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This supplementary document is organized as follows:

Section 1 provides the alternative solution of Deep Fourier Up-Sampling variant: “Corner Interpo-
lation”. Due to the page limits, we only present two variants in main manuscript . Specifically, the
theoretical evidences and module construction for FourierUp of “Corner Interpolation Variant” are
reported in Section 1.1 and Section 1.2 respectively. The experimental results of "Corner Interpolation
Variant" are presented in Section 1.3.

Section 2 provides the implementation details as shown in Fig. 4 and Fig. 5. To be specific, the
configurations including “Original”, “FourierUp-AreaUp”, “FourierUp-Padding”, and “Spatial-Up”
in “Implementation Details” of main manuscript are illustrated.

Section 3 provides more quantitative and qualitative experimental results.

Section 4 provides more visualization of feature maps between the baselines and the ones integrated
with the proposed “FourierUp”.

1 Deep Fourier Up-Sampling Variant: “Corner Interpolation”

We first illustrate the alternative solution “Corner Interpolation” of Deep Fourier Up-Sampling, and
then present the theoretical evidences, finally detail the corresponding module construction in the
peso-code. The illustration of “Corner Interpolation” is shown in Fig. 1.

Theorem-1. Suppose the shifted F shift
G of the Fourier map G ∈ RM×N as

F shift
G (u′, v′) = G(u− M

2
, v − N

2
), (1)

where u′ = 0, 1, . . . ,M − 1 and v′ = 0, 1, . . . , N − 1, it holds that the inverse Fourier transform
fshift
g of F shift

G

fshift
g (x, y) = (−1)(x+y)g(x, y), (2)

where x = 0, 1, . . . ,M − 1 and y = 0, 1, . . . , N − 1.
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Figure 1: An illustration of the proposed deep Fourier Up-Sampling. It has three alternative
variants: Periodic Padding and Area Interpolation/Cropping, as illustrated in main manuscript . The
alternative solution “Corner Interpolation” is shown in supplementary materials.

1.1 Theoretical Evidences for FourierUp of “Corner Interpolation Variant”

For a spatial map G(u, v) ∈ RM×N , we denote its 2-times up-sampled corner interpolation as
F cor
G (u, v) ∈ R2M×2N . Denote G(u, v) ∈ RM×N , F cor

g (u, v) ∈ R2M×2N , F shiftcor
g (u, v) =

F cor
G (u − M, v − N) ∈ R2M×2N as the corresponding Fourier transforms of g(x, y), f cor

g (x, y),
and fshiftcor

g (x, y) respectively.

The 2D Inverse Discrete Fourier transform (IDFT) of G(u, v) can be written as
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We up-sample G(u, v) ∈ RM×N to get F cor
G (u, v) ∈ R2M×2N by corner interpolation. Specifically,

the corner interpolation is shown in Fig. 3. For convenience, we infer the inverse Fourier transform
of F shiftcor

g (u, v) as
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Let u′ = u− M
2 and v′ = v − N

2 , the equation (4) is transformed as
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where x′ = 2x and y′ = 2y, x = 0, 1, . . . ,M − 1 and y = 0, 1, . . . , N − 1. Similarly, we can
write A(x, y) = ejπ(

x′
2 + y′

2 ) as |A(x, y)| = 1 for any integer x, y. Recall Theorem-1, we can infer
f cor
G (x, y) as
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G (x, y) = (−1)(x+y)fshiftcor
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We can find that the even points in f cor
G (2x, 2y) are equal to the corresponding point in g(x,y)

4 . The
odd points have no definitions and are obtained by interpolation, acting as the low-pass filtering in
spatial domain.

Theorem-2. Suppose the corner interpolated F cor
G of the Fourier map G ∈ RM×N , it holds that the

inverse Fourier transform f cor
g of F cor
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fcor
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4
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where x′ = 2x and y′ = 2y, x = 0, 1, . . . ,M − 1 and y = 0, 1, . . . , N − 1.

1.2 FourierUp Module Design of “Corner Interpolation Variant”

Recalling Theorem-1 and Theorem-2, we correspondingly propose the Fourier up-sampling module,
called Corner Interpolation Variant.

Corner Interpolation Up-Sampling. The pseudo-code of the Corner Interpolation Up-sampling is
shown in Fig. 2. Specifically, given an image X ∈ RH×W×C, we first adopt the Fourier transform
FFT(X) to obtain its amplitude component A and phase component P. We then perform the Corner
Interpolation over A and P two times in both the H and W dimensions, as illustrated in Fig. 3, to
form the padded A_pep and P_pep. Such up-sampling maps are then fed into two independent
convolution modules with a kernel size of 1 × 1 and followed by the inverse Fourier transform
iFFT(.) to project the padded ones back to the spatial domain.

Note that albeit being designed on the basis of strict theories, both constructed spectral up-sampling
modules contain certain approximations, like a learnable 1× 1 convolution operator instead of strictly
1/4 as described in Theorem-1 of main manuscript , and an approximation cropping to preserve
the map corners instead of accurate A mapping as proved in Theorem-2 of main manuscript and
Theorem-2 of supplementary materials. Such strategy makes the proposed modules able to be more
easily implemented and more flexibly represent real data spectral structures. It is worth noting that
this should be the first attempt for constructing easy equitable spectral upsampling modules, and hope
it would inspire more effective and rational ones from more spectral perspectives.

1.3 Comparison and Analysis

We perform the model performance comparison over different configurations, as described in im-
plementation details of main manuscript . The quantitative results are presented in Tables 1 to 2
where the best and second best results are highlighted in bold and underline. From the results, by
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def FourierUp_CornerInterpolation(X):
# X: input with shape [N, C, H, W]
# A and P are the amplitude and phase

A, P = FFT(X)

# Fourier up-sampling transform rules
A_aip = Corner-Interpolation(A)
P_aip = Corner-Interpolation(P)
A_aip = Convs_1x1(A_aip)
P_aip = Convs_1x1(P_aip)

# Inverse Fourier transform
Y = iFFT(A_aip, P_aip)

Return Y #[N, C, 2H, 2W]

def Corner-Interpolation(X):
# X: input with shape [N, C, H, W]
# A and P are the amplitude and phase

r, c = X.shape(2), X.shape(3)

I_Mup=torch.zeros((N, C, 2*H, 2*W))
I_Pup=torch.zeros((N, C, 2*H, 2*W))

if r%2==1:#odd
ir1,ir2=r//2+1,r//2+1

else: #even
ir1,ir2=r//2+1,r//2

if c%2==1:#odd
ic1,ic2=c//2+1,c//2+1

else: #even
ic1,ic2=c//2+1,c//2

A_aip[:,:,:ir1,:ic1]=A[:,:,:ir1,:ic1]
A_aip[:,:,:ir1,ic2+c:]=A[:,:,:ir1,ic2:]
A_aip[:,:,ir2+r:,:ic1]=A[:,:,ir2:,:ic1]
A_aip[:,:,ir2+r:,ic2+c:]=A[:,:,ir2:,ic2:]

if r%2==0:#even
A_aip[:,:,ir2,:]=A_aip[:,:,ir2,:]*0.5
A_aip[:,:,ir2+r,:]=A_aip[:,:,ir2+r,:]*0.5

if c%2==0:#even
A_aip[:,:,:,ic2]=A_aip[:,:,:,ic2]*0.5
A_aip[:,:,:,ic2+c]=A_aip[:,:,:,ic2+c]*0.5

P_aip[:,:,:ir1,:ic1]=P[:,:,:ir1,:ic1]
P_aip[:,:,:ir1,ic2+c:]=P[:,:,:ir1,ic2:]
P_aip[:,:,ir2+r:,:ic1]=P[:,:,ir2:,:ic1]
P_aip[:,:,ir2+r:,ic2+c:]=P[:,:,ir2:,ic2:]

if r%2==0:#even
I_Pup[:,:,ir2,:]=P_aip[:,:,ir2,:]*0.5
I_Pup[:,:,ir2+r,:]=P_aip[:,:,ir2+r,:]*0.5

if c%2==0:#even
P_aip[:,:,:,ic2]=P_aip[:,:,:,ic2]*0.5
P_aip[:,:,:,ic2+c]=P_aip[:,:,:,ic2+c]*0.5

Return A_aip, P_aip

Figure 2: Pseudo-code of the variant of the proposed deep Fourier up-sampling: Corner
interpolation variant.
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Table 1: Quantitative comparisons of image de-raining.

Model Configurations Rain200H Rain200L
PSNR SSIM PSNR SSIM

LPNet

Original 22.907 0.775 32.461 0.947
Spatial-Up 22.956 0.777 32.522 0.950
FourierUp-AreaUp 22.163 0.783 32.681 0.954
FourierUp-Corner 22.291 0.786 32.678 0.954
FourierUp-Padding 23.295 0.786 32.835 0.956

PReNet

Original 29.041 0.891 37.802 0.981
Spatial-Up 29.357 0.901 38.271 0.985
FourierUp-AreaUp 29.690 0.903 39.776 0.985
FourierUp-Corner 29.866 0.908 39.970 0.987
FourierUp-Padding 29.871 0.908 39.971 0.987

Table 2: Quantitative comparisons of pan-sharpening.

Model Configurations
WorldView-II GaoFen2

PSNR↑ SSIM↑ SAM↓ ERGAS↓ PSNR↑ SSIM↑ SAM↓ EGAS↓

PANNET

Original 40.817 0.963 0.025 1.055 43.066 0.968 0.018 0.855

Spatial-Up 40.988 0.963 0.025 1.031 43.897 0.973 0.018 0.737

FourierUp-AreaUp 41.167 0.963 0.024 1.010 45.964 0.979 0.015 0.653

FourierUp-Corner 41.286 0.965 0.024 1.007 46.137 0.981 0.012 0.631

FourierUp-Padding 41.288 0.965 0.024 1.007 46.145 0.982 0.012 0.622

DCFNET

Original 40.276 0.968 0.028 1.051 42.986 0.967 0.019 0.858

Spatial-Up 40.319 0.968 0.028 1.046 43.157 0.970 0.017 0.850

FourierUp-AreaUp 40.484 0.968 0.025 1.115 43.881 0.979 0.014 0.829

FourierUp-Corner 40.539 0.968 0.027 1.105 44.139 0.979 0.014 0.771

FourierUp-Padding 40.546 0.968 0.025 1.102 44.153 0.981 0.014 0.765

integrating with the FourierUp variant “Corner-interpolation”, we can observe performance gain
against the baselines across all the datasets in two representative tasks: image de-raining and pan-
sharpening, suggesting the effectiveness of our approach. For example, for the PReNet of Table 1,
“FourierUp-Corner” obtains 0.82dB/2.1dB PSNR gains than the “Original”, 0.51dB/1.5dB PSNR
gains than “Spatial-Up” on the Rain200H and Rain200L datasets, respectively. Such results validate
the effectiveness of our proposed FourierUp.

Figure 3: The illustrations of corner interpolation implementation in Fig. 1. The gray parts
represent a row/column pixels while the remaining color parts are evenly divided.
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Figure 4: The illustrations of corner interpolation over the baselines with up-sampling in Figure
1. The gray parts represent a row/column pixels while the remaining color parts are evenly divided.

Figure 5: The illustrations of corner interpolation over the baselines without up-sampling in
Figure 1. The gray parts represent a row/column pixels while the remaining color parts are evenly
divided.

2 Implementation Details

Regarding the above competitive baselines, they can be divided into two categories: one with spatial
up-sampling and another one without spatial up-sampling. We provide the detailed structures of the
encapsulated FourierUp (detailed in Fig. 5(b)) and the baselines with the FourierUp in Fig. 5 and Fig.
4.

For the baselines with spatial up-sampling, we perform the comparison over four configurations:

1) Original: the baseline without any changes;
2) FourierUp-AreaUp in Fig. 4(b): replacing the original model’s spatial up-sampling with

the union of the Area-Interpolation variant of our FourierUp and the spatial up-sampling
itself;
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3) FourierUp-Padding in Fig. 4(b): replacing the original model’s spatial up-sampling
operator with the union of the Periodic-Padding variant of our FourierUp and the spatial
up-sampling itself;

4) FourierUp-Corner in Fig. 4(b): replacing the original model’s spatial up-sampling operator
with the union of the Corner-Interpolation variant of our FourierUp and the spatial up-
sampling itself;

5) Spatial-Up in Fig. 4(c): replacing the variants of FourierUp in the settings of 2)/3) with the
spatial up-sampling. For a fair comparison, we use the same number of trainable parameters
as 2)/3).

For the baselines without spatial up-sampling, we perform the comparison over four configurations:

1) Original: the baseline without any changes;
2) FourierUp-AreaUp in Fig. 5(b): replacing the original model’s convolution with the

encapsulated FourierUp that is equipped with the Area-Interpolation variant;
3) FourierUp-Padding in Fig. 5(b): replacing the original model’s convolution with the

encapsulated FourierUp that is equipped with the Periodic-Padding variant;
4) FourierUp-Corner in Fig. 5(b): replacing the original model’s convolution with the

encapsulated FourierUp that is equipped with the Corner-Interpolation variant;
5) Spatial-Up in Fig. 5(c): replacing the the encapsulated FourierUp of the settings of 2)/3)

with the spatial up-sampling. For a fair comparison, we use the same number of trainable
parameters as 2)/3).

3 Experiments

Quantitative Comparison. We adopt the pan-sharpening, the representative task of guided image
super-resolution, for evaluations. Due to the page limits, the results over WorldView III have not
been presented in main manuscript. We also employ two different network designs for validation,
including PANNET without up-sampling operator and DCFNET with up-sampling operator.

We perform the model performance comparison over different configurations, as described in im-
plementation details. The quantitative results are presented in Table 3 where the best and second
best results are highlighted in bold and underline. From the results, by integrating with our proposed
FourierUp variants, we can observe performance gain against the baselines across all the datasets,
suggesting the effectiveness of our approach. For example, for the PANNET of Table 3, “FourierUp-
padding”, “FourierUp-AreaUp” and “FourierUp-Corner” obtain the performance gains than the
“Original” and “Spatial-Up” on the WorldView-III datasets, respectively. Such results validate the
effectiveness of our proposed FourierUp. The corresponding visualization consistently supports the
analysis in Fig. 8, where the FourierUp is capable of better maintaining the details.

Qualitative Comparison. Due to the limited space, we only report the visual results of the de-
raining/dehazing task in main manuscript. We report more visual results in the supplementary
materials. As shown, integrating the FourierUp with the original baseline achieves more visually
pleasing results. Specifically, zooming-in the red box arrows of Fig. 6 and 7, the model equipped
with the FourierUp is capable of better recovering the texture details while removing the rain/haze
effect.

4 Comparison in Feature Space

In this section, we present more visualization results of feature maps, demonstrating the effectiveness
of the FourierUp. Fig. 9 and Fig. 10 present the representative example in the PreNet over image
de-raining dataset-Rain200H. As can be seen, the PreNet integrated with our proposed FourierUp is
capable of better distinguishing and disentangling the rain features and background features, thus
improving the model performance while the original PreNet suffers from severe feature entanglement
over rain streaks and background.
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Table 3: Quantitative comparisons of pan-sharpening.

Model Configurations
WorldView-III

PSNR↑ SSIM↑ SAM↓ ERGAS↓

PANNET

Original 29.68 0.907 0.085 3.426
Spatial-Up 29.71 0.907 0.085 3.426
FourierUp-AreaUp 30.05 0.915 0.078 3.253
FourierUp-Padding 30.24 0.918 0.077 3.187

DCFNET

Original 29.47 0.907 0.089 3.536
Spatial-Up 29.51 0.907 0.088 3.536
FourierUp-AreaUp 29.69 0.913 0.085 3.326
FourierUp-Padding 29.85 0.914 0.078 3.219

Figure 6: Visual comparison of PReNet on the Rain200L.

Figure 7: Visual comparison of AODNet on the SOTS.
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Figure 8: The visual comparison of PANNET over WorldView-II.

Figure 9: The visual feature maps comparison.
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Figure 10: The visual feature maps comparison.
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