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ABSTRACT

Multi-modal multi-task learning holds significant promise in tackling complex
diagnostic tasks and many significant medical imaging problems. It fulfills the
needs in real-world diagnosis protocol to leverage information from different data
sources and simultaneously perform mutually informative tasks. However, med-
ical imaging domains introduce two key challenges: dynamic modality fusion
and modality-task dependence. The quality and amount of task-related informa-
tion from different modalities could vary significantly across patient samples, due
to biological and demographic factors. Traditional fusion methods apply fixed
combination strategies that fail to capture this dynamic relationship, potentially
underutilizing modalities that carry stronger diagnostic signals for specific pa-
tients. Additionally, different clinical tasks may require dynamic feature selection
and combination from various modalities, a phenomenon we term “modality-task
dependence.” To address these issues, we propose M*oE, a novel Multi-modal
Multi-task Mixture of Experts framework for precise Medical diagnosis. M*oE
comprises Modality-Specific (MSoE) modules and a Modality-shared Modality-
Task MoE (MToE) module. With collaboration from both modules, our model
dynamically decomposes and learns distinct and shared information from differ-
ent modalities and achieves dynamic fusion. MTOE provides a joint probability
model of modalities and tasks by using experts as a link and encourages experts
to learn modality-task dependence via conditional mutual information loss. By
doing so, M*oE offers sample and population-level interpretability of modality
contributions. We evaluate M*oE on four public multi-modal medical benchmark
datasets for solving two important medical diagnostic problems including breast
cancer screening and retinal disease diagnosis. Results demonstrate our method’s
superiority over state-of-the-art methods under different metrics of classification
and segmentation tasks like Accuracy, AUROC, AUPRC, and DICEF_]

1 INTRODUCTION

Multi-modal and multi-task learning holds strong potential for tackling many significant and chal-
lenging medical imaging problems (Tu et al., [2024; Khara et al., [2024b; |Cai et al.| 2024} He et al.,
2021)), as it mimics real-world clinical protocols of disease diagnosis, where clinicians leverage all
available data sources and simultaneously perform multiple assessments that are inherently interre-
lated and informative of each other (Stahlschmidt et al., 2022} |Acosta et al. 2022). For example,
radiologists combine full-field digital mammography (FFDM) containing high-resolution details
and 2D synthesized (2DS) images indicating high-contrast tissue structures for breast density pre-
diction and cancer risk screening (Brown et al., 2023); Ophthalmologists integrate color fundus
photographs with optical coherence tomography (OCT) that uses near-infrared light and interferom-
etry for diabetic retinopathy diagnosis and pan-retinal leakage detection (Korot et al., [2021). All
these applications request a model that can understand the complementary information from these
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Figure 1: Introduction: Traditional multi-modal multi-task modeling vs M*oE in medical imaging

different input modalities for predicting various tasks, drawing a lot of research attention (Yang,
2024; Zhao et al., [2022)).

Modeling the complex cross-modal and cross-task relationships of medical imaging modalities is
a non-trivial challenge. Different modalities can maintain both modality-specific and modality-
shared information: for example, while MRI and PET can both be used for Alzheimer’s disease
analysis, MRI allows for higher soft-tissue contrast and PET for metabolic activity visuals (Pichler
et al 2008; Zhang et al., [2023). Such information should be inherently dynamic across patient
samples due to different patient subgroups and environmental variances. This is analogous to the
well-known dynamic fusion of infrared and RGB images in the natural domain. In RGB-Infared
fusion, the relative importance of each modality naturally varies with environmental conditions -
RGB provides better information in daylight while Infrared excels in low-light conditions. In breast
cancer screening, parenchymal tissues in younger women often appear similar and confuse with
tumor tissues in FFDM images, whereas it can be visualized more clearly by 2DS, due to reduced
tissue overlaps (Khara et al.| |2024a). For older patients, where calcifications are a key sign of early
cancer, FFDMs are more reliable in showing these small spots (Aujero et al.| |2017; [Brown et al.,
2023). These insights from practical medical applications inspire us to raise the first research ques-
tion: How can we capture the patient-dynamic modality-shared and modality-specific information
in multimodal data fusion?

Existing multi-modal fusion methods for medical images can be mainly categorized into early fu-
sion (Jiang et al.,[2019), late fusion (Donnelly et al., [2024} |Weisman et al., [2022), and information-
theory-based methods (Zhang et al.,[2024; |Chen et al.,|2023b)). However, most of these approaches
are developed based on the assumption that different modalities contain fixed information distribu-
tion across different samples, which rarely holds true in the real world. We conjecture that ignoring
such reality leads to the problem of “Modality Competition,”’(Huang et al., 2022)) where only a single
modality dominates the joint latent space, suppressing distinct domain-specific features that should
commonly exist in all modalities. This can result in severely compromised predictions when crucial
disease information is only present in an underrepresented modality. We hypothesize that models
should be able to dynamically integrate effective information from the respective modalities while
not losing generalizable information shared in different modalities. That is, dynamically learning
sample-dynamic modality-specific and modality-shared information.

Another challenge comes with the various interrelated target tasks. Different diagnostic tasks require
a task-specific way to select and fuse features from different imaging modalities, depending on the
modality-task relevance. For instance, in a comprehensive breast cancer screening utilizing top and
side views of both FFDM and 2DS images (4 modalities) (Khara et al., [2024a)), density assessment
relies more on FFDM due to its ability to provide higher-resolution details, while the disease de-
tection task, particularly for calcified cancers and lesions in dense tissue, benefits significantly from
2DS with better visibility scores (Aujero et al., 2017; [Destounis et al., 2020). This implies the sec-
ond important research question: How do we model the dynamic modality dependence on different
tasks? Current multi-task learning methods either aim to learn a shared set of features that generalize
across different tasks (Swamy et al., 2024) or focus on separating task gradients or task modules for
a single modality (Chen et al.,[2023c), ignoring the dynamic nature of task-relevant modality-shared
information. We hypothesize that models should be able to dynamically leverage the most relevant
features from each modality to fuse for each specific task while not compromising the diversity of
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shared multi-modal features generalizable across different tasks. In other words, the goal is to learn
the task-specific and task-shared manifolds in the multi-modal latent space.

In short, as illustrated in Figure [T1] effective fusion of multi-modalities should be both sample-
dynamic and task-dependent. Motivated by this, in this work, we propose M*oE, a new Multi-modal
Multi-task Mixture of Experts (MoE) framework for Medical imaging, dynamically linking modal-
ities, samples and tasks via soft mixture of expert (Puigcerver et al.,[2023) networks. M*oE consists
of two main modules: Modality-Specific MoE (MSoE) and Modality-Shared Modality-Task MoE
(MToE). The combination of modality-shared and modality-specific experts offers a promising so-
lution to the modality competition problem, achieving sample dynamic fusion. By leveraging the
input-dependent nature of MoE, our proposed model dynamically learns distinct and shared infor-
mation from different modalities. Besides, MToE explicitly models the modality-task dependence
by learning a joint distribution of modalities, experts, and tasks. By optimizing conditional mutual
information loss, we encourage experts to learn diverse patterns of task-specific modality-shared
information. Our experiments and analysis show that M*oE can be well generalized to solve dif-
ferent multimodal medical problems in various applications. More importantly, we show that our
proposed MToE module can be flexibly combined with existing multi-modal fusion strategies to
further improve performance.

Our main contributions can be summarized as follows:

1) We propose a novel framework for multi-modal multi-task learning, achieving both sample-
dynamic modality fusion and dynamic modality-task dependence modeling. It provides sample-
level and dataset-level interpretation of modality contribution to different prediction tasks.

2) Our proposed MToE module provides a simple yet effective way to jointly model and interpret
modality, expert, and task dependency. We devise a new conditional mutual information loss to
encourage experts to dynamically learn diverse patterns of task-dependent modality-shared infor-
mation for different target tasks, respectively.

3) Extensive experiments are conducted on four multi-modal medical benchmark datasets to address
two important multi-modal and multi-task medical problems: breast cancer screening and retinal
diagnosis. Results show that M*oE outperforms the baselines from both medical and natural image
domains, demonstrating the effectiveness and generalization of our approach.

2 RELATED WORK

Multi-modal learning in Medical Imaging. Multi-modal learning in medical imaging focuses on
improving prediction and mimics the multi-modal nature of clinical expert decision-making by fus-
ing disparate data sources (Kline et al.,[2022). It has wide applications in fields such as breast cancer
screening (two views of FFDM and two views of 2DS) (Yala et al., [2022), retinal diagnoses (Reti-
nal Fundus images and OCTs) (Zou et al.| |2024b)), and head-neck cancer survival analyses (Meng
et al.l |2023) (Computed Tomography(CT), Positron Emission Tomography (PET), and Magnetic
resonance imaging (MRI)). Existing works can be categorized into early fusion, late fusion (usually
attention-based), and intermediate fusion methods. Late fusion focuses on learning a combined or
joint latent space: |Donnelly et al. (2024) learns local and global features from multi-modal breast
cancer images via a combination of convolutional and transformer networks; (Oyelade et al.| (2024)
extracts both low and high-level features using twin-CNNs and uses binary optimization method
to eliminate non-discriminant features in the search space. However, late fusion is prone to lose
modality-specific information (Zhang et al., 2024)). Early fusion concatenates different modalities
into a single input and is shown to outperform late and middle fusion for brain tumor segmentation
from MRI/PET/CT data (Marinov et al., |2023). For example, | Xue et al.| (2021) segments liver le-
sions by combining predictions from low and high-level feature maps in separate PET/CT decoders.
In intermediate fusion, the features, respective to each modality, are joined in intermediate layers
before feeding to the final prediction head (Huang et al.,2022). This type of model allows for more
convenient modeling of modality-specific and shared information. (Chen et al.| (2019); |Yao et al.
(2024b)); [Wang et al| (2023) disentangles the features shared across modalities and those unique
within each modality to address challenges like modality inconsistency and modality missingness.
Marinov et al.| (2023)) disentangles unimodal and multi-modal features using modality-specific de-
coders and a multi-modal decoder. Zhang et al|(2024) uses a mutual information disentangled
transformer to decompose modality information into shared and specific latent space to predict can-
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cer risks with multi-modal histopathology data. Apart from prediction tasks, recent works like [Yao
et al. (2024a)) have also extended similar fusion techniques for individualized chest X-ray generation
via latent diffusion models. However, all these existing methods are either limited to single-task
prediction or do not consider the dynamic dependence of modality-shared information on specific
tasks, trying to learn a shared set of features for different clinical outcomes. Moreover, they all
ignore the dynamic changes of modality quality in reality, which diminishes the patient-conditioned
advantages of each modality, e.g., the high structural contrast from 2DS for patients with denser
breasts and high-resolution details in FFDM for patients with less-dense breasts.

Multi-task learning in Medical Imaging. In medical imaging, multi-task learning (MTL) has wide
applications as it aims to enhance the performance on interrelated tasks by leveraging shared infor-
mation between them, given limited data availability (Malhotra et al., 2022). Existing medical MTL
methods typically utilize hard parameter sharing methods, designing task-shared networks to cap-
ture common patterns and task-specific networks to learn individual task features (Meng et al., 2022
Ju et al., 2021)). However, these methods require strong correlations among tasks (Zhang & Yang|
2018)), which are not necessarily satisfied in medical scenarios. Another type of methods consider
soft-parameter sharing, which utilize regularization loss terms to implicitly seperate parameters for
each task (Graham et al.l 2023} |Zhou et al.l [2021). (Shao et al., [2024) have also considered asso-
ciating multi-instance medical image data with multiple tasks using attention-based fusion blocks.
However, these methods assume a fixed association between tasks and input data modalities (Zhang
& Yang| |2018)), making them unable to dynamically capture modality-task dependencies, and thus
limiting their applicability in multi-modal, multi-task medical imaging scenarios.

3 METHOD

3.1 PRELIMINARY

Problem Formulation. We start with the definition of multi-modal multi-task learning. Suppose
we are given m image modalities My, ..., M,, and p tasks ty,...,%,, where the tasks are related
but distinct. Each modality contains its own unique information, and the combination of different
modalities elicits task-specific shared information. Multi-modal multi-task learning seeks to im-
prove model performance by integrating the information from the m modalities and leveraging the
knowledge across the p tasks. Each task ¢, can be viewed as a function T}, that maps multi-modal
image pairs I to the label for each task y;, = Tj(I). For each t;, we have a corresponding labeled
dataset Dy, each data point of which has m paired images I = (I3, ..., I,;,) and a task label Y3, (e.g.,
paired 4 images, 2 from FFDM, 2 from 2DS, and a label of risk of breast cancer). For simplicity
of analysis, we assume that each image pair [ is associated with a task-specific label Y;, for each
task ¢y, forming the task dataset Dy, as (I,Y;,). Our approach generalizes to the more real-world
scenario where each Dy, consists of different image pairs.

Soft Mixture-of-Expert(MoE). MoE enables dynamic fusion of multi-modal data and creates data-
dependent flows during inference (Cao et al.|[2023). Soft MoE (Puigcerver et al.l[2023) replaces the
top-K selection in the sparse MoE (Mustafa et al., [2022) with a softmax-based assignment in the
token-expert mapping, allowing for a soft weighted combination of input tokens. Specifically, for a
Soft-MoE layer with n experts, given input tokens X € R!*?, where [ is the number of tokens and
d is their dimension, the Soft MoE assigns a weighted combination of these tokens to each expert
using a dispatch matrix D € R!"™. Each expert then projects the input tokens into output tokens,
and the final output is obtained as the weighted combination of the output tokens, with the weights
provided by a combine matrix C'. The matrix D and C are created based on the input X and a
learned matrix ¢ of the MoE layer.

Hypothesis. We propose our hypotheses for medical multi-modal multi-task learning, which will
be verified by our analysis experiments in the Sec.

Dynamic modality-shared and specific information: Information between multi-modalities can
be decomposed into modality-specific and modality-shared. This interaction should be dynamic,
e.g., the high structural contrast from 2DS for patients with denser breasts and high-resolution details
in FFDM for patients with less-dense breast. Ignoring this fact will cause multi-modal multi-task
models to focus on optimizing parameters of a specific modality while neglecting the others, aka
’Modality-Competition’.
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Figure 2: (a) The framework first embeds different input modalities with feature embedders, then
goes through MSoE to learn and retain the modality-specific features, MToE to model shared modal-
ity information and modality-task dependence, and a final fusion block connected with task heads.
(b) The MToE block creates data-dependent pathways for each multi-modal input, dispatching
modality tokens to experts and combining the expert outputs to generate task-specific features. (c)
Modality-specific MoEs are used to extract and retain input-dependent modality-specific features.
(d). We apply a basic Soft MoE block after M*oE to fuse all features.

Dynamic modality-task dependence: In multi-modal multi-task learning, the shared information
between different modalities should be modeled differently to a given task instead of using a static
shared set of features, forming a modality-task dependence.

3.2 OVERALL FRAMEWORK

In this section, we will demonstrate our M*oE framework for multi-modal multi-task learning and
illustrate how it dynamically links the input modalities to different tasks. Our M*oE design com-
prises modality-specific feature embedders, modality-specific Soft MoEs, and shared Modality-Task
Soft MoEs. We customize the MoEs into Vision Transformer blocks so that it creates a data-
dependent path for each input. This enables more flexible modeling of dynamic modality depen-
dence and dynamic multi-modal fusion in a multi-modal multi-task learning setting. Specifically,
as shown in Fig. IZZ|a), we first utilize a feature embedder to project input modalities to embeddings
X1, ..., X,, € R™¥4 To mitigate the modality competition phenomenon, where modality-specific
information is lost for most modalities, for each modality M; we use modality-specific MoE blocks
to extract and retain input-dependent modality-specific features Z; € R'*? from X;. Meanwhile,
we feed X1, ..., X,, into our proposed MToE block and obtain the task-dependent fused modality
features, producing task-specific features pool GGy, ..., G,. Finally, each task-specific feature pool
from G, ..., G, is fused with modality-specific, task-shared feature pool 71, ..., Z,, to form task-
specific and shared pool Hy, ..., H,,. For each task T}, Hj, is passed to the task heads after a basic
soft MoE block for final predictions. The overall framework can be seen in Fig. [2]

The modality-specific MoE is a Soft MoE, as described in Sec. [3.I} As shown in Fig. [2]b), each
MSoE g; for modality i contains n experts and a learnable matrix ®; € RY*", where d represents the
embedding dimension. Given input tokens X € R"*?, we compute the dispatch matrix D € R!*"
by applying softmax along the columns of X ®;, and the combine matrix C € R!*™ by applying
softmax along the rows of X ®;. We pass the linearly weighted input X;, where X = DX, to each
expert 7 and obtain the output f’] Finally, we apply a linear combination of 173 based on C to obtain

the final output Y = CY for the MSoE module.
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As shown in Fig. 2] ¢), the MToE block connects tasks to input modalities by using experts as a
link. It is distinct from the basic soft MoE in that it takes in mixed inputs from multi-modalities,
directs the mixture of their information through task-specific slots, and differentiates with learnable
task embeddings. The MoE layer of the MToE consists of n experts and a learnable matrix @,y €
R¥*7xP and each expert processes p input task slots corresponding to different tasks. Given the
input token-type modality features X1,..., X,, € R, there is a total of M = [ x m feature
tokens. And then they are assigned to the task slots of each expert through a convex combination
of X1,..., X, using dispatch weights D € RM*nxP_The dispatch weight is given by applying
a softmax over columns of X®, where X € RM™*4 is the concatenation of X1, ..., X,n: Dy, =
exp((XP)ijr)
Zi]\il exp((X®)ijx)’ _ N
network f;, to produce the output slots: Y ;i = f;(X jx + T'Ey), where T Ej, is the learnable task
embedding of task & that is shared across experts. The final output Y of each task k is obtained by
taking a convex combination of all the output slots Y. This process is similar to the previous one:
_ exp((XP)ijr)
Ciik = ST 57, exp(XB) 50
applying a softmax over the rows of X ®. This facilitates the dynamic connection between different
input modalities and tasks and enables probability modeling in Sec.[3.3]

X = DX. Each task slot k of expert j is processed by the expert j’s neural

Y, =C._ kY“ k> Where C, the combine weights, are computed by

3.3 JOINT PROBABILITY MODELING OF MODALITY, TASK AND EXPERTS

To understand how each modality contributes to different tasks, we define a probability model over
tasks 7', experts E, and modalities M/. We assume that when our trained network is deployed, it
will receive a random task 7" and a corresponding multi-modal image pair I based on a global task
distribution P(T)ﬂ The input-conditioned and dynamic multi-expert structure of MToE makes it
well-suited for jointly modeling 7" and M, where the ¢ € R™*"™*P matrix and task slots collabora-
tively connect modality M to expert E and subsequently to task 7'.

In the MToE module, we model the probability P(E;|T},) of selecting expert E; for task T}, based
on how much importance the routing network assigns expert F; to task 7},. For example, in sparse
MoE:s, if the routing network assigns 30 out of 100 image pairs from task 7} to expert E;, then
P(E;|T}) = 0.3. In the MToE, rather than making hard assignments, we calculate these probabil-
ities by summing the soft weights from the routing matrix X ®. Given this matrix, the conditional
o i (XP)ijk
T e (X2
where m is the number of modalities, n is the number of experts, and p is the number of tasks.
Similarly, the conditional probability P(M;|T}) can be represented by the frequency of how a
modality ¢ is selected to contribute to a task j, which can be written as follows: P(M;|T}) =
71 (XP)i e
1 21 (X®)i 5k
need to model the conditional probability P(M, E|T). This can be given by dispatch weights as
well. Given the input X and task k, the modality ¢ is assigned to the expert j with the probability
. . _ 221 (X®2)i gk
P(M;, E;|T},), which can be expressed by: P(M;, E;|Ty,) = S Ef;ll Zﬁzl(JX@)i,j,k .
Based on our hypothesis of modality-task dependence, in the multi-modal multi-task learning set-
ting, the most important experts and the selection of input modality features should depend on the
task. This allows the MTOE to assign specific experts to corresponding modalities for each task. To
achieve so, we could maximize the conditional mutual information between experts £ and modali-

. . n P(M;,E;|T,
ties M given T: I(M; E|T) = >21%, >0, >h_, P(M;, E;|T},) log WPJ(‘E;I)T/C)'

probability of an input X can then be determined as follows: P(E;|T})

, To model how experts are assigned to each modality for different tasks, we

This term can be calculated based on our probabilistic modeling above in the MToEﬂ

To understand this objective, we can decompose it as I(M; E|T) = HM|T) — H(M|E,T).
Term —H (M |E, T) refers to the entropy of modality given task and experts, a smaller H(M |E, T)
encourages the MToE to learn a stronger dependency of the modality on both the expert and task, and
to leverage different combinations of modalities for different tasks. H (M |T) refers to the entropy of
modalities given tasks, where a higher term ensures modality diversity instead of repeatedly relying

“This distribution is typically derived from the dataset, as not all data points have labels for every task.
3In implementation, ® is with the shape of (m - [) x n x p since each modality has I tokens. For each
modality, we sum up the probability of all of its tokens to marginalize probability for each Modality m.
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on a small subset of modalities. Given the training objective L;, of each task ¢, the final loss L
can be written as: £ =Y ©_| L;, — «al(M; E|T), where « is the hyper-parameter that adjusts the
strength of conditional mutual information loss.

4 EXPERIMENT

4.1 EXPERIMENT SETTING

Datasets. To test M*oE’s generalizability across populations and medical imaging modalities, we
conduct extensive experiments over four public datasets on two use cases. Mammogram screen-
ing: We use EMory BrEast Imaging Dataset (EMBED) (Jeong et al.,|2023) collected in the United
States, The 2023 RSNA Screening Mammography Breast Cancer Detection Al Challenge Dataset
(RSNA) collected in Australia (Carr et al.), and VinDr-Mammo Dataset (VinDr) collected in Viet-
nam (Nguyen et al.,|2023). EMBED has four modalities (2 view FFDM and 2 view 2DS) and seven
tasks: BI-RADS assessment (3-class), 1-5 years risk scoring (binary), and density classification(4
class). RSNA and VinDr have two modalities (2 view FFDM) and two tasks: density classification
(4-class) and BI-RADS assessment (3-class). Ophthalmology screening: we use the Glaucoma
grAding from Multi-Modality imAges (GAMMA) dataset (Wu et al. [2023) collected in China.
GAMMA has two modalities (color fundus photos and OCT) and two tasks: glaucoma detection
(3-class) and optical cup segmentation.

Evaluation. Accuracy is used for classification tasks, and DICE score is used for segmentation
across 5-fold cross validation. For the M*oE model reported in Table we use 128 experts for the
MToE module and 32 experts for each of the MSoE modules. We use Adam optimizer with learning
rate of le-4 and stepLR scheduler with step size of 5 and gamma of 0.1. The model is trained on a
batch size of 32 and a total of 100 epochs. « is set to 0.05. Our hardware includes 4 NVIDIA A100s
and 4 L40s. Detailed mean, standard deviation, AUROC and AUPRC, are in Appendix.

Baselines. We mainly compare our method with four groups of SOTA methods: 1) Multi-modal
single-task baselines from medical Al. 2) Multi-modal multi-task baselines from medical Al In 1),
we compare with MIRAI (Yala et al., [2022)) and Asymmirai (Donnelly et al., 2024) for mammog-
raphy, Eyemost (Zou et al.| 2024b) and Eyestar (Wu et al., 2023) for ophthalmology. In 2), we
compare with the 4 methods under multi-task setting. 3) MoE-related baselines. We compare with
a multi-modal soft mixture of experts (Puigcerver et al.|2023) and the combination of MIRAI and
Asymmirai with our MToE. 4) Multi-modal multi-task baselines adapted from the natural domain,
including FULLER (Huang et al.| 2023), AIDE (Yang et al., [2023)), MModN (Swamy et al.,|[2024),
EVIF (Geng et al.,[2024). Comparison with Adapted Multimodal Soft MoE (Puigcerver et al.,|2023)),
AdaMV-MoE (Chen et al.}2023a), and Fuse-MoE (Han et al., [2024) are included in Appendix.

4.2 MAIN RESULTS

Our M*0oE significantly outperforms baseline methods. As shown in Table [1| the single-task
MSoE outperforms all the single-task medical Al baselines, demonstrating our design’s effective-
ness in retaining modality-specific information. As for multi-task settings, M*oE consistently out-
performs baseline methods across all tasks on all benchmarks. This highlights the effectiveness of
M?*0E in the multi-modal, multi-task learning setting.

Multi-tasks benefit from each other in our M*oE method, unlike baselines. In Table |1, our
M*0E trained in a multi-task setting shows superior performance compared to its single-task training
counterpart. This indicates that tasks involved in multi-task learning contribute to shared features.
We show in Sec. 4.3 that this also reduces gradient conflicts that typically hinder the learning of
task-specific features. In contrast, such improvements are not seen in baseline methods. This may
be because these methods fail to capture the dynamic dependence between modalities and tasks.

Our MToE framework can generalize to different multi-modal learning backbones. We have
adapted MToE to Miral and Asymiral baselines for mammography tasks, and have adapted MToE to
Eyemost and Eyestar baselines for retinal tasks. After being combined with our MToE module, the
single-task oriented medical Al baselines obtain significant performance improvement, most on par
with or even exceeding Multi-modal Multi-task baselines from the natural domain. This highlights
MToE’s flexibility and generalizability.
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Table 1: Multi-modal single-task and multi-task results over four benchmarks from mammography
imaging and retinal imaging. Complete 7-task results on EMBED dataset are in appendix.

Setting Method EMBED RSNA VinDR Method GAMMA
Mammo. Risk Density Birads Density Birads Density Birads Retinal Glau.  Seg.
Single  Mirai 84.0 823 72.5 76.3 623 86.3 66.1 Eyemost 86.0 87.8
-Task Asysmirai 79.0 802 69.4 74.1 60.1 78.9 62.4 Eyestar 854 859
Ours wo MSoE  83.2  82.1 71.9 76.8 62.2 85.4 65.8 Our wo MSoE 862  86.2
Ours 855 83.6 74.2 71.5 64.0 87.7 67.5 Ours 87.6 88.9
Multi Mirai 83.1 832 723 76.1 62.5 85.4 65.9 EyeMost 86.5 86.6
-Task +MToE 84.6 833 734 76.8 63.1 85.9 66.4 +MToE 872 885
Asymirai 80.0 825 69.6 73.9 60.7 79.1 62.2 Eyestar 859 84.1
+MToE 819 83.1 70.8 74.2 61.2 81.2 64.2 +MToE 875 869
EVIF 84.7 834 73.6 77.0 65.9 88.8 70.7 EVIF 838.7 87.0
Fuller 84.3 835 725 76.9 65.4 87.1 68.7 Fuller 87.8 862
AIDE 84.1 829 73.6 76.8 66.1 88.2 69.8 AIDE 885 875
MModN 84.8 83.7 73.9 771 66.4 89.0 70.4 MModN 89.2 872
Ours wo MToE  84.0 82.8 73.1 76.7 64.3 86.9 67.3 Ours wo MToE  88.1  87.4
Ours 859 84.1 75.1 77.8 66.7 89.6 71.8 Ours 904 89.7

a). Modality Competition b). Modality Utilization (Plain Soft MoE) ¢). Modality Utilization (Ours)

Ace. 120000

100000

Figure 3: (a). Performance drop caused by modahty competition. (b). Modality utilization of multi-
modal soft MoE. (c). Modality utilization of M*oE. Our method has less modality competition.

4.3 ANALYSIS

Modality Utilization in Non-MoE Fusion, MoE vs M%oE. To investigate our first hypothesis, we
examine how well traditional (non-MoE) multi-modal models, multi-modal MoE, and our approach
utilize the four different modalities on the EMBED dataset on the cancer risk prediction task. For tra-
ditional method, we first train a multi-modal model where each modality is encoded by a modality-
specific ViT encoder. The representations from each modality are then averaged and then passed
through a dense fusion layer before being fed into the task heads. We also trained four unimodal
models for each modality. As shown in Fig. 3(a), we compared the four modality-specific (from
the multi-modal model) encoders’ performance with that of their unimodal counterpart. The en-
coders from the multi-modal model exhibited a significant performance gap compared to the model
trained solely on that modality, especially for modalities FFDM left-to-right (M2), 2DS up-to-down
(M3), and 2Ds left-to-right (M4). This indicates that M2-M4 is much more poorly optimized in the
multi-modal model compared to M1, i.e. losses the modality competition (Huang et al., 2022).

For the MoE-based method, it is easier to evaluate the modality utilization across experts: For
modality M;, we first obtain the sum of input-conditioned modality dispatch weights assigned to
M;’s token for a data sample and a given expert I;, then aggregate this value over all experts
and over all data points. In Fig. 3] we observe that when simply using a multi-modal soft MoE
architecture, modality 1 dominates the expert space. In contrast, M*oE alleviates this issue by
learning a much more diverse modality utilization and achieves higher performance as shown in
Table. |1 (Without MSOE v.s. M*oE).

Dynamic Modality Dependence. Recall our second hypothesis that the fused features from dif-
ferent modalities should be dynamically dependent on different tasks. Unlike M*0E, traditional
multi-modal fusion models lack interpretability of modality-task dependence. To ensure a fair com-
parison, we introduce the synergy measure from partial information decomposition (PID) theory,
which quantifies how much new task-specific information emerges when two modalities are fused.

We train synergy estimators using BATCH algorithm following [Liang et al.|(2024]) to calculate pair-
wise synergy between input modalities for a given task. For this experiment, we train models on
the EMBED dataset with density prediction and 1-year risk prediction tasks. We utilize the two
FFDM modalities and two 2DS modalities for training, and this results in 6 pairwise synergies per
task, visualized as matrices in Fig.[d] We observe that the synergy matrix for the baseline MIRAI
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a). Task 1 synergy of baseline  b). Task 2 synergy of baseline ¢). Task 1 synergy of ours d). Task 2 synergy of ours
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Figure 4: Visualization of modality-task dependence. We report modality-pair-wise synergies which
measure how two modalities benefit from each other on contributing to the given prediction task.
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Figure 5: Visualization of modality contribution on patient level and dataset level.

method shows similar value distributions across different tasks, where shared information of two-
view FFDM is prevalent (M1 and M2). While Task 1 (density) and Task 2 (risk) synergy for baseline
do capture different absolute values, the highest synergy pair still only peaks for M1 and M2 (within
two views of FFDM) for both tasks. However, this doesn’t follow our dynamic modality-task depen-
dence intuition. While density information is known to be mostly captured by FFDMs
et al., 2020}, [Zuckerman et al.}[2016), prior work (Kleinknecht et al.,[2020} [Gastounioti et al.,[2022)
in mammogram screening suggests that for the cancer risk task, models should leverage useful in-
sights from all four modalities. Our model shows a clear contrast of synergy distributions between
the two tasks, and the cancer risk task’s distribution derives information from more diverse infor-
mation from different modalities. The benefits can be further proven by the improved results after
adding MToE in Table [1{(Without MToE vs M*oE). For density, our method peaks at M1-M2. For
risk, we peak at not only M1-M2 synergy (within FFDM) but also M1-M4 synergy (between FFDM
and 2DS). We also capture the M2-M3 and M3-M4 synergy much better than the baseline. This in-
dicates a stronger modality-task dependency. This improvement is likely due to our method’s ability
to better learn task-dependent mutual information between different modalities. Further details on
PID theory and BATCH algorithm can be found in Appendix [A]

Sample and Population-Level Modality Contribution Interpretability. M*oE has inherent sam-
ple and population level interpretability of modality contribution to a specific task, because the ®
matrix determines both how much weight each modality contributes to an expert and how much
weight each expert contributes to a task. We use two tasks from the EMBEDS dataset to illus-
trate this. 1) Sample-level (local) modality contribution for one patient input: Given a task, we
calculate the importance weight of each modality for each expert, and average over all experts by
expert-task assignment weights. 2) Population-level (global) modality contribution: we aggregate
the sample-level contribution over the entire dataset. Fig. 5] provides granular insights on how dif-
ferent modalities contribute to the task predictions of two different patient samples and over the
entire EMBEDS dataset. We observe distinct patterns across patients and clinically sensible global
patterns: FFDM contributes more to density, and all modalities should contribute to risk prediction
(Destounis et al.},[2020; [Aujero et al.} 2017} [Zuckerman et all,[2016).

Gradient Conflict Mitigation. Gradient conflict problem is a long-standing issue in multi-task
learning that may harm the model’s ability to learn task-specific information (Chen et al.| C
Zhou et all, 2024). This issue is also present in multi-modal scenarios, as shown in Fig We
observe that M*oE also helps mitigate this issue. We train a ViT-based multi-task late fusion model
using four modalities in mammography, predicting density and 1-year risk. We collect the gradients
from the last layer of the fusion block during back-propagation for both task losses in each step of
an epoch. As shown in Fig[f] we calculate the cosine similarities between the gradients of the two
tasks and categorize the gradient relationships into three categories: “conflict” (similarity between
-1 and -0.01), "neutral” (-0.01 to 0.01), and “enhance” (0.01 to 1). The baseline model shows a
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a). Task Gradient Conflict Analysis b). Task-Expert Heatmap Base MoE ¢). Task-Expert Heatmap M*oE
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Figure 6: (a). Gradients from different task heads may conflict, and our method has mitigated this
issue. (b). Compared to basic Soft MoE, our method has a sparser expert-task dependency that may

have helped alleviate the gradient conflict problem.

high proportion of conflicts, indicating significant gradient conflicts in the multi-modal, multi-task
setting. In contrast, our M*oE model exhibits a much lower proportion of conflicts, demonstrating
that our method effectively mitigates gradient conflicts. This improvement may be attributed to
sparse task-expert dependency, where experts tend to specialize in different tasks. As shown in
Fig. [l we conduct a reduced experiment (16 experts and 7 tasks) and generate heatmaps of the
expert-task assignment scores from the combine matrix to visualize the expert-task dependencies in
both the baseline MoE model and our M*oE. Our method shows higher sparsity, enabling dynamic
separation of task-specific parameters and helping to reduce gradient conflicts.

4.4 ABLATION STUDY

Ablation of Different Model Components. As shown in Table 2] we conduct ablation studies on
each component of the M*oE framework. Removing either the MSoE or MToE leads to a significant
performance drop. This is because: 1) the MSoE retains and contributes modality-specific features
to the embedding pool and alleviates the modality competition issue. 2) The task-slot and task-
specific embedding guided MToE data flow capture the dependence between modalities and tasks
to find the most suitable modality feature selection and fusion for each task. Additionally, removing
the mutual-information regularization loss while retaining the M ToE results in a slight performance
decrease compared to original M*oE model, as the loss encourages higher modality-task dependence
and more diverse modality feature fusion.

Increasing the number of experts and regularization degree o within a certain range improves
the performance. As shown in Fig.[/| increasing the number of experts in the MToE from 16 to 128
improves the model’s performance. Additionally, raising the value of «, which controls the degree
of mutual information regularization, from 0.01 to 0.2 generally enhances the model’s performance,
but too heavy of a weight makes the predictions slightly worse. Detailed results are in the Appendix.

87 (a). Ablation on n 87 (b). Ablation on

5 % Table 2: Ablation results on technical components in M*oE.

. / . T MToE MSoE MIReg. EMBED

1 yearrisk Density Birads

8
— density year 1 risk —— density year 1 risk

* 16 32 64 128 ¥ 001 005 0.1 02 v 84.0 82.8 73.1
v v 85.1 83.5 73.8
Figure 7: Ablation on expert number n v’ v 85.2 83.7 73.5
v v v 85.9 84.1 75.1

and regularization degree a.

5 CONCLUSION

In this paper, we propose M*oE, a Multi-modal Multi-task Mixture of Experts framework for Med-
ical multi-modal multi-task learning. M*oE enables dynamic, sample-adaptive modality fusion and
modality-task dependence modeling. It jointly models the dependence of modalities, experts, and
tasks and captures dynamic distinct and shared modality information. Extensive experiments show
that M*oE consistently outperforms baselines across diverse medical imaging benchmarks, offers
interpretability of modality contribution, and can be flexibly combined with different backbones.
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