as

us
ed

fo
rs

ch
ed

ul
in

g
w

ith
a

gr
ac

e
pe

ri
od

of
10

.B
es

tf
ou

nd
pa

ra
m

et
er

s
ar

e
m

ar
ke

d
in

bo
ld

.

H
yp

er
pa

ra
m

et
er

C
M

L
C

G

ba
tc

h_
si

ze
50

0
50

0
β

{0
.0
1
,0
.0
3
,0
.1
,0
.3
,1
.0
,3
.0
,1
0.
0}

-
λ

{0
.0
0
0
0
1
,0
.0
00
1
,0
.0
0
1
,0
.0
1,
0.
1}

{0
.0
0
0
0
1
,0
.0
0
0
1
,0
.0
01
,0
.0
1
,0
.1
}

lr
_i

nn
er

{0
.0
00
1,
0
.0
0
0
3
,0
.0
01
,0
.0
0
3
,0
.0
1,
0
.0
3
,0
.1
}

{0
.0
0
0
1
,0
.0
0
0
3,
0.
0
0
1
,0
.0
0
3
,0
.0
1,
0
.0
3
,0
.1
}

lr
_n

ud
ge

d
{0
.0
00
1,
0
.0
0
0
3
,0
.0
01
,0
.0
0
3
,0
.0
1
,0
.0
3
,0
.1
}

-
lr

_o
ut

er
{0
.0
0
0
1
,0
.0
00
3,
0.
00
1
,0
.0
0
3
,0
.0
1
,0
.0
3
,0
.1
}

{0
.0
0
0
1
,0
.0
0
0
3
,0
.0
0
1
,0
.0
0
3
,0
.0
1
,0
.0
3
,0
.1
}

op
ti

mi
ze

r_
in

ne
r

{a
da

m
,s

gd
_n

es
te

ro
v_

0.
9}

{a
da

m
,s

gd
_n

es
te

ro
v_

0.
9}

op
ti

mi
ze

r_
ou

te
r

ad
am

ad
am

st
ep

s_
cg

-
{1

0
0
,2
5
0
,5
0
0
,1
0
0
0
,2
0
0
0}

st
ep

s_
in

ne
r

20
00

20
00

st
ep

s_
nu

dg
ed

{1
00
,2

0
0
,5
00
}

-
st

ep
s_

ou
te

r
10

0
10

0

H
yp

er
pa

ra
m

et
er

N
SA

T
1T

2

ba
tc

h_
si

ze
50

0
50

0
λ

{0
.0
00
01
,0
.0
0
0
1
,0
.0
0
1
,0
.0
1
,0
.1
}

{0
.0
0
0
0
1
,0
.0
0
0
1,
0
.0
0
1
,0
.0
1,
0.
1}

lr
_i

nn
er

{0
.0
00
1,
0.
00
03
,0
.0
0
1
,0
.0
0
3
,0
.0
1,
0.
0
3,
0
.1
}

{0
.0
0
0
1,
0.
0
0
0
3,
0.
0
0
1
,0
.0
0
3
,0
.0
1
,0
.0
3,
0.
1}

lr
_o

ut
er

{0
.0
00
1,
0
.0
00
3,
0.
00
1
,0
.0
0
3
,0
.0
1
,0
.0
3,
0.
1}

{0
.0
0
0
1
,0
.0
0
0
3,
0.
0
0
1
,0
.0
0
3
,0
.0
1,
0
.0
3
,0
.1
}

ns
a_

al
ph

a
{0
.0
00
00
1
,0
.0
00
00
3
,0
.0
0
0
0
1
,0
.0
0
0
0
3,
0.
0
0
0
1,
0.
0
0
0
3,
0
.0
0
1
,0
.0
0
3
}

-
op

ti
mi

ze
r_

in
ne

r
{a

da
m

,s
gd

_n
es

te
ro

v_
0.

9}
{a

da
m

,s
gd

_n
es

te
ro

v_
0.

9}
op

ti
mi

ze
r_

ou
te

r
ad

am
ad

am
st

ep
s_

in
ne

r
20

00
20

00
st

ep
s_

ns
a

20
0

-
st

ep
s_

ou
te

r
10

0
10

0

25



Ta
bl

e
S7

:H
yp

er
pa

ra
m

et
er

se
ar

ch
sp

ac
e

fo
rt

he
fe

w
-s

ho
ti

m
ag

e
cl

as
si

fic
at

io
n

ex
pe

rim
en

ts
on

O
m

ni
gl

ot
an

d
m

in
iIm

ag
eN

et
.B

es
tf

ou
nd

pa
ra

m
et

er
s

ar
e

m
ar

ke
d

in
bo

ld
.

H
yp

er
pa

ra
m

et
er

O
m

ni
-5

W
-1

s
O

m
ni

-5
W

-5
s

O
m

ni
-2

0W
-1

s
O

m
ni

-2
0W

-5
s

m
in

iI
m

ag
eN

et

ba
tc

h_
si

ze
32

32
16

16
4

β
{0

.0
1,

0.
03

,0
.1

,0
.3

,1
.}

{0
.0

1,
0.

03
,0

.1
,0

.3
,1

.}
{0

.0
1,

0.
03

,0
.1

,0
.3

,1
.}

{0
.0

1,
0.

03
,0

.1
,0

.3
,1

.}
{0

.0
1,

0.
03

,0
.1

,0
.3

,1
.}

λ
{0

.1
,0

.2
5,

0.
5}

{0
.1

,0
.2

5,
0.

5}
{0

.1
,0

.2
5,

0.
5}

{0
.1

,0
.2

5,
0.

5}
{0

.1
,0

.2
5,

0.
5}

lr
_i

nn
er

0.
01

0.
01

0.
01

0.
01

0.
01

lr
_o

ut
er

{0
.0

1,
0.

00
1

}
{0

.0
1,

0.
00

1
}

{0
.0

1,
0.

00
1

}
{0

.0
1,

0.
00

1
}

0.
00

1
op

ti
mi

ze
r_

in
ne

r
gd

_n
es

te
ro

v_
0.

9
gd

_n
es

te
ro

v_
0.

9
gd

_n
es

te
ro

v_
0.

9
gd

_n
es

te
ro

v_
0.

9
gd

_n
es

te
ro

v_
0.

9
op

ti
mi

ze
r_

ou
te

r
ad

am
ad

am
ad

am
ad

am
ad

am
st

ep
s_

in
ne

r
{5

0,
10

0,
15

0,
20

0}
{5

0,
10

0,
15

0,
20

0}
{5

0,
10

0,
15

0,
20

0}
{5

0,
10

0,
15

0,
20

0}
{5

0,
10

0,
15

0,
20

0}
st

ep
s_

nu
dg

ed
{5

0,
10

0,
15

0,
20

0}
{5

0,
10

0,
15

0,
20

0}
{5

0,
10

0,
15

0,
20

0}
{5

0,
10

0,
15

0,
20

0}
{2

5,
50

,7
5,

10
0}

st
ep

s_
ou

te
r

37
50

37
50

37
50

37
50

25
00

0

26



Ta
bl

e
S8

:H
yp

er
pa

ra
m

et
er

se
ar

ch
sp

ac
e

fo
rt

he
si

nu
so

id
al

fe
w

sh
ot

re
gr

es
si

on
ex

pe
ri

m
en

t.
Fo

ra
ll

m
et

ho
ds

50
0

sa
m

pl
es

w
er

e
ra

nd
om

ly
dr

aw
n

fr
om

th
e

se
ar

ch
sp

ac
e

an
d

th
e

A
sy

nc
hr

on
ou

s
H

yp
er

B
an

d
sc

he
du

le
rf

ro
m

ra
y

tu
ne

w
as

us
ed

w
ith

a
gr

ac
e

pe
ri

od
of

10
[1

20
].

B
es

tf
ou

nd
pa

ra
m

et
er

s
ar

e
m

ar
ke

d
in

bo
ld

.

H
yp

er
pa

ra
m

et
er

C
M

L
+

e-
pr

op

ac
ti

vi
ty

_r
eg

_s
tr

en
gt

h
{1
0
−
1
,1
0−

2
,1
0
−
3
,1
0−

4
,1

0
−
5
,1
0
−
6
}

ac
ti

vi
ty

_r
eg

_t
ar

ge
t

{0
.0
5
,0
.1
,0
.2
}

ba
tc

h_
si

ze
{1
,5
,1

0
}

β
{0
.0
1
,0
.0
3
,0
.1
,0
.3
,1
.0
,3
.0
,1
0.
0}

λ
{1
0
0
,1
0
−
1
,1

0
−
2
,1
0
−
3
,1
0−

4
,1
0
−
5
,1
0−

6
}

lr
_i

nn
er

{0
.0
0
0
1
,0
.0
0
0
3,
0
.0
0
1
,0
.0
0
3
,0
.0
1,
0
.0
3
,0
.1
}

lr
_n

ud
ge

d
{0
.0
0
0
1
,0
.0
0
0
3,
0
.0
0
1
,0
.0
0
3
,0
.0
1,
0
.0
3
,0
.1
}

lr
_o

ut
er

{0
.0
0
0
1
,0
.0
0
0
3
,0
.0
0
1
,0
.0
0
3
,0
.0
1,
0
.0
3
,0
.1
}

me
ta

_b
at

ch
_s

iz
e

{1
,1
0,
2
5
}

op
ti

mi
ze

r_
in

ne
r

{a
da

m
,s

gd
_n

es
te

ro
v_

0.
9}

op
ti

mi
ze

r_
ou

te
r

ad
am

st
ep

s_
in

ne
r

50
0

st
ep

s_
nu

dg
ed

{5
0,
1
0
0
,2
0
0
}

st
ep

s_
ou

te
r

10
00

H
yp

er
pa

ra
m

et
er

B
PT

T
+

e-
pr

op
B

PT
T

+
B

PT
T

T
B

PT
L

+
e-

pr
op

ac
ti

vi
ty

_r
eg

_s
tr

en
gt

h
{1

0−
1
,1

0
−
2
,1
0−

3
,1
0
−
4
,1
0−

5
,1
0
−
6
}

{1
0
−
1
,1
0
−
2
,1
0
−
3
,1
0
−
4
,1
0
−
5
,1

0
−
6
}

{1
0
−
1
,1
0
−
2
,1
0
−
3
,1
0
−
4
,1
0
−
5
,1

0
−
6
}

ac
ti

vi
ty

_r
eg

_t
ar

ge
t

{0
.0
5
,0
.1
,0
.2
}

{0
.0
5,
0
.1
,0
.2
}

{0
.0
5,
0
.1
,0
.2
}

ba
tc

h_
si

ze
{1
,5
,1
0
}

{1
,5
,1

0
}

{1
,5
,1
0
}

lr
_i

nn
er

{0
.0
0
0
1
,0
.0
00
3
,0
.0
0
1
,0
.0
0
3
,0
.0
1
,0
.0
3,
0.
1}

{0
.0
0
0
1,
0
.0
0
0
3
,0
.0
0
1
,0
.0
0
3
,0
.0
1,
0.
0
3,
0
.1
}

{0
.0
0
0
1
,0
.0
0
0
3,
0.
0
0
1
,0
.0
0
3
,0
.0
1,
0.
0
3,
0
.1
}

lr
_o

ut
er

{0
.0
00
1,

0.
00

03
,0
.0
0
1
,0
.0
0
3
,0
.0
1
,0
.0
3
,0
.1
}

{0
.0
0
0
1,
0
.0
0
0
3
,0
.0
0
1
,0
.0
0
3
,0
.0
1,
0.
0
3
,0
.1
}

{0
.0
0
0
1,
0.
0
0
0
3,
0
.0
0
1
,0
.0
0
3
,0
.0
1,
0.
0
3,
0
.1
}

me
ta

_b
at

ch
_s

iz
e

{1
,1

0
,2
5
}

{1
,1

0
,2
5
}

{1
,1
0,
2
5
}

op
ti

mi
ze

r_
in

ne
r

{a
da

m
,s

gd
_n

es
te

ro
v_

0.
9}

{a
da

m
,s

gd
_n

es
te

ro
v_

0.
9}

sg
d

op
ti

mi
ze

r_
ou

te
r

ad
am

ad
am

ad
am

st
ep

s_
in

ne
r

10
10

50
0

st
ep

s_
ou

te
r

10
00

10
00

10
00

27



Ta
bl

e
S9

:H
yp

er
pa

ra
m

et
er

se
ar

ch
sp

ac
e

fo
rt

he
w

he
el

ba
nd

it
ex

pe
ri

m
en

t.
Fo

ra
ll

m
et

ho
ds

10
00

sa
m

pl
es

w
er

e
ra

nd
om

ly
dr

aw
n

fr
om

th
e

se
ar

ch
sp

ac
e.

B
es

tf
ou

nd
pa

ra
m

et
er

s
ar

e
m

ar
ke

d
in

bo
ld

.

H
yp

er
pa

ra
m

et
er

C
M

L
(s

yn
ap

tic
)

C
M

L
(m

od
ul

at
or

y)
M

A
M

L

ba
tc

h_
si

ze
51

2
51

2
51

2
β

{0
.0
1
,0
.0
3
,0
.1
,0
.3
,1
.0
,3
.0
,1
0.
0}

{0
.0
1
,0
.0
3
,0
.1
,0
.3
,1
.0
,3
.0
,1

0
.0
}

-
λ

{1
0−

6
,1
0
−
5
,.
..
,1

0
3
}

-
-

lr
_i

nn
er

{0
.0
0
0
1
,0
.0
00
3,
0.
00
1
,0
.0
0
3
,0
.0
1
,0
.0
3
,0
.1
}

{0
.0
0
0
1
,0
.0
0
0
3
,0
.0
0
1
,0
.0
0
3
,0
.0
1
,0
.0
3
,0
.1
}

{0
.0
0
0
1
,0
.0
0
0
3
,0
.0
0
1
,0
.0
0
3
,0
.0
1
,0
.0
3
,0
.1
}

lr
_n

ud
ge

d
{0
.0
00
1
,0
.0
00
3
,0
.0
01
,0
.0
0
3
,0
.0
1
,0
.0
3
,0
.1
}

{0
.0
0
0
1
,0
.0
0
0
3
,0
.0
0
1
,0
.0
0
3
,0
.0
1
,0
.0
3
,0
.1
}

-
lr

_o
nl

in
e

{0
.0
0
0
1
,0
.0
00
3
,0
.0
01
,0
.0
0
3
,0
.0
1
,0
.0
3,
0.
1}

{0
.0
0
0
1
,0
.0
0
0
3
,0
.0
0
1
,0
.0
0
3
,0
.0
1
,0
.0
3,
0.
1}

{0
.0
0
0
1,
0.
0
0
0
3,
0
.0
0
1
,0
.0
0
3
,0
.0
1
,0
.0
3,
0.
1}

lr
_o

ut
er

{0
.0
00
1,
0.
00
03
,0
.0
01
,0
.0
0
3
,0
.0
1,
0
.0
3
,0
.1
}

{0
.0
0
0
1,
0.
0
0
0
3,
0.
0
0
1
,0
.0
0
3
,0
.0
1
,0
.0
3
,0
.1
}

{0
.0
00
1,
0.
0
0
0
3,
0.
0
0
1
,0
.0
0
3
,0
.0
1
,0
.0
3
,0
.1
}

me
ta

_b
at

ch
_s

iz
e

{8
,1
6,
32

}
{8
,1

6
,3
2
}

{8
,1
6,
3
2
}

op
ti

mi
ze

r_
in

ne
r

ad
am

{a
da

m
,s

gd
,s

gd
_n

es
te

ro
v_

0.
9}

sg
d

op
ti

mi
ze

r_
on

li
ne

ad
am

{a
da

m
,s

gd
,s

gd
_n

es
te

ro
v_

0.
9}

sg
d

op
ti

mi
ze

r_
ou

te
r

ad
am

{a
da

m
,a

da
m

w
}

ad
am

st
ep

s_
in

ne
r

{1
00
,2

5
0
,5
00
,1
00
0
}

{1
0
0
,2
5
0
,5
0
0
,1

0
0
0
}

{5
,1

0
,5
0
,1
0
0
}

st
ep

s_
nu

dg
ed

{1
0
0
,2
50
,5
00
,1
00
0
}

{1
0
0
,2
5
0
,5
0
0
,1
0
0
0
}

-
st

ep
s_

ou
te

r
64

00
64

00
64

00
t f

{2
0
,5

0
,1
00
}

{2
0
,5
0
,1

0
0
}

{2
0
,5
0
,1

0
0
}

t s
{5
0
,1
00
,2

5
0
,5
00
,1
00
0}

{5
0
,1
0
0
,2
5
0
,5

0
0
,1
0
0
0}

{5
,1
0,
5
0
,1

0
0
}

28



S5 Additional details

S5.1 Compute resources

We used Linux workstations with 2 Nvidia RTX 3090 and 4 Nvidia RTX 3070 GPUs during
development and conducted hyperparameter searches and larger experiments on up to 3 Linux servers
with 8 Nvidia RTX 3090 GPUs with 24 GB memory each. Most of the experiments and corresponding
hyperparameter scans presented take less than a few hours to complete on a single server. The more
challenging recurrent spiking network and miniImageNet experiments require approximately 2-5
days to complete. During development we conducted many more hyperparameter scans over the
course of several months.

S5.2 Software and libraries

For the results produced in this paper we relied on free and open-source software. We implemented
our experiments in Python using PyTorch [121, BSD-style license], JAX [122, Apache License
2.0], Ray [120, Apache License 2.0] and NumPy [123, BSD-style license]. For the visual few-shot
classification dataset splits we used the Torchmeta library [124, MIT license] and for the generation
of plots we used matplotlib [125, BSD-style license].

S5.3 Datasets

We conducted our experiments with the public domain datasets Boston housing [98, MIT Li-
cense], MNIST [100, GNU GPL v3.0], Omniglot [57] (MIT license), miniImageNet [56] (custom
MIT/ImageNet license) and CIFAR-10 (MIT license) [48].
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