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A Additional experiments

A.1 Heat equation

Pursuing the study of the recovery of the initial condition of the heat equation of Section 4, we repeat
the experience 50 times with n = 4000 observations, considering all other parameters identical to
those used before. According to our theory, the number of inducing variables we should use is still
equal to m =

(
ξ + 2π2T

)−1/2
log1/2 n ≈ 6. As before, we consider the population spectral feature

method described in (10).

The results from one experiment are presented in Figure 2. We plot the resulting variational approx-
imation of the posterior for m = 6 and m = 3 inducing variables and represent the true posterior
mean by solid red and the upper and lower pointwise 2.5% quantiles by dashed red curves. The true
function is given by blue and the mean and quantiles of the variational approximation by solid and
dotted purple/cyan curves, respectively.

The conclusions we draw from this experiment are the same as those in Section 4. With the optimal
choice m = 6 following from our theoretical results(on the left of Figure 2), the posterior and
variational means are almost indistinguishable and the 95% pointwise credible bands are identical
and contains f0 almost everywhere. However, reducing the number of inducing points to m = 3, the
variational credible sets become much larger, providing less information about f0, and the variational
posterior mean is smoother, providing a worse fit to f0.

In Figure 3, we summarize the results from the 50 experiments we ran, assessing the quality of the
different posterior distributions we consider via the mean integrated squared error (MISE)∫

‖f − f0‖2L2(T ;µ) dΠ[f |X,Y ], (14)

which can be computed explicitly as the posterior is Gaussian. We compare the true posterior and
the variational posteriors obtained with the optimal choice of m = 6 inducing variables and twice
more/less variables with m = 12 and m = 3, respectively. On the right-hand side of Figure 3, we see
that m = 3 is a suboptimal choice as it results in a much higher MISE than the other approaches.
On the left-hand side of Figure 3, we also report the computation times of the methods, and we
highlight that the true posterior takes much longer than any of the variational approximations. On
Figure 4, we further see that increasing the number of inducing variables results in more computation
time, as expected. At the same time, increasing the number of inducing variables beyond the optimal
threshold (m = 6) does not increase the accuracy considerably.
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Figure 2: True and variational posterior means and credible regions for Gaussian series prior (sine
basis) on the initial condition µ = f0 of the heat equation (12), with m = 6 (left) or m = 3 (right)
inducing variables from method (10), computed from n = 4000 observations.

Figure 3: Boxplots of the (logarithm of) computation time (in seconds, on the left) and the MISE
(on the right) of the true and variational posteriors for Gaussian series prior (sine basis) on the initial
condition µ = f0 of the heat equation (12), with m = 3, 6, 12 inducing variables from method (10),
obtained from 50 experiments with n = 4000 samples.

A.2 Volterra operator

Next we consider the Volterra operator (11). This is a mildly ill-posed problem of degree p = 1. We
set the sample size n = 15000, take uniformly distributed covariates on [0, 1], and let

f0(t) =
√

2
∑

j
cjj
−(1+β) cos((j − 1/2)πt), cj =

{
1 + 0.9 sin(

√
3πj), j odd,

1 + 0.8 sin(
√

7πj), j even,

for β = 0.6, so that f0 ∈ H̄β . The independent observations are then generated as Yi ∼
N (Af0(xi), 1), depending on the primitive of f0.

We consider the prior with λj = j−1−2β . In view of Corollary 3 the optimal number of inducing
variables is m = n

1
3+2β ≈ 10. We consider the population spectral features method described in (10)

and plot the variational approximation of the posterior for m = 10 and m = 5 inducing variables in
Figure 5, using the same colorcode as in the previous section.

With m = 10 on the top of Figure 5, the variational approximation results in similar 95% pointwise
credible bands and posterior mean as the true posterior, providing an accurate approximation. On the
bottom of this figure, we observe that the mean and pointwise credible bands with m = 5 inducing
variables are considerably different, though in both cases, the credible bands contain f0.
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Figure 4: Zoom of Figure 3.

Figure 5: True and variational posterior means and credible regions for Gaussian series prior (cosine
basis) and m = 10 (top) or m = 5 (bottom) inducing variables from method (10) for the Volterra
operator in Section 3.1.

We repeat the above experiment 30 times with n = 4000 and compare the computation times and
MISE (14) of the true posterior and the variational posteriors obtained with the optimal choice of
m = 8 inducing variables and twice more/less variables m = 16/m = 4. Looking at Figures 6 and 7,
the same message holds as before, in case of the heat equation.

We also illustrate and compare theoretical and empirical phase-transition curves on synthetic data
coming from the Volterra operator (11). We computed the (logarithm of the) ratio of the mean
integrated squared error (MISE) corresponding to the true and variational posteriors (we simulate 20
experiments each time to empirically approximate these quantities). We have considered n ranging
from 100 to 10000 and m from 1 to 17, under the same setting as above. We have also plotted
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Figure 6: Boxplots of the (logarithm of) computation time (in seconds, on the left) and the MISE
(on the right) of the true and variational posteriors for Gaussian series prior (cosine basis) with
m = 4, 8, 16 inducing variables from method (10), obtained from 50 experiments with n = 4000
samples, for the Volterra operator in Section 3.1.

Figure 7: Zoom of Figure 6.

the phase transition curve (white line) coming from our theoretical analysis on Figure 8. One can
note that the theoretical curve closely resembles the curve where the phase transition occurs in the
empirical study. Indeed, there is not much empirical improvement of the MISE after the threshold
given by Corollary 2.

A.3 Radon transform

A.3.1 Experiments

We now turn to a simulation study of the Radon transform (13), which represents a mildly ill-posed
problem of degree p = 1/4. We observe the performance of the true posterior and variational
approximations for different sample sizes, n = 500 and n = 5000, and take independent covariates
drawn from the distribution dG(s, φ) = 2π−1

√
1− s2dsdφ on S = [0, 1]× [0, 2π). We set the polar

coordinates of the functional parameter f0 on the unit disc D =
{
x ∈ R2 : ‖x‖2 ≤ 1

}
as

f0(r, θ) =
∑

j
cjj
−(1+β)ej(r, θ), cj =

{
1 + 0.5 sin(

√
3πj), j odd,

2 + 0.8 sin(
√

7πj), j even,
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Figure 8: Log ratio log
Ef0MISE(Π[·|X,Y ])

Ef0MISE(Ψ∗) of MISE between the true and variational posteriors
recovering f0 from its image by the Volterra operator in Section 3.1. In white is represented the
function n→ dn

1
3+2β e given by Corollary 2.

for β = 0.6 and

ej(r, θ) =


Z
|lj |
mj (r) cos(ljθ), lj > 0,

Z
|lj |
mj (r), lj = 0,

Z
|lj |
mj (r) sin(ljθ), lj < 0,

mj = d
√

1+8j−1
2 e − 1 and lj = 2(j − 1) −mj(mj + 2). Note that f0 ∈ H̄β . The independent

observations are again generated as Yi ∼ N (Af0(xi), 1).

We again consider the prior eigenvalues λj = j−1−2β . The optimal number of inducing variables
is m = n

2
3+4β , which for the different sample sizes n = 500 and n = 5000 we consider is equal to

10 and 24, respectively. We consider the population spectral feature method described in (10) and
plot the variational approximation of the posterior for m and dm/4e inducing variables in Figure 9
(n = 500) and Figure 10 (n = 5000). For each setting, we represent the true posterior mean, the
variational means, the upper and lower pointwise 2.5% quantiles as well as the absolute pointwise
difference between f0 and the posterior/variational means f̂n. Negative values are represented in
blue, positive ones in red and points corresponding to small absolute values are in white.

Again, similar conclusions can be drawn as in the previous sections. Observe that the true posterior
and variational means are similar for the optimal choice ofm, while choosing four times less inducing
variables results in a posterior mean that is much smoother. On the other hand, the credible bands
with the suboptimal choice of m are overly large compared to the true posteriors.

A.3.2 Applications

The Radon transform is a mathematical technique with various applications, particularly in the field
of medical imaging and image analysis. It is used to analyze and transform data from the spatial
domain to the Radon domain, providing a different perspective on the data that can be useful for
specific tasks. Inverting the Radon transform has found a lot of applications where lower-dimensional
integrals of the inside of an object are more readily available than the object of interest itself. We
provide below a non-exhaustive list of possible applications:

• Computed Tomography (CT) Imaging and Medical Single Photon Emission Computed
Tomography (SPECT): In CT scans, X-ray measurements are taken from different angles
around a patient, and the Radon transform is used to reconstruct a cross-sectional image
(slice) of the patient’s body. This helps doctors visualize internal structures and diagnose
various medical conditions. SPECT is a nuclear medicine imaging technique that uses
gamma-ray detectors to generate 3D images of the distribution of radioactive tracers within a
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Figure 9: True and variational posterior means and credible regions for Gaussian series prior (Zernike
polynomial basis) and m = 17 (middle) or m = 8 (bottom) inducing variables from method (10),
with n = 5000, recovering the parameter f0 from its Radon transforn (see Section 3.3).

Figure 10: True and variational posterior means and credible regions for Gaussian series prior
(Zernike polynomial basis) and m = 24 (middle) or m = 12 (bottom) inducing variables from
method (10), with n = 5000, recovering the parameter f0 from its Radon transforn (see Section 3.3).

patient’s body. The Radon transform is used in the image reconstruction process for SPECT.
[3; 5; 45; 55]

• Seismic Imaging: In seismology, the Radon transform is employed to process seismic data
collected from earthquakes or controlled explosions. It helps create images of the subsurface
structure of the Earth, aiding in oil and gas exploration and understanding geological
formations. [18; 19]

• Geophysical Imaging: The Radon transform has applications in geophysical imaging tech-
niques such as ground-penetrating radar (GPR), where it helps in image reconstruction to
understand subsurface properties. [43]
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• Radar and Sonar Imaging: The Radon transform is used in underwater sonar imaging to
reconstruct images of underwater objects or terrains, or radar imaging to create imaging
of landscapes. This has applications in marine biology, naval operations, and underwater
exploration.[54; 59]

• Particle Tracking: In high-energy physics and particle physics experiments, the Radon
transform is used to analyze data from particle detectors to track the paths of particles,
determining their trajectories and energies.[40]

• Material Science and Crystallography: The Radon transform can be applied to analyze
diffraction patterns in crystallography and material science, helping to understand the
structure of materials at the atomic level.[6]

In Mathematics, the Radon transform has also been used to solve hyperbolic partial differential
equations via the method of plane waves, which reduces the problem to the resolution of ordinary
differential equations [67; 60].
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B Proof of Theorem 1

We start by introducing some notation and background information used throughout the proof. First
note, that since the eigenfunctions of the covariance kernel k were chosen to be the eigenfunctions of
A∗A, the prior ΠA on Af , induced by the GP prior Π on f , is also a centered Gaussian process with
covariance kernel

(x, y) 7→
∞∑
j=1

λjκ
2
jgj(x)gj(y), (15)

i.e. the eigenvalues and eigenfunctions of the kernel are (λjκ
2
j )j∈N and (gj)j∈N, respectively. Let us

denote by HA the corresponding Reproducing Kernel Hilbert Space (RKHS) and by H the RKHS
corresponding to the prior Π on f . In view of Theorem I.18 of [23], the above RKHS takes the form

HA =

h(x) =

∞∑
j=1

hjgj(x) : ‖h‖2HA :=

∞∑
j=1

h2
jλ
−1
j κ−2

j <∞

 , (16)

where hj = 〈h, gj〉L2(X ;G). Furthermore, note that for all measurable set S ⊂ L2(X ;G) we have
for Zj ∼iid N(0, 1) random variables, that

Π(f : Af ∈ S) = P (

∞∑
j=1

λ
1/2
j κjZjgj ∈ S) = ΠA(w : w ∈ S). (17)

In the next sections, we denote the rates for the direct problems by

εn = M

{
n−

α∧β+p
1+2α+2p in the mildly ill-posed case,

n−c/(ξ+2c) log−β/p+cα/(ξ+2c)(n) in the severely ill-posed case,
(18)

for some M > 0 large enough.

Finally, we provide an explicit formula of the KL divergence between the posterior distribution
Π[· |X,Y ] and the variational approximation Ψ∗. It can be expressed with the evidence lower bound
L as

KL (Ψ∗||Π[·|X,Y ]) = log p(X,Y )− L,
where computations from [74] give

L := log

∫
exp

(∫
log pf (X,Y )dΠ(f |u)

)
dΠu(u)

= −
∣∣2π(σ2In +KAfAf

)∣∣− 1

2σ2
y
(
σ2In +KAfAf

)−1
y − Tr (KAfAf −QAfAf ) ,

for QAfAf = KAfuK
−1
uuKuAf . Then the KL divergence takes the form

KL (Ψ∗||Π[·|X,Y ]) =
1

2

(
y
[(
σ2In +QAfAf

)−1 −
(
σ2In +KAfAf

)−1]
yT

+ log
|σ2In +QAfAf |
|σ2In +KAfAf |

+
1

σ2
Tr(KAfAf −QAfAf )

)
.

(19)

B.1 Step 1: Empirical L2 contraction in the direct problem

As a first step we fix the design points and derive posterior contraction rate around Af0 with respect
to the empirical L2(X ;Pn)-norm, i.e. ‖w‖2L2(X ;Pn) = n−1

∑n
i=1 w(xi)

2. More precisely, we show
that there exists an event An with PX(An)→ 1 and events Bn,|X conditional on the design X with
infX∈An PY |X(Bn,|X)→ 1, such that for any sequence Mn →∞ and X ∈ An

EY |XΠ
[
f : ‖Af −Af0‖L2(X ;Pn) ≥Mnεn | X,Y

]
1Bn,|X ≤ Ce

−cM2
nnε

2
n (20)

holds for εn given in (18).
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Let us recall the definition of the concentration function (in case of the direct problem)

φAf0(ε) := inf
h∈HA:‖Af0−h‖L2(X ;Pn)<ε

‖h‖2HA − log ΠA
(
w : ‖w‖L2(X ;Pn) < ε

)
.

Then in view of Theorem 3.3 of [78], to prove (20) it is sufficient to verify the concentration inequality

φAf0(εn) ≤ nε2
n. (21)

This result is based on [22] where in the proof it is shown that there exists a sequence of events Bn,|X
such that supX PY |X

(
Bcn,|X

)
vanishes and (20) holds PX -almost surely.

We prove (21) in two steps. First we verify it for the L2(X ;G)-norm, i.e. we show that for M large
enough in (18),

inf
h∈HA:‖h−Af0‖L2(X ;G)≤εn

‖h‖2HA ≤ nε
2
n, (22)

− log ΠA
(
w : ‖w‖L2(X ;G) < εn

)
≤ nε2

n. (23)

Then we relate the population L2(X ;G)-norm to the empirical L2 (X ;Pn)-norm on a large enough
event An, finishing up the argument. We note that one can not apply this result to the L2(X ;G)-norm
as the testing metric (Hellinger) and the L2-norm do not satisfy the required connection.

In the mildly ill-posed case the above inequalities directly follow from Lemma 1 and 2, respectively.
In the severely ill-posed case for (22) in view of Lemma 1 it is sufficient to verify that Jα−2β

εn eξJ
p
εn ≤

nε2
n for Jβεne

cJpεn � ε−1
n . Note that by substituting εn in the previous inequality, we equivalently get

Jαεne
(ξ+2c)Jpεn . n. Then, in view of Section 3.3 of [32] (using the Lambert function) this holds for

some Jεn = O(log1/p n). Furthermore, following from eJ
p
εn .

(
nJ−αεn

)1/(ξ+2c)
, we arrive at

εn � J−βεn e
−cJpεn & n−c/(ξ+2c) log−β/p+cα/(ξ+2c)(n),

finishing the proof of (22). For (23), in view of Lemma 2, we need εn & n−1/2 log(p+1)/2p n, which
holds for εn.

It remained to replace in (22) and (23) the L2 (X ;G)-norm with the L2 (X ;Pn)-norm. First note
that in view of Lemma 5, there exists an event An,1 with PX(Acn,1) = o(1) such that for X ∈ An,1

ΠA
(
‖w‖L2(X ;Pn) < Cεn

)
≥ ΠA

(
‖w‖L2(X ;G) < εn

)
+ o
(
e−nε

2
n
)
& e−nε

2
n .

Furthermore, note that the upper bound in Lemma 1 were derived for h = AfJε0 with appropriately
chosen Jε. Then in view of Lemma 8 (with J = Jεn < k in the lemma) there exists an event An,2
with PX(Acn,2) = o(1) such that

‖h−Af0‖L2(X ;Pn) = ‖Af⊥Jεn0 ‖L2(X ;Pn) . ‖Af
⊥Jεn
0 ‖L2(X ;G) + o(εn) . εn,

whereAf⊥J0 (x) =
∑∞
j=J+1 κjf0,jgj(x) and we used that (α∧β)+p > 3/2+2γ in the first bound,

verifying the statement on the event An = An,1 ∩An,2 satisfying PX(Acn) = o(1), for some large
M > 0.

B.2 Step 2: Population L2 contraction rate in the direct problem

Next we adapt the contraction rate result (20) to the random design regression model and consider
L2(X ;G) contraction rate, i.e. we show that there exists a sequence of events Dn with PX,Y (Dc

n) =
o(1) such that

Ef0Π
[
f : ‖Af −Af0‖L2(X ;G) ≥Mnεn | X,Y

]
1Dn ≤ Ce−cM

2
nnε

2
n . (24)

First note that in view of Lemma 5 for f ∈ Fn defined in (33) we have on an event An,1 with
PX(Acn,1) = o(1) that ‖Af −Af0‖L2(X ;G) ≤ C(‖Af −Af0‖L2(X ;Pn) + εn). Furthermore, note
that (22) and (23) in view of Proposition 11.19 of [23] imply that for some c > 0

Π[f : ‖Af −Af0‖L2(X ;G) ≤ εn] & e−cnε
2
n . (25)
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In view of Π(f ∈ Fcn) ≤ e−n
1

1+2γ nε2n , see Lemma 5, Lemma 4 gives Π(f ∈ Fcn|X,Y ) ≤
e−n

1
1+2γ nε2n/2. Furthermore, in view of (20) there exists an event An,2 with PX,Y (Acn,2) = o(1)

such that

EXEY |XΠ
[
f : ‖Af −Af0‖L2(X ;Pn) ≥Mnεn | X,Y

]
1An,2 . e−cM

2
nnε

2
n .

Therefore, by taking Dn = An,1 ∩An,2 we get that

Ef0Π
[
f : ‖Af −Af0‖L2(X ;G) ≥Mnεn |X,Y

]
1An

≤ Ef0Π
[
f ∈ Fn : ‖Af −Af0‖L2(X ;G) ≥Mnεn |X,Y

]
1An + Ef0Π [f ∈ Fcn |X,Y ]

≤ EX
(
EY |XΠ

[
f : ‖Af −Af0‖L2(X ;Pn) ≥ CMnεn |X,Y

]
1An

)
+ e−n

1
1+2γ nε2n/2

. e
−
(
n

1
1+2γ ∧ M2

n

)
nε2n/2

.

B.3 Step 3: Population L2 contraction rate in the indirect problem

Next, we turn the contraction rate results for Af in the direct problem to contraction rates in the
indirect problem for f . We show that there exists an event An with PX,Y (An)→ 1, such that for
any Mn →∞

Ef0Π
[
f : ‖f − f0‖L2(T ;µ) ≥Mnε

inv
n | X

]
1An ≤ Ce

−c
(
n

1
1+2γ ∧ M2

n

)
nε2n

. (26)

The proof follows the lines of Lemma 2.1 of [32]. Let us define

Sn :=
{
f ∈ L2(T ;µ) :

∑
j>kn

〈f, ej〉2 ≤ rρ2
n

}
,

where the parameters kn, r > 0 and ρ will be specified later, depending on the degree of ill-posedness.
Then let us define the modulus of continuity as

δn = sup
{
‖f − f0‖L2(T ;µ) : f ∈ Sn, ‖Af −Af0‖L2(X ;G) ≤Mnεn

}
(27)

and note that in view of (3.4) from [31]

δn .Mnκ
−1
kn
εn + ρn + k−βn . (28)

Furthermore, the definition of δn implies that

Ef0Π
[
f : ‖f − f0‖L2(T ;µ) ≥ δn |X,Y

]
1An

≤ Ef0Π
[
f ∈ Sn : ‖f − f0‖L2(T ;µ) ≥ δn |X,Y

]
1An + Ef0Π [Scn |X,Y ]1An

≤ Ef0Π
[
f ∈ Sn : ‖Af −Af0‖L2(X ;G) ≥Mnεn |X,Y

]
1An + Ef0Π [Scn |X,Y ]1An .

In view of (24) the first term on the right hand side tends to zero for any An ⊂ Dn. We show below
both in the mildly and severely ill-posed inverse problems, that for appropriate choices of kn, ρn and
r > 0, we have δn . Mnε

inv
n and the second term on the right hand side of the previous display

tends to zero.

First we consider the mildly ill-posed problem and set

kn = n
1

1+2α+2p , ρn = Mnn
− α∧β

1+2α+2p , εn = n−
α∧β+p

1+2α+2p .

Then, in view of (28) we have δn .Mnε
inv
n , hence it remains to show that

Ef0Π [Scn |X,Y ]1An . e−cM
2
nnε

2
n . (29)

Note that Lemma 5.2 of [32] for r > 2(1 + 2α)/α (remarking that ρ2
nk

1+2α
n = M2

nnε
2
n =: nε2n)

provides that
Π [Scn] ≤ e−Cn(Mnεn)2 . (30)
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This together with (25) imply in view of Lemma 4 (with εn = Mnεn) the inequality (29).

We now turn to the severely ill-posed case and set kn = Jεn = O(log1/p n) and ρn = Mn log−β/p n.
Since Jβεne

cJpεn � ε−1
n it implies κ−1

kn
εn . ecJ

p
εn εn . Jβεn . log−β/p n, therefore, in view of the

arguments above it only remains to show (30). We proceed as in the proof of Lemma 5.2 of [32] and
find that, for Zj ∼iid N(0, 1), whenever t < (2λj)

−1 for j > kn,

Π [Scn] = P
( ∑
j>kn

λjZ
2
j > rρ2

n

)
= P

(
exp

(
t
∑
j>kn

λjZ
2
j

)
> exp

(
trρ2

n

))
≤ exp

(
− trρ2

n

)
E exp

(
t
∑
j>kn

λjZ
2
j

)
= exp

(
− trρ2

n

) ∏
j>kn

E exp
(
tλjZ

2
j

)
= exp

(
− trρ2

n

) ∏
j>kn

(
1− 2tλi

)−1/2
.

Since log(1− y) ≥ −y/(1− y) for y < 1,

log Π [Scn] ≤ −rtρ2
n +

∑
j>kn

tλj
1− 2tλj

.

Choosing t = λ−1
kn
/4, the second term on the right-hand side above is upper-bounded by a constant.

As

tρ2
n �M2

nλ
−1
kn

log−2β/p n �M2
nk

α
ne

ξkpn log−2β/p n

�M2
nk

α
n

(
nk−αn

)ξ/(ξ+2c)
log−2β/p n

�M2
nn

ξ/(ξ+2c) (log n)
− 2β

p + 2cα
p(ξ+2c) = M2

nnε
2
n,

the result is proved with r large enough.

B.4 Step 4: Contraction rate for the VB posterior

Finally, we replace the true posterior by the variational posterior Ψ∗ in (26). We can apply Lemma 3
with ∆n = n (Mnεn)

2 so that, for Mn →∞,

Ef0Ψ∗
[
f : ‖f − f0‖L2(T ;µ) ≥Mnε

inv
n

]
1An

≤ 2(
n

1
1+2γ ∧ M2

n

)
nε2

n

(
Ef0KL(Ψ∗||Π[· |X,Y ])1An(X,Y ) + Ce

−
(
n

1
1+2γ ∧ M2

n

)
nε2n/2

)
.

Since, Mn → ∞ and nε2
n → ∞, the conclusion then follows if E0KL(Ψ∗||Π[· |X,Y ]) ≤ Cnε2

n.
According to Lemma 3 in [47] and (19), for any h ∈ HA,

Ef0KL(Ψ∗||Π[· |X,Y ]) ≤ σ−2
(
n ‖Af0 − h‖2L2(X ;G) + ‖h‖2HA Ex ‖KAfAf −QAfAf‖

+ ExTr (KAfAf −QAfAf )
)
.

Then in view of Lemma 1, for n large enough, there exists h ∈ HA such that ‖Af0 − h‖L2(X ;G) ≤ εn
and ‖h‖HA ≤ nε

2
n. Hence the claimed upper bound follows from the assumptions on the trace and

spectral norm term.
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B.5 Technical lemmas

Lemma 1 (RKHS approximation for random series priors). Let f0 ∈ H̄β , β > 0, and consider the
centered GP prior ΠA on Af given in (15). Then

inf
h∈HA:‖h−Af0‖L2(X ;G)≤ε

‖h‖2HA .


ε−

2α−2β+1
β+p if κj � j−p, λj � j−1−2α for α > 0, p ≥ 0, β ≤ 2α+ 1

Jα−2β
ε eξJ

p
ε if κj � e−cj

p

, λj � j−αe−ξj
p

, for α ≥ 0, ξ > 0 or
ξ = 0, α ≥ 2β, and p ≥ 1,

where Jε is the smallest integer such that maxj≥Jε(κjj
−β)‖f0‖β ≤ ε.

Proof. For simplicity let us denote by w = Af0 and note that for any J ∈ N, the function wJ(x) =∑J
j=1 wjgj(x) ∈ HA, with wj = 〈w, gj〉L2(X ;G). Then in view of (16) and using the notation

f0,j = 〈f0, ej〉L2(T ;µ),∥∥wJ∥∥2

HA
=

J∑
j=1

κ−2
j λ−1

j w2
j =

J∑
j=1

j−2βλ−1
j f2

0,jj
2β ≤ max1≤j≤J(j−2βλ−1

j )‖f0‖2β ,

∥∥wJ − w∥∥2

L2(X ;G)
=

∞∑
j=J+1

w2
j =

∞∑
j=J+1

κ2
jj
−2βf2

0,jj
2β ≤ maxj≥J(κ2

jj
−2β)‖f0‖2β .

Then, in the mildly ill-posed inverse problem (with κj � j−p, λj � j−1−2α), the smallest
Jε ∈ N such that maxj≥Jε(κjj

−β)‖f0‖β ≤ ε satisfies that Jε � (‖f0‖β/ε)1/(β+p), resulting
in
∥∥wJε∥∥2

HA
. ε−

2α−2β+1
β+p and proving the first statement. In the severely ill-posed case (with

κj � e−cj
p

, λj � j−αe−ξj
p

) the smallest Jε ∈ N such that maxj≥Jε(κjj
−β)‖f0‖β ≤ ε implies

that
∥∥wJε − w∥∥2

L2(X ;G)
. Jα−2β

ε eξJ
p
ε

Lemma 2 (Small ball probability for random series priors). Consider the centered GP prior ΠA
on Af given in (15). Then there exists C > 0 depending on α, p, c, ξ such that for any ε > 0 small
enough

− log ΠA

(
w : ‖w‖L2(X ;G) < ε

)
≤ C


ε−1/(α+p) if κj � j−p, λj � j−1−2α for α > 0, p ≥ 0 ,

log(p+1)/p 1
ε if κj � e−cj

p

, λj � j−αe−ξj
p

,

for α ≥ 0, ξ > 0 or ξ = 0, α ≥ 2β, and p ≥ 1.

Proof. The first case (polynomial decay) was derived in Lemma 11.47 from [23]. In the second case,
for J ≥ 1 and Zj ∼iid N(0, 1),

ΠA
(
w : ‖w‖L2(X ;G) < ε

)
≥ P

(∑
j≤J

λjκ
2
jZ

2
j < ε2/2

)
P
(∑
j>J

λjκ
2
jZ

2
j < ε2/2

)
.

Note that the likelihood ratio of centered Gaussians with standard deviations σ ≥ τ satisfy
ψσ/ψτ (x) ≥ τ/σ uniformly on x ∈ R. Therefore, the first term on the rhs of the preceding
display is bounded from below by

P
(∑
j≤J

j−αe−(ξ+2c)jpZ2
j < cε2

)
≥

e
(c+ξ/2)

(∑J
j=1 j

p−Jp+1

)
J∏
j=1

( j
J

)α/2
P
(∑
j≤J

J−αe−(ξ+2c)JpZ2
j < cε2

)
.

The logarithm of the leading factor is equivalent to − p
p+1 (c+ ξ/2)Jp+1 as J →∞. The second is

lower bounded by (J !/JJ)α/2 ≥ e−Jα/2. By the central limit theorem, the probability in the last
factor is greater than 1/2 as J →∞ as long as Jα−1e(ξ+2c)Jpε2c ≥ 2. Also, by Markov’s inequality,

P
(∑
j>J

λjκ
2
jZ

2
j < ε2/2

)
≥ 1− 2ε−2

∑
j>J

E(Z2
j λjκ

2
j ) ≥ 1− c1ε−2

∑
j>J

j−αe−(ξ+2c)jp .

12



Since the above sum is smaller than c2ε−2J−αe−(ξ+2c)Jp (following form the assumption p ≥ 1
and the sum of geometric series), the above probability is greater than 1/2 whenever Jαe(ξ+2c)Jp ≥
2c2ε

−2. Therefore, as long as Jα−1e(ξ+2c)Jpε2 ≥ (2/c) ∨ (2c2),

− log ΠA

(
w : ‖w‖L2(X ;G) < ε

)
. Jp+1.

The above conditions are satisfied for J � log1/p ε−1, concluding the proof of the lemma.

Lemma 3 (Theorem 5 of [58]). Let Cn be a measurable subset of the parameter space L2 (T ;µ),
An be an event and Q a distribution on L2 (T ;µ). If there exists C > 0 and ∆n →∞ such that

Ef0Π [Ccn |X,Y ]1An ≤ Ce−∆n ,

then
Ef0Q (Ccn)1An ≤

2

∆n

[
Ef0KL

(
Q||Π[· |X,Y ]

)
+ Ce−∆n/2

]
.

Lemma 4. Let Sn ⊂ L2(T ;µ) be a measurable event such that for some εn → 0, nε2n →∞, and
C > 1 large enough,

Π[Sn]

Π[f : ‖Af −Af0‖L2(X ;G) ≤ εn]
≤ e−Cnε

2
n .

Then there exists an event An ⊂ Xn, with Pf0 (An)→ 1, and C ′ > C/2 such that

Ef0Π [Sn |X,Y ]1An . e−C
′nε2n .

Proof. For KL(f0‖f) = Pf0 log (dPf0/dPf ) and V (f0‖f) = Pf0 | log (dPf0/dPf ) |2, in the ran-
dom design regression model, in view of Lemma 2.7 of [23], the neighbourhood

B2(f0; εn) :=
(
f : KL(f0‖f) ≤ nε2n, V (f0‖f) ≤ nε2n

)
contains the ball

{
f : ‖Af −Af0‖L2(X ;G) ≤ εn

}
. Therefore,

Π
[
f : ‖Af −Af0‖L2(X ;G) ≤ εn

]
≤ Π [B2(f0; εn)] .

By Lemma 8.10 in [23], for any c > 1, there exists an event Acn of vanishing mass such that on An∫
dPf/dPf0(X,Y )Π(df) ≥ Π [B2(f0; εn)] e−cnε

2
n .

Let us define Bn = An ∩ {ψ = 0} for any ψ : (X × R)
n 7→ {0, 1} such that Ef0ψ → 0, implying

P (Bcn) = o(1). Then, taking c < C,

Ef0Π [Sn |X,Y ]1Bn = Ef0

∫
Sn dPf/dPf0(X,Y ) (1− ψ) (X,Y )dΠ(f)∫

dPf/dPf0(X,Y )dΠ(f)
1Bn

. ecnε
2
n

∫
Sn Ef0dPf/dPf0 (1− ψ) dΠ(f)

Π[B2(f0; εn)]

. ecnε
2
n

∫
Sn Ef (1− ψ) dΠ(f)

Π[f : ‖Af −Af0‖L2(X ;G) ≤ εn]

. ecnε
2
n

Π[Sn]

Π[f : ‖Af −Af0‖L2(X ;G) ≤ εn]
. e−C

′nε2n .

Lemma 5. Assume that ‖gj‖∞ . jγ and that α+ p > 1 + 2γ in case of the mildly ill-posed inverse
problem. Then, there exists an event Bn ⊂ Xn with PX

(
Bcn
)

= o(1), C > 0 and a measurable

subset Gn ⊂ L2(X ;G) with Π(f : Af ∈ Gcn) = o(e−n
1

1+2γ nε2n) satisfying

‖w‖2L2(X ;G) ≤ C(‖w‖2L2(X ;Pn) + ε2
n) (31)

and

‖w‖2L2(X ;Pn) ≤ C(‖w‖2L2(X ;G) + ε2
n) (32)

for any X ∈ Bn and w ∈ Gn.
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Proof. Let us take k = n
1

1+2γ / log2/(1+2γ) n and define the sieve

Fn = {f ∈ L2(T ;µ) : Af ∈ Gn}, with Gn = {w ∈ L2(X ;G) : ‖w⊥k‖∞ ≤ εn}, (33)

where w⊥k(x) =
∑∞
j=k+1 wjgj(x). Similarly we will denote by wk(x) =

∑k
j=1 wjgj(x). Next we

show that Π(Fcn) = o(e−n
1

1+2γ nε2n).

First note that the assumption ‖gj‖∞ . jγ implies that ‖w⊥k‖∞ ≤ C
∑∞
j=k+1 j

γ |wj |. Under the

prior Π on f , we have fj = 〈f, gj〉L2(X ;G)
d
= λ

1/2
j Zj with Zj ∼iid N(0, 1), therefore

Π(f : ‖Af⊥k‖∞ > εn) ≤ P
(
C

∞∑
j=k+1

κjλ
1/2
j jγ |Zj | > εn

)
= o(e−n

1
1+2γ nε2n),

where the last equation follows from Lemma 7 and α+ p > 1 + 2γ. The above two displays together
imply that Π(f : Af ∈ Gcn) . e−C

onε2n .

It remains to show that for w ∈ Gn there exists an event Bn with PX
(
Bn
)
→ 1, such that for

X ∈ Bn the inequalities (31) and (32) hold. This follows from the fact that for w ∈ Gn,

‖w⊥k‖L2(X ;G) ∨ ‖w⊥k‖L2(X ;Pn) ≤ ‖w⊥k‖∞ ≤ εn.

This inequality also allows to write, under the event of Lemma 6 which we note Bn, that

‖w‖L2(X ;Pn) ≤ ‖wk‖L2(X ;Pn) + ‖w⊥k‖L2(X ;Pn) . ‖wk‖L2(X ;G) + εn ≤ ‖w‖L2(X ;G) + εn,

proving (31) (a similar argument proves (32)).

Lemma 6. For k = n
1

1+2γ / log2/(1+2γ) n, γ ≥ 0, there exists a constant C0 > 1 such that, with
PX -probability tending to one,

C−1
0 ‖wk‖L2(X ;G) ≤ ‖wk‖L2(X ;Pn) ≤ C0‖wk‖L2(X ;G),

for any w ∈ L2(X ;G), and where wk(x) =
∑k
j=1 wjgj(x) is the orthogonal projection on the k

first elements of an orthonormal basis (gj)j∈N satisfying ‖gj‖∞ . jγ .

Proof. First we introduce Σn,k = n−1GT
n,kGn,k withGn,k = (g(X1), ...., g(Xn))T ∈ Rn×k, with

g(X1) =
(
g1(X1), ..., gk(X1)

)T
. Note that EXΣn,k = Ik as the eigenbasis (gj)j∈N is orthonormal

w.r.t. the design distribution G. Then by the modified version of Rudelson’s inequality [62] we get
that

EX‖Σn,k − Ik‖2 ≤ C
√

log k

n
EX(‖g(X1)‖logn

2 )1/ logn.

Note that by the boundedness assumption
∑k
j=1 gj(x)2 ≤ Ck1+2γ , x ∈ X , so that the right hand

side of the preceding display is bounded from above by constant times
√
k1+2γ log(k)/n = o(1).

Therefore, noting w = (w1, ..., wk) for w ∈ L2(X ;G),

sup
w∈L2(X ;G)

∣∣∣‖wk‖2L2(X ;G) − ‖w
k‖2L2(X ;Pn)

∣∣∣
‖wk‖2L2(X ;G)

= sup
w∈L2(X ;G)

∣∣∣wT (Ik − Σn,k)w
∣∣∣/‖wk‖2L2(X ;G)

≤ sup
w∈L2(X ;G)

‖Ik − Σn,k‖2‖w‖22/‖wk‖2L2(X ;G)

= oPX(1).

Then, on an event An(X) with PX(An(X)) tending to one, for all w ∈ Gn

‖wk‖2L2(X ;G)/2 ≤ ‖w
k‖2L2(X ;Pn) ≤ 2‖wk‖2L2(X ;G), (34)

for any w, verifying the statement.
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Lemma 7. Assume that νj ≤ Cj−3/2−δ , δ > γ ≥ 0 and that nε2
n →∞. Then, for Zj independent

standard normal random variables and any C ′ > 0,

P

 ∞∑
j=n

1
1+2γ / log2/(1+2γ) n

νj |Zj | ≥ C ′εn

 = o(e−n
1

1+2γ nε2n).

Proof. Let us introduce the notation k = n
1

1+2γ / log2/(1+2γ) n and note that, for any C1 > 0, there
exist positive constants C2, C3 such that

P
( ∞∑
j=k

νj |Zj | ≥ C1εn

)
≤
∞∑
i=1

P
( (i+1)k−1∑

j=ik

νj |Zj | ≥ C2(i
(
1 + log2 i)

)−1
εn

)

≤
∞∑
i=1

P
( (i+1)k−1∑

j=ik

Ci−3/2−δk−3/2−δ|Zj | ≥ C2

(
i(1 + log2 i)

)−1
εn

)

≤
∞∑
i=1

P
( (i+1)k−1∑

j=ik

|Zj | ≥ C3k
3/2+δi1/2εn

)
. (35)

We show below that

P

(i+1)k−1∑
j=ik

|Zj | ≥ C3k
3/2+δi1/2εn

 ≤ 2ke−cik
2+2δε2n . (36)

which in turn implies (together with nε2
n →∞ and δ > γ ≥ 0) that the rhs of (35) is further bounded

by
∞∑
i=1

2ke−c1ik
2+2δε2n . 2ke−c1k

2+2δε2n = o(e−n
1

1+2γ nε2n).

It remained to prove (36). For convenience, let us introduce the notation ci,k = C3i
1/2k3/2+δ.

Following the proof of Chernoff’s inequality and recalling that the characteristic function of the
absolute value of the standard normal distribution satisfies that Eet|Z| ≤ 2et

2/2, we get for γ =
ci,kεn/k that

P

(i+1)k−1∑
j=ik

|Zj | ≥ ci,kεn

 = P
(
eγ
∑(i+1)k−1
j=ik |Zj | ≥ eγci,kεn

)

≤ e−γci,kεnEeγ
∑(i+1)k−1
j=ik |Zj | ≤ e−γci,kεn

(i+1)k−1∏
j=ik

2eγ
2/2

= 2kekγ
2/2−γci,kεn = 2ke−c

2
i,kε

2
n/(2k).

Lemma 8. Let f0 ∈ H̄β , for some β > 0, J ∈ N and assume that ‖gj‖∞ ≤ Cjγ for some γ ≥ 0.
Furthermore, in case of the mildly ill-posed inverse problem assume that p + β − γ > 1. Then
PX -almost surely

‖Af⊥J0 ‖L2(X ,Pn) . q(J),

where q(J) = J−p−β+γ+1 in the mildly and q(J) = Jγ−βe−cJ
p

in the severely ill-posed inverse
problem. Furthermore, for any J ≤ k = n

1
1+2γ / log2/(1+2γ) n , with PX -probability tending to one

‖Af⊥J0 ‖L2(X ,Pn) . ‖Af⊥J0 ‖L2(X ,G) + q
(
n

1
1+2γ / log2/(1+2γ) n

)
.
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Proof. We start with the first assertion. In view of |f0,j | ≤ j−β‖f0‖β and triangle inequality one can
observe that

‖Af⊥J0 ‖L2(X ,Pn) ≤ ‖Af⊥J0 ‖∞ ≤
∞∑

j=J+1

κj |f0,j |‖gj‖∞ .
∞∑

j=J+1

κjj
γ−β .

Then for the mildly ill-posed inverse problem (with κj � j−p) the rhs of the preceding display is
further bounded by a multiple of J−p−β+γ+1, while in the severely ill-posed inverse problem (with
κj � e−cj

p

) it is bounded from above by a multiple of Jγ−βe−cJ
p

since p ≥ 1.

For the second assertion of the lemma, note that for J ≤ k = n
1

1+2γ / log2/(1+2γ) n, by triangle
inequality

‖Af⊥J0 ‖L2(X ,Pn) ≤ ‖Af⊥J0 −Af⊥k0 ‖L2(X ,Pn) + ‖Af⊥k0 ‖L2(X ,Pn).

The first term, in view of Lemma 6, is bounded by a multiple of ‖Af⊥J0 − Af⊥k0 ‖L2(X ,G) ≤
‖Af⊥J0 ‖L2(X ,G) with PX -probability tending to one by, while the second term is bounded by a

multiple of q
(
n

1
1+2γ / log2/(1+2γ) n

)
following from the first statement of the lemma.

C Proof of Corollary 1

For the first choice (9) in the mildy ill-posed case, Lemma 4 of [47] combined with the polynomial
decay of the eigenvalues λiκ2

i of the process with kernel (15) gives that

EX ‖KAfAf −QAfAf‖ . nm−1−2(α+p),

EXTr (KAfAf −QAfAf ) . nm−2(α+p).

In view of Theorem 1, we set
m = mn = n

1
1+2p+2α

to translate posterior contraction rates into variational ones. For the second case (10), since α+ p > 1
and sup

j
sup
x
|gj(x)| <∞ under our assumptions, the bounds come from Lemma 5 of [47] and are

EX ‖KAfAf −QAfAf‖ . 1 + nm−1−2(α+p) + n
1

2(α+p)m−2(α+p) log n,

EXTr (KAfAf −QAfAf ) . nm−2(α+p).

Then, m = mn as above is sufficient as well.

Finishing with the severely ill-posed problem, we have for both choices of inducing variables

EX ‖KAfAf −QAfAf‖ ≤ EXTr (KAfAf −QAfAf ) ≤ n
∑
j>m

λj . nm−αe−(ξ+2c)mp ,

where the second inequality comes from Proposition 2 in [66]. Then, m = mn = ((ξ + 2c) log n)
1/p

is sufficient.
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