Supplementary Material:
SADGA: Structure-Aware Dual Graph Aggregation
Network for Text-to-SQL

Ruichu Cai'-2, Jinjie Yuan', Boyan Xu'* Zhifeng Hao'3
1 School of Computer Science, Guangdong University of Technology, Guangzhou, China
2 Pazhou lab, Guangzhou, China
3 College of Science, Shantou University, Shantou, China
cairuichu@gdut.edu.cn, yuanjinjie0320@gmail.com
hpakyim@gmail.com, zfhao@gdut.edu.cn

A Preliminaries

Gated Graph Neural Networks [4] and Relation-Aware Transformer [8]] are two critical components
of our proposed model. The preliminaries of these two components are introduced as follows.

A.1 Gated Graph Neural Network

Gated Graph Neural Networks (GGNNs) have been proposed by Li et al. [4]], which adopt the
Gated Recurrent Unit (GRU) [2]] layer to encode the nodes in graph neural networks. Given a graph
G = (V, E,T) including nodes v; € V and directed label edges (vs,t,vq) € E where v, denotes
the source node, v4 denotes the destination node, and ¢ € T" denotes the edge type. The process of

GGNN computing the representation hgl) at step [for the i-th node on G is divided into two stages.
First, aggregating the neighbor node representation hg_l) of ¢-th node, formulated as

=37 5 (Wih{TV + by, M

teT (i,k)€Et

where W; and b, are trainable parameters for each edge type ¢. Second, aggregated vector fi(l) will
(I-1)

7

R = GRU (R, 7V} 6)

be fed into a vanilla GRU layer to update the node representation at last step h , noted as:

A.2 Relation-Aware Transformer

Relation-Aware Transformer (RAT) [8]] is an extension of Transformer [7], which introduces prior
relation knowledge to the self-attention mechanism. Given a set of inputs X = {x;}"_; where

x; € R and relation representation T;; between any two elements x; and «; in X. The RAT layer
(consisting of H heads attention) can output an updated representation y; with relational information
for x;, formulated as

T
:ciWéh) (:chI(f) + rff)

h n N
eg’]) = JaJH ,ocE’]} = softmax; {65,]’) , 3)
n
zz(h) = Zag? (ij\(/h) + m‘;) yZi = Concat(zgl), v zEH))7 4)
j=1
9; = LayerNorm(z; + 2;),y; = LayerNorm(yg; + FC(ReLU(FC(%:))), (5)

*Corresponding author

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

where h is head index, Wéh), Wéh), W‘(/h) € R4*(d/H) are trainable parameters, FC is a fully-
connected layer, and LayerNorm is layer normalization [1]]. Here agf;)
between x; and x; of head h.

means that the attention score

B Relations of Dual-Graph Construction

All predefined relations used in the construction of the dual-graph and the cross-graph relations are
summarized in Table[T}

Table 1: The predefined relations for Dual-Graph Construction.

Node A | Node B Predefined Relation
1-order Word Distance

Question-Graph

. Word Word 2-order Word Distance
Construction)
Parsing-based Dependency
Same Table Match
Column | Column Primarv-Foreien K.
Schema-Graph ary-roreign ey
Construction Fo_relgn Key
Column Table Primary Key
Table-Column Match
Table Table Primary-Foreign Key
Exact String Match
Word Table Partial String Match
Cross-Graph Exact String Match
Word Column Partial String Match

Value Match

The predefined relations of Question-Graph are summarized as follows:

* 1-order Word Distance Word A and word B are adjacent to each other in the question.

* 2-order Word Distance Word A and word B are spaced one word apart in the question.

* Parsing-based Dependency The specific grammatical relation between word A and word
B generated by the Stanford CoreNLP toolkit [3]].

The predefined relations of Schema-Graph are summarized as follows:

* Same Table Match Both column A and column B belong to the same table.

¢ Primary-Foreign Key (Column-Column) Column A is a foreign key for a primary key
column B of another table.

* Foreign Key Column A is a foreign key of table B.
* Primary Key Column A is a primary key of table B.
* Table-Column Match Column A belongs to table B.

* Primary-Foreign Key (Table-Table) Table A has a foreign key column for a primary key
column of table B.

The predefined relations of Cross-Graph are summarized as follows:

» Exact String Match (Word-Table) Word A is part of table B, and the question contains
the name of table B.

* Partial String Match (Word-Table) Word A is part of table B, and the question does not
contain the name of table B.

* Exact String Match (Word-Column) Word A is part of column B, and the question
contains the name of column B.

* Partial String Match (Word-Column) Word A is part of column B, and the question does
not contain the name of column B.

* Value Match Word A is part of the cell values of column B.

C Decoder Details

The decoder in our model aims to output a sequence of rules (actions) that generates the corresponding
SQL syntax abstract tree (AST) [9]. Given the final representations h?, h' and h¢, of the question
words, tables and columns respectively from the encoder. Let b = [h?; ht; h¢]. Formally,

Pr(P|h) = [[Pr (Rule; | Rule;, h) (6)
t

where Rule; are all the previous rules. We apply an LSTM [3] to generate the rule sequence. The
LSTM hidden state H; and the cell state C; at step ¢ are updated as:

H; C,=1LSTM (I;, H;_1,C;_1) . @)
Similar to Wang et al. [8]], the LSTM input I, is constructed by:
I =[ry; Zt;et;"“pt;Hpt]) (®)

where r;_; is the representation of the previous rule, z; is the context vector calculated using the
attention on H;_; over h, and e, is the learned representation of the current node type. In addition,
pt is the step corresponding to generating the parent node in the AST of the current node.

With the LSTM output H,, all rule scores at step ¢ are calculated. The candidate rules are either
schema-independent, e.g., the grammar rule, or schema-specific, e.g., the table/column. For the
schema-independent rule u, we compute its score as:

Pr(Rule; = u|Rule<, h) = softmax,, (L(H})),)

where L is a 2-layer MLP with the fanh activation. To select the table/column rule, we first build the
alignment matrices M T MC between entities (question word, table, column) and tables, columns
respectively with the relation-aware attention as a pointer mechanism:

—T —T
M, ; = h, Wh(hiW}, + RE)T, MY, = softmax; {Mm} : (10)
MZC] =h,W§5(hiWi + R%)T, MZCJ = softmax; {Mlcj} , (11)

where M7 ¢ RUdl+tI+leDxItl ppC ¢ RUal+It+IeD xlel Then, we calculate the score of the j-th
column/table:

@ = HWgo (hiWi)" , oy = softmax; {@;} , (12)
lal+Itl+]cl
Pr(Rule; = Table[j] | Rule<s, h) = Z a; M/, (13)
i=1
lgl+[t]+c]
Pr(Rule; = Columnlj] | Rule<, h) = Z aiij. (14)

=1
D Hyperparameters

The hyperparameters of our model under different pre-trained models are listed in Table[2]

E Fine-grained Ablation Studies

Due to page limitations, we cannot further discuss the fine-grained ablation studies in the main paper.
Therefore, the fine-grained ablation studies are discussed in this section. Firstly, all the ablation
variants are presented in detail as follows:

w/o Local Graph Linking Discard the Local Graph Linking phase (Eq. 6 ~9), i.e., hf ; inEq. 10
is replaced by h?. There is no structure-aware ability during the dual graph aggregation.

w/o Structure-Aware Aggregation Remove the entire Structure-Aware Aggregation module in
SADGA to examine the effectiveness of our designed graph aggregation method.

Table 2: Hyperparameters for GloVe, BERT-base, BERT-large and GAP setting.

Hyper-paramter GloVe BERT-base BERT-large GAP
Size 300 768 1024 1024
Batch size 20 24 24 24
Max step 40k 90k 81k 61k
Learning rate 7.44e-4 3.44e-4 2.44e-4 le-4
Learning rate scheduler =~ Warmup polynomial Warmup polynomial Warmup polynomial Warmup polynomial
Warmup steps 2k 10k 10k Sk
Bert learning rate - 3e-6 3e-6 le-5
Clip gradient - 2 1 1
Number of SADGA layers 3 3 3 3
Number of RAT layers 4 4 4 4
RAT heads 8 8 8 8
Number of GGNN layers 2 2 2 2
SADGA dropout 0.5 0.5 0.5 0.5
RAT dropout 0.1 0.1 0.1 0.1
Encoder hidden dim 256 768 1024 1024
Decoder LSTM size 512 512 512 512
Decoder dropout 0.21 0.21 0.21 0.21

w/o GraphAggr(Gs,Gg) Remove the aggregation process from the question-graph Gg to the
schema-graph Gg in Structure-Aware Aggregation, signifying that the nodes in the schema-graph
could not obtain the structure-aware information from the question-graph.

wlo GraphAggr(Gg,Gs) Similar to w/o GraphAggr(Gs, Gg).

Q-S Linking via Dual-Graph Encoding In contrast to variant w/o Structure-Aware Aggrega-
tion, which removes the entire aggregation module in SADGA, we preserve the predefined cross-
graph relations during dual-graph encoding. This variant guarantees the ability of question-schema
(Q-S) linking, and its performance variation better reflects the contribution of Structure-Aware
Aggregation.

w/o Relation Node (replace with edge types) Remove the relation node in Dual-Graph Encoding.
Regrading how to use the information of the prior relationship in the question-graph and schema-graph,
we represent the predefined relations with the edge types, introducing more trainable parameters.

w/o Global Pooling (Eq. 3 and Eq. 4) Remove the global pooling step during the Structure-Aware
Aggregation, i.e., Eq. 3 and Eq. 4, to examine whether the global information of the query-graph is
helpful for graph aggregation.

w/o Aggregation Gate (Eq. 8) Discard the gate mechanism between the global information and
the local information in Dual-Graph Aggregation Mechanism. Instead of the gating mechanism, we
average the weight of the global information and the local information, i.e., gate; ; = 0.5 in Eq. 8.

w/o Relation Feature in Aggregation (Rg) Remove the cross-graph relation bias between the
question word and table/column in the attention step of Structure-Aware Aggregation. This model
variant does not utilize any predefined cross-graph relations.

As shown in Table [3] (Table 3 of the main paper), all the components are necessary to SADGA.
Regrading w/o Local Graph Linking and w/o Structure-Aware Aggregation, we have discussed
these two major ablation variants in detail in the main paper. When compared to w/o Structure-
Aware Aggregation, SADGA gets worse results when it retains one-way aggregation, i.e., w/o
GraphAggr(Gs,Gg) and w/o GraphAggr(Gg,Gs). We guess that this observation occurs
because the update of dual graph node representation is imbalanced in one-way aggregation. The
downgraded performance of Q-S Linking via Dual-Graph Encoding better demonstrates the ne-
cessity and effectiveness of our proposed structure-aware aggregation method for question-schema
linking. The downgraded performance of w/o Relation Node is due to the increase of relational

Table 3: Accuracy of ablation studies on Spider development set by hardness levels.

Model Easy Medium Hard Extra Hard All

SADGA 82.3 67.3 54.0 42.8 64.7
w/o Local Graph Linking 83.5(+1.2) 64.8(-2.5) 53.4(-0.6) 38.6(-4.2) 63.2(-1.5)
w/o Structure-Aware Aggregation 83.5(+1.2) 62.1(-5.2) 55.2(+1.2) 42.2(-0.6) 62.9(-1.8)
w/lo GraphAggr(Gs, Go) 83.1(+0.8) 64.1(-3.2) 52.3(-1.7) 40.4(-2.4) 62.9(-1.8)
w/o GraphAggr(Go, Gs) 79.0(-3.3) 63.7(-3.6) 50.0(-4.0) 41.6(-1.2) 61.5(-3.2)
Q-S Linking via Dual-Graph Encoding 82.3(-0) 63.7(-3.6) 51.1(-2.9) 45.2(+2.4) 63.1(-1.6)
w/o Relation Node (replace with edge types) 79.4(-2.9) 63.5(-3.8) 54.6(+0.6) 40.4(-2.4) 62.1(-2.6)
w/o Global Pooling (Eq. 3 and Eq. 4) 82.7(+0.4) 64.3(-3.0) 54.0(-0) 41.6(-1.2) 63.5(-1.2)

wlo Aggregation Gate (Eq. 8, gate, ; = 0.5) 81.9(-0.4) 60.1(-7.2) 54.6(+0.6) 40.4(-2.4) 61.2(-3.5)
w/o Relation Feature in Aggregation (Rf‘;) 79.4(-2.9) 64.3(-3.0) 54.6(+0.6) 41.6(-1.2) 62.7(-2.0)

SADGA + BERT-base 85.9 71.7 58.0 47.6 69.0
w/o Local Graph Linking 85.5(-0.4) 69.5(-2.2) 54.0(-4.0) 42.8(-4.8) 66.4(-2.6)
w/o Structure-Aware Aggregation 85.9(-0) 68.8(-2.9) 57.5(-0.5) 41.0(-6.6) 66.5(-2.5)

edge type, which leads to the increase of trainable parameters. The downgraded performance of
w/o Aggregation Gate indicates the advantages of the gated-based aggregation mechanism, which
provides the flexibility to filter out useless local structure information. The downgraded performance
of w/o Global Pooling indicates that the global information of question-graph or schema-graph is
beneficial to another graph. Our SADGA w/o Relation Feature in Aggregation is comparable with
RATSQL [8] (62.7%), which reflects the effectiveness of the structure-aware aggregation method to
learn the relationship between the question and database schema without relying on prior relational
knowledge at all.

F Case Study Against Baseline

In Figure[I] We show some cases generated by our SADGA and RATSQL [8]] from the Hard or Extra
Hard level samples of Spider Dataset [10]]. Both SADGA and RATSQL are trained under the pre-
trained model GAP [6]]. In Case 1 and Case 2, RATSQL misaligned the word “museum” and “rank”,
resulting in the incorrect selection of tables and columns in the generated query. RATSQL utilizes
the predefined relationship based on a string matching strategy to cause the above misalignment
problem. Our SADGA is able to link the question words and tables/columns correctly in the hard
cases of multiple entities, which is beneficial from the local structural information introduced by the
proposed structure-aware aggregation method. In Cases 3~6, RATSQL generates semantically wrong
query statements, especially when the target is a complex query, such as a nested query. Compared
with RATSQL, SADGA adopts a unified dual-graph modeling method to consider both the global
and local structure of the question and schema, which is more efficient for capturing the complex
semantics of questions and building more exactly linkings in hard cases.

References

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[2] Kyunghyun Cho, Bart van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder—
decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1724-1734, Doha, Qatar, 2014.
Association for Computational Linguistics.

[3] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation,
pages 1735-1780, 1997.

[4] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated graph sequence
neural networks. In Yoshua Bengio and Yann LeCun, editors, 4th International Conference

(5]

(6]

(71

(8]

(9]

[10]

on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, 2016.

Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard, and David
McClosky. The Stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd
Annual Meeting of the Association for Computational Linguistics: System Demonstrations,
pages 55-60, Baltimore, Maryland, 2014. Association for Computational Linguistics.

Peng Shi, Patrick Ng, Zhiguo Wang, Henghui Zhu, Alexander Hanbo Li, Jun Wang, Ci-
cero Nogueira dos Santos, and Bing Xiang. Learning contextual representations for semantic
parsing with generation-augmented pre-training. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 13806—13814, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 5998-6008, 2017.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson. RAT-
SQL: Relation-aware schema encoding and linking for text-to-SQL parsers. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, pages 7567-7578,
Online, 2020. Association for Computational Linguistics.

Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code
generation. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 440—450, Vancouver, Canada, 2017. Association
for Computational Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 3911-3921, Brussels, Belgium, 2018. Association for Computational Linguistics.

)

Question:

Gold SQL:
RATSQL Result:

SADGA Result:

@

Question:

Gold SQL:
RATSQL Result:

SADGA Result:

3)

Question:

Gold SQL:
RATSQL Result:

SADGA Result:

“)

Question:
Gold SQL:

RATSQL Result:

SADGA Result:

®)

Question:

Gold SQL:

RATSQL Result:
SADGA Result:

(6) Question:
Gold SQL:

RATSQL Result:

SADGA Result:

What are the id, name and membership level of visitors who have spent the largest amount of money in total in all museum tickets?

SELECT T2.visitor_id , T1.name, T1.level_of membership FROM Visitor AS T1 JOIN Visit AS T2 ON Tl.id = T2.visitor_id
GROUP BY T2.visitor_id ORDER BY Sum(T2.total_spent) DESC LIMIT 1.

SELECT Museum.museum_id, Museum.name, Visitor.level_of membership FROM Museum JOIN Visit JOIN Visitor
GROUP BY Museum.museum_id ORDER BY Sum(Visit.total_spent) Desc LIMIT 1. X

SELECT Visitor.id, Visitor.name, Visitor.level_of membership FROM Visit JOIN Visitor ON Visit.visitor_id = Visitor.id
GROUP BY Visitor.id ORDER BY Sum(Visit.total_spent) Desc LIMIT 1. </

Find the first name, country code and birth date of the winner who has the highest rank points in all matches.

SELECT T1.first_name , Tl.country_code, T1.birth_date FROM Players AS T1 JOIN matches AS T2 ON T1.player_id = T2.winner_id
ORDER BY T2.winner_rank_points DESC LIMIT 1

SELECT Players.first_name, Players.country_code, Players.birth_date FROM Players JOIN Rankings ON Players.player id = Rankings.player_id
ORDER BY Rankings.ranking_points Desc LIMIT 1. %

SELECT Players.first_name, Players.country_code, Players.birth_date FROM Players JOIN Matches ON Players.player id = Matches.winner id
ORDER BY Matches.winner_rank_points Desc LIMIT 1. o/

Find all airlines that have flights from both airports 'APG' and 'CVO'.

SELECT Tl.airline FROM Airlines AS T1 JOIN Flights AS T2 ON Tl.id = T2.airline WHERE T2.source_airport = "APG"
INTERSECT SELECT T1.airline FROM Airlines AS T1 JOIN Flights AS T2 ON Tl.id = T2.airline WHERE T2.source_airport = "CVO".

SELECT Airlines.airline FROM Flights WHERE Flights.source_airport ='VALUE'
INTERSECT SELECT Airlines.airline FROM Flights WHERE Flights.source_airport ='VALUE'. X

SELECT Airlines.airline FROM Airlines JOIN Flights ON Airlines.id = Flights.airline WHERE Flights.source_airport = 'VALUE'
INTERSECT SELECT Airlines.airline FROM Airlines JOIN Flights ON Airlines.id = Flights.airline WHERE Flights.source_airport ="VALUE'. v

What are the names of all stadiums that did not have a concert in 2014 ?

SELECT name FROM Stadium EXCEPT
SELECT T2.name FROM Concert AS T1 JOIN Stadium AS T2 ON Tl.stadium_id = T2.stadium_id WHERE Tl.year = 2014.

SELECT Stadium.name FROM Stadium WHERE Stadium.stadium_id NOT IN
(SELECT Concert.stadium_id FROM Concert WHERE Concert.year = "VALUE'). X

SELECT Stadium.name FROM Stadium EXCEPT
SELECT Stadium.name FROM Stadium JOIN Concert ON Stadium.stadium_id = Concert.stadium_id WHERE Concert.year = 'VALUE' BV

Show name of all students who have some friends and also are liked by someone else.

SELECT T2.name FROM Friend AS T1 JOIN Highschooler AS T2 ON Tl.student_id = T2.id
INTERSECT SELECT T2.name FROM Likes AS T1 JOIN Highschooler AS T2 ON Tl.liked_id = T2.id.

SELECT Highschooler.name FROM Highschooler WHERE Friend.friend_id IN (SELECT Likes.student_id FROM Likes). ¥

SELECT Highsct name FROM Highschooler JOIN Friend ON Friend.student_id = Highschool.id
INTERSECT SELECT Highschooler.name FROM Highschooler JOIN Likes ON Highschooler.id = Likes.liked_id. +/

What is the name of the semester with no students enrolled?
SELECT semester_name FROM Semesters WHERE semester_id NOT IN (SELECT semester_id FROM Student_Enrolment).

SELECT Semesters.semester_name FROM Semesters EXCEPT SELECT Semesters.semester_name FROM Semesters
JOIN Student Enrolment ON Semesters.semester id = Student Enrolment.semester id. ¥

SELECT ~_name FROM WHERE Semesters.semester_id NOT IN

(SELECT Student_Enrolment.semester_id FROM Student_Enrolment). +/

Figure 1: More cases at the Hard or Extra Hard level in different database schemas. (RATSQL +
GAP vs. SADGA + GAP)

	Preliminaries
	Gated Graph Neural Network
	Relation-Aware Transformer

	Relations of Dual-Graph Construction
	Decoder Details
	Hyperparameters
	Fine-grained Ablation Studies
	Case Study Against Baseline

