
Under review as a conference paper at ICLR 2023

A CODE FOR REPRODUCIBILITY

See https://anonymous.4open.science/r/shuffgauss-6D7C for the code of our
implementation.

B ADDITIONAL PROOFS

B.1 PROOF OF THEOREM 1

Here, we give the full proof of Theorem 1.

Proof. As explained in the main text, the neighboring databases of interest are

M(D) ∼ N (0, σ2In),

M(D′) ∼ 1

n

(
N (e1, σ

2In) + . . .+N (en, σ
2In)

)
.

We are concerned with calculating the following quantity, Ex∼M(D)

[(
M(D′)(x)
M(D)(x)

)λ]
for RDP:

Ex∼M(D)

[(
M(D′)(x)

M(D)(x)

)λ
]

=

∫ (
exp

[
−(x1 − 1)2/2σ2 −

∑n
i=2 x

2
i /2σ

2
]
+ . . .

n exp[−
∑n

i=1 x
2
i /2σ

2]

)λ

exp[−
n∑

i=1

x2
i /2σ

2]
dnx

(2πσ2)n/2
(14)

=

∫ (
exp

[
−(x1 − 1)2/2σ2 + x2

1/2σ
2
]
+ . . .

n

)λ

exp[−
n∑

i=1

x2
i /2σ

2]
dnx

(2πσ2)n/2
(15)

=

∫ (
exp

[
(2x1 − 1)/2σ2

]
+ . . .

)λ
exp[−

n∑
i=1

x2
i /2σ

2]
dnx

nλ(2πσ2)n/2
(16)

=

∫ (n∑
i=1

exp
[
(2xi − 1)/2σ2

])λ

exp[−
n∑

i=1

x2
i /2σ

2]
dnx

nλ(2πσ2)n/2
. (17)

Let us explain the above calculation in detail. We first notice that Ex∼M(D)

[(
M(D′)(x)
M(D)(x)

)λ]
is an

n-th dimensional integral of xi (i ∈ [n]), as shown in Equation 14. For each term j ∈ [n] in the
nominator of (. . .)λ, we divide it by the denominator exp[−

∑n
i=1 x

2
i /2σ

2], yielding exp[−(xj −
1)2/2σ2 −

∑n
i ̸=j x

2
i /2σ

2 +
∑n

i=1 x
2
i /2σ

2] = exp[−(xj − 1)2/2σ2 + x2
j/2σ

2], with all xi terms in
i ∈ [n] except j canceled out (Equation 15). The term can be further simplified to exp[(2xj−1)/2σ2]
as in Equation 17.

Then, we expand the expression (. . .)λ using the multinomial theorem:(
n∑

i=1

exp
[
(2xi − 1)/2σ2

])λ

=
∑

k1+...+kn=λ;
k1,...,kn≥0

(
λ

k1, . . . , kn

) n∏
i=1

exp
[
ki(2xi − 1)/2σ2

]
, (18)

where
(

λ
k1,...,kn

)
= λ!

k1!k2!...kn!
is the multinomial coefficient, and ki ∈ Z+ for i ∈ [n].

Before proceeding, we make a detour to calculate the following integral (with k ∈ Z+):∫
exp[k(2x− 1)/2σ2] exp[−x2/2σ2]

dx√
2πσ2

=

∫
exp[−(x− k)2/2σ2 + (k2 − k)/2σ2]

dx√
2πσ2

13

https://anonymous.4open.science/r/shuffgauss-6D7C

Under review as a conference paper at ICLR 2023

= exp[(k2 − k)/2σ2].

Using the above expression and Equation 18, we can write Equation 17 as∫ (n∑
i=1

exp
[
(2xi − 1)/2σ2

])λ

exp[−
n∑

i=1

x2
i /2σ

2]
dnx

nλ(2πσ2)n/2

=

∫ ∑
k1+...+kn=λ;
k1,...,kn≥0

(
λ

k1, . . . , kn

) n∏
i=1

exp
[
ki(2xi − 1)/2σ2

] exp[−x2
i /2σ

2]dnx

nλ(2πσ2)n/2

=
1

nλ

∑
k1+...+kn=λ;
k1,...,kn≥0

(
λ

k1, . . . , kn

) n∏
i=1

exp[(k2i − ki)/2σ
2], (19)

where we have moved the 1/nλ factor to the front. Noticing that
∏n

i=1 exp[−ki] = exp[−
∑n

i ki]
and that

∑n
i=1 ki = λ under the multinomial constraint, we have

1

nλ

∑
k1+...+kn=λ;
k1,...,kn≥0

(
λ

k1, . . . , kn

) n∏
i=1

exp[(k2i − ki)/2σ
2]

=
e−λ/2σ2

nλ

∑
k1+...+kn=λ;
k1,...,kn≥0

(
λ

k1, . . . , kn

)
e
∑n

i=1 k2
i /2σ

2

.

Combining the above expression with Equation 2, we obtain the expression given in Equation 4 as
desired. ■

B.2 PROOF OF THEOREM 2

Proof. Theorem 9 of Wang et al. (2019) states that for subsampling rate γ, a mechanismM satisfying
(λ, ϵ(λ))-RDP applied to a subsampled set of data, satisfy (λ, ϵ′(λ)), where

ϵ′(λ) ≤ 1

λ− 1
log[1 + γ2

(
λ

2

)
min

{
4(eϵm(2) − 1), eϵm(2) min{2, (eϵ(∞)−1)2}

}
+

λ∑
j=3

γj

(
λ

j

)
e(j−1)ϵm(j) min{2, (eϵ(∞)−1)j}]

Since ϵ(∞) is unbounded, we can simplify it to the expression given in Theorem 2 in a straightforward
way. ■

B.3 PROOF OF THEOREM 3

The following lemma is useful:
Lemma 3. Let f(k) be any monotonically decreasing function with respect to k for k ∈ N, 1 ≤ k ≤ n
and n ∈ N. Also let 0 ≤ γ ≤ 1. Then, the following inequality holds:

n∑
k=1

(
n

k

)
f(k) ≤ f(1)e−∆2µ/2 + f((1−∆)µ+ 1).

where µ = γn, ∆ is an arbitrary number conditioned on (1−∆)µ being integer and 0 ≤ ∆ ≤ 1.

Proof. We split the summation over k to two parts: from k = 1 to k equal or less than (1−∆)nγ,
and those equal or larger than (1 − ∆)nγ + 1. Note that the Chernoff bound states that: P[X ≤
(1−∆)µ] ≤ e−∆2µ/2 for all 0 < ∆ < 1. Then,

n∑
k=1

(
n

k

)
f(k) =

(1−∆)µ∑
k1=1

(
n

k1

)
f(k1) +

n∑
k2=(1−∆)µ+1

(
n

k2

)
f(k2)

14

Under review as a conference paper at ICLR 2023

≤
(1−∆)µ∑
k1=1

(
n

k1

)
f(1) +

n∑
k2=(1−∆)µ+1

(
n

k2

)
f(k2)

≤ P[k ≤ (1−∆)µ]f(1) +

n∑
k2=(1−∆)µ+1

(
n

k2

)
f(k2)

≤ f(1)e−∆2µ/2 +

n∑
k2=(1−∆)µ+1

(
n

k2

)
f(k2)

≤ f(1)e−∆2µ/2 +

n∑
k2=(1−∆)µ+1

(
n

k2

)
f((1−∆)µ+ 1)

≤ f(1)e−∆2µ/2 + f((1−∆)µ+ 1)

■

Proof of Theorem 3. Note that f(k) = e(λ−1)ϵSSG
γ,k satisfies the condition of f(k) in Lemma 3. Then,

by applying Lemma 3, the first part of the summation
n∑

k=1

(
n

k

)
γk(1− γ)n−ke(λ−1)ϵSSGγ,k (λ)

can be bounded by
e−∆2nγ/2+(λ−1)ϵSSGγ,1 (λ),

while the second part of the summation can bounded by

e(λ−1)ϵSSGγ,(1−∆)nγ+1(λ)

Combining the above two terms gives the desired expression. ■

The main advantage of using Equation 13 is that the calculation of the RDP with this theorem is
O(n) times more efficient computationally compared to Equation 11. Note that only two terms are
calculated in the logarithm of Equation 13. One can potentially calculate more terms (but still less
than O(n)) to make the approximation better. We leave it for future work as from Figure 1b, Equation
13 is sufficiently tight compared to existing techniques.

C ALGORITHMS

C.1 GETUNIQUECOUNT : NOTE ON THE PERMUTATION INVARIANCE OF EQUATION 9

It is best to describe the counting factor in our numerical evaluation of Equation 9 via an example.

Consider again (x1 + x2 + x3)
3. Expanding the multinomials, the terms with exponents of the form

x2
ixj are

3(x2
1x2 + x2

1x3 + x2
2x1 + x2

2x3 + x2
3x1 + x2

3x2).

Here, the factor 3 comes from the multinomial coefficient
(

3
2,1,0

)
. These terms

x2
1x2, x

2
1x3, x

2
2x1, x

2
2x3, x

2
3x1, x

2
3x2 belong to the same subset of the form x2

ixj , which do not
have repetition of exponent with same degrees. It has 3! = 6 elements in total. This subset contributes
effectively a factor of 3× 6 = 18 to the expansion in Equation 9,

18e(2
2+12)/2σ2

,

ignoring factor unrelated to the multinomial coefficients.

Consider the same expansion, but the terms with exponents of the form xixjxk:

6x1x2x3.

15

Under review as a conference paper at ICLR 2023

Table 2: Neural network architecture for MNIST.

Layer Parameters

Convolution 16 filters of 8× 8 , strides 2
Max-pooling 2× 2
Convolution 32 filters of 4× 4, strides 2
Max-pooling 2× 2

Linear 32 units
Softmax 10 units

Here, the multinomial coefficient is
(

3
1,1,1

)
= 6. Since the number of repetition of exponent with the

same degree is 3 (xi, xj , xk has the same degree 1), the subset has 3!/(3!) = 1 element. This subset
contributes effectively a factor of 6× 1 = 6 to the expansion in Equation 9,

6e(1
1+12)/2σ2

,

ignoring factor unrelated to the multinomial coefficients.

This procedure of calculating the contributing coefficients is called GetUniqueCount in Algorithm
1.

C.2 MORE ON ALGORITHM 1

We describe our algorithm for evaluating Equation 4.

Given λ, we find all partition of integers satisfying k1, . . . , kn = λ. We denote the operation by
GetPartition. For each of the partition, we obtain the number of counts for each unique ki; let
them be κ1, . . . , κi (i ≤ n), and denote the operation by GetUniqueCount. Subsequently, we
calculate the value:

e−λ/2σ2

nλ

(
λ

k1 . . . kn

)
n!

κ1! . . . κi!
e
∑n

j=1 k2
j ,

and make summation over all the partitions. The algorithm is shown in Algorithm 1.

D ADDITIONAL EXPERIMENTAL DETAILS

Network architecture. In Table 2, we present the neural network we use for the MNIST experiment
presented in Section 5.

Simulation details. We note that some of the experiments of interest can be simulated conveniently by
making simple modifications to existing libraries that implement DP-SGD (e.g., Opacus Yousefpour
et al. (2021)). This is done by noticing that in DP-SGD, given a batch of clipped gradients g̃, Gaussian
noise is applied to the sum of the gradients, i.e.,

∑B
i=1 g̃i ←

∑B
i=1 g̃i +N (0, σ2). Here, B is the

number of samples. In shuffle Gaussian or local Gaussian, the server sums over the received gradients
randomized with Gaussian noises,

∑B
i=1

{
g̃i +N (0, σ2)

}
=
∑B

i=1 g̃i +N (0, Bσ2). Therefore, we
can simply multiply σ by a factor of

√
B in existing DP-SGD libraries to simulate the decentralized

setting of shuffle/local Gaussian.

D.1 ADDITIONAL RESULTS

RDP versus approximate DP. In addition to those presented in Section 5.1, let us plot the ϵ
dependence at larger number of composition. In Figure 2, we show the RDP and upper bound, again
demonstrating significant amplification due to shuffling.

DP-SGD. In Figure 3, we show how varying batch sizes affect the privacy budget for both the shuffle
and central-DP models. It is shown that smaller batch size leads to higher accuracy. Note that while
smaller batch size reduces the effect of privacy amplification by shuffling, it is partially recovered
by privacy amplification due to subsampling. Overall, batch size does not play an important role in
privacy accounting, although tuning is essential at attaining optimal accuracy.

16

Under review as a conference paper at ICLR 2023

Figure 2: Shuffling effects.

Figure 3: Accuracy-privacy trade-offs for the shuffle and central-DP models when varying batch size.

In Figure 4, we show how varying clipping size/learning rate affects the privacy budget for both
the shuffle and central-DP models. These are hyperparameters that have to be fine-tuned to achieve
reasonable accuracy. Experiments are repeated 5 times with different random seeds and the mean as
well as standard deviation are shown in the figures.

D.2 DP-SGD WITH CIFAR10

We further perform DP-SGD experiments on the CIFAR10 dataset. Here, we first pre-train a
convolutional neural network with the CIFAR100 dataset without applying DP-SGD, assuming that
CIFAR100 is public. Then, the final layer is fine-tuned to train CIFAR10 with DP-SGD.

The parameters are set as follows: batch size varying from 50 to 1,000, δ = 10−5, noise multiplier
σ = 0.86 (corresponding to (ϵ0, δ0) = (12, 10−5)), clipping size C = 0.05, learning rate 0.05.

Figure 4: Performance of training MNIST when varying clipping size (left) and learning rate (right).

17

Under review as a conference paper at ICLR 2023

Figure 5: Performance when varying batch size (left) and privacy budget when training with batch-size
50 (right).

Figure 6: Accuracy-privacy trade-offs for training CIFAR10 when batch size is 500 (left) and 1,000
(right).

In Figures 5 and 6, we show how varying batch sizes affects the privacy budget spent. Again, smaller
batch size leads to better performances. Also, optimal accuracy (55%) is attainable with intermediate
levels of privacy, ϵ ≤ 10. Note again that experiments are repeated 5 times with different random
seeds and the mean as well as standard deviation are shown in the figures.

18

