Welcome to DGRL-Hardware's documentation! — DGRL-Hardware 0.1 documentation

#& Welcome to DGRL-Hardware’s documentation!

Welcome to DGRL-Hardware's documentation!

[ PyTorch Geometric Lib: GCN, GIN, GAT ]

|GNN Backbones| = ! [ PyGSD Lib: MagNet, DGCN, DIiGCN ]

- ——

[ New/Customized GNN Backbones |
Electronic Circuit Representationl M tooe—mm—e——eeeees e —mmme e m— === - -

I 1
I ' N
' A A A sy P B -
hardware (e.g. Verilog) | gmm = ————— ! Y ' Hyper-Parameter (nnﬁ;l
programming (e.g. C++) 7 1! Message Passing [ H ' !
| [ : ]
] ! ~

=

&

[=9
Sl

=

B

3

=1

£

=

=

E

a2

£
&

! Batch Size, Learning Rate, !
| Dropout Rate, Hidden Dimension, ete. 1

.

|
|
s
|

! ' : . New Graph Lo
I v Transformer 1 ' '
| PyTorch Geomeric.Data |l i r :-—.:[Vam]la Transfon‘ncr} [Pcrformcr] [ T J ! l

: ] ! Auto-Tuning
| DGRL Configuration "
v 7

_______________________________________________

DGRL-Hardware is a toolbox for evaluating directed graph representation learning
(DGRL) methods. DGRL aims to encode and make inferences for directed graphs, which
finds applications in various disciplines. Notably, DGRL holds significant importance in
accelerating hardware design iterations by serving as surrogate models for predicting
hardware performance. This significance stems from the wide use of directed graph
representations in hardware data.

DGRL-Hardware provides the implementation of multiple DGRL techniques with
backbone models including spectral GNNs, spatial GNNs, and graph transformers (GT),
design options such as message passing directions and positional encodings, and
incorporates several hardware design datasets as testbeds to evaluate different
combinations of DGRL methods. The toolbox also offers hyper-parameter auto-tuning
and evaluation pipelines. Users are encouraged to introduce new directed graph
datasets for DGRL evaluation/selection or to develop new methods to evaluate on the
selected datasets.

DGRL-hardware is built based on Pytorch 2.0, PyTorch Geometric, PyTorch Geometric
Signed and Directed, RAY Tune .



Welcome to DGRL-Hardware's documentation! — DGRL-Hardware 0.1 documentation

The Github repository page is available here.

O Note

This project is under active development.

Get Started

general Config PE Config RAY Config Jconfigs

i , \ 4 TaskModel \
Tune with RAY
MiddleModel

Jrunner ]

DataProcessor

\_ J\_ YAN BRI /

J/data_processor main.py -/models

DGRL-Hardware is built and controlled by three configurations, user could configure a
DGRL method with the general config, which defines the GNN backbone or the graph
transformer to use along with MPNN layer message passing direction and their hyper-
parameters. RAY config defines the hyper-parameter search space when conducting
auto hyper-parameter tuning on the models. The toolbox also provides the
implementation of two kinds of positional encodings (PE) which could be flexibly
combined with the backbones and further improve the model expressiveness, users can
configure the incorporation of positional encodings in the PE config. With the
configuration, one could call a TaskRunner (as shown in the middle layer of the figure)
for either hyper-parameter tuning or model evaluation. Three key components in the
toolbox are connected with the TaskRunner, namely the dataset processor, the
tuning/evaluation pipeline and the model implementation.



Welcome to DGRL-Hardware's documentation! — DGRL-Hardware 0.1 documentation

To get started, one may first set-up the environment, then configure DGRL methods
(select an existing method or design a novel method) and config datasets (select an
existing dataset or introduce a new dataset). After the DGRL method is configured, one
may run RAY-tune for hyper-parameter tuning and then conduct performance
evaluation.

1. Environment Requirement

This section illustrates the basic environment requirement to run the toolbox.

2. Config a method

This section introduces how to config a DGRL method in the toolbox. One may select
from an existing method or customize a novel method.

¢ Select from existing methods
e Customize new backbone/PE/message passing methods

3. Config a dataset

This section describes how to config a dataset. One may select form the existing
dataset or customize a novel dataset.

e Select from existing datasets
e Customize new datasets

4. Tune with RAY

This section shows the interface on how to do hyper-parameter with the help of RAY,
and how to config the search space.

5. Evaluation on Existing Datasets

This section introduces how to evaluate method on datasets with configuration.



Welcome to DGRL-Hardware's documentation! — DGRL-Hardware 0.1 documentation

Toolbox Reference

Covered Datasets

Prediction Task

Latency on different platiorms
(CPU/GPUS30/GPUBAD)

Resource usage (LUT/DSP) and timing (CP)

sy'nthems Logic Functional unit kentification (shared and root)
Hold/Setup slack

Circuit specifications (DC gain, PM, BW)

e High-Level Synthesis (HLS)

¢ Symbolic Reasoning (SR)

e Pre-Routing Time Prediction (TIME)
e Computational Graph (CG)

o Operational Amplifiers (AMP)

DGRL Methods

o Base Models: GNN Backbones, Graph Transformers and MPNN Layer Direction

f' ( spectral 'ﬁ \ E node PE (NPE) :
' | Gen |1 ! stableedge PE (EPE)
: DGCN : ' Positional Encoding |
| DiGEN |+ TR
JP— S s \(MagNet ) , _
IR I s e n Lt S ,\
| (directed) :"‘@( : GAT |47 i  Transformer !
i Message Passing B J | ' ormer !
\  Direction - 'GNN Backbone' 'l‘ransformer Selection

-------------------------------------

» Positional Encoding (PE)



Welcome to DGRL-Hardware's documentation! — DGRL-Hardware 0.1 documentation

o Positional Encodings, an Overview
o Obtain Magnetic Laplician PE for Directed Graphs
o Incorporate Magnetic Laplician PE for Directed Graphs



Environment — DGRL-Hardware 0.1 documentation

# Environment

Environment

Installation

We recommend environment management with Conda. The supports below are based
on Conda.

To config a DGRL method and train the model on existing datasets, the following
packages are required:

conda create -n dgrl python==3.10

conda activate dgrl

# torch

conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-
cuda=12.1 -c pytorch -c nvidia

# PyG (>=2.4.0)

pip install torch_geometric==2.4.0

# PyG dependencies

pip install torch_scatter torch_sparse torch_cluster torch_spline_conv -f
https://data.pyg.org/whl/torch-2.1.0+cul2l. html
# PyGSD

pip install torch—geometric-signed-directed

# RAY

pip install -U "ray[data,train,tune,serve]"

# RAY dependencies

pip install hyperopt

# other dependencies

pip install prettytable

pip install torchmetrics

pip install hyperopt

pip install easydict



Select from an Existing Method from Configuration — DGRL-Hardware 0.1 documentation

# Select from an Existing Method from Configuration

Select from an Existing Method from

Configuration

The DGRL-Hardware toolbox provides the implementation of 21 existing combinations
of GNN, GT backbone, message passing direction and positional encoding (PE)

incorporation. One can call one of these methods by editing the general configuration
(listed in ./configs/general/) and the PE configuration (listed in ./configs/pe/.

An example of the genral config can be as follows:

# general_config.yaml
model:
name: BIGAT
hidden_dim: 192
num_layers: 3
node_input_dim: 7
edge_input_dim: 2
dropout: 0.2
mlp_out:
num_layer: 4

The name of all the implemented backbones are listed in the table below, for a detailed

introduction on the interface and implementation of each base model, please refer to

Introduction on base DGRL methods:

GNN backbone/transformer mesage passing
DGCN directed

DIGCN directed
MagNet directed

GCN undirected
GCN directed

GCN bidirected

GIN(E) undirected

name in config

DGCN
DiiGCN
MSGNN
GCN
DIGCN
BIGCN
GIN(E)



Select from an Existing Method from Configuration — DGRL-Hardware 0.1 documentation

GIN(E) directed
GIN(E) bidirected
GAT undirected
GAT directed
GAT bidirected
GPS-T undirected
GPS-T directed
GPS-T bidirected
GPS-P undirected
GPS-P directed
GPS-P bidirected

An example to configure PE is shown as follows:

# pe_config.yaml

mo

del:

pe_file_name: maglap_1q_spe
pe_type: maglap

q: 0.1

g_dim: 1

pe_strategy: invariant_fixed
pe_encoder: spe
mag_pe_dim_input: 10
mag_pe_dim_output: 10
se_pe_dim_input: 0
se_pe_dim_output: 0

eigval_encoder:
in: 1
hidden: 32
out: 8
num_layer: 3

DIGIN(E)
BIGIN(E)

GAT

DIGAT

BIGAT

GPS

DIGPS

BIGPS
PERFORMER
DIPERFORMER
BIPERFORMER

The table below show the configuration to use for magnetic Laplacian PE with NPE or

EPE:
stable potential q pe_type pe_strategy pe_embedder
NPE q=0 lap variant
NPE g>0 maglap variant naive
EPE q=0 lap invariant_fixed naive
EPE g>0 maglap invariant_fixed

example

./configs/pe/laj
./configs/pe/m:
./configs/pe/laj
./configs/pe/m:



Select from an Existing Method from Configuration — DGRL-Hardware 0.1 documentation

The eigval_encoder is used to configure the hyper-parameters of stable PE.



To customize a new method — DGRL-Hardware 0.1 documentation

# To customize a new method

To customize a new method

To customize a new methods other than existing base models, one should give the name
and implementation in ./models/base_model.py, which controls the use of backbone
models.

Specifically, one gives the inititalization:

class BaseModel(torch.nn.Module):
def __init__ (self, skkwargs):
if self.base_model == $New_method:
# define the init of new method
self.conv = #New_conv

# an example could be:
if self.base_model in ['GINE', 'DIGINE']:
nn = Sequential(
Linear(self.hidden_dim, self.hidden_dim),
BatchNormld(self.hidden_dim),
ReLU(),
Dropout(self.dropout),)
self.conv = GINEConv(nn)

And then gives the implementation:

class BaseModel(torch.nn.Module):
def forward(self, x, edge_index, batch, xkkwargs):
if self.base_model == $New_method:
x = self.conv(x, edge_index, kwargs['edge_attr'])
# an example could be:
if self.base model in ['GINE', 'DIGINE']:
x = self.conv(x, edge_index, kwargs['edge_attr'])



To customize a new method — DGRL-Hardware 0.1 documentation

Once the base_model.py is editied, the base model could be called by a single line in the
general_config as described in Select from an Existing Method, and flexibly combine
with the Positional Encoding (PE) methods with PE configurations.



Select from an existing dataset — DGRL-Hardware 0.1 documentation

# Select from an existing dataset

Select from an existing dataset

To select from one of the existing datasets and tasks, one may configure the selected
dataset in general configs, an example could be:

task:
name: 'HLS'
type: cdfg # type: cdfg or dfg
target: dsp # different target prediction
processed_folder: '~/DGRL_Hardware/data_processed/'
divide_seed: default #set as default or a seed
raw_data_path: '~/DGRL_Hardware/data_raw/HLS/"'
data_processor: HLSDataProcessor

here the name gives the name of the dataset, type and target determines the task, the
processed_folder defines the path to save the processed PyG format data,
raw_data_path provides the path of the original data, the data_processor defines the
name of the data processor to process the data.

The data processor for the existing datasets are implemented in ./data_processor/. For
more details on how to customize the dataset including the data processor, please refer

to customize new datasets.



Customize new datasets and tasks — DGRL-Hardware 0.1 documentation

# Customize new datasets and tasks

Customize new datasets and tasks

To handle the new datasets, one needs to 1) process the data into either standard raw-
data format or the PyG compatible format, and 2) customize a dataprocessor 3)
customize a runner for the dataset.

The Data Format that DGRL-Hardware asscpets

Raw Data

DGRL accepts the following csv format to store the raw data:

file name description

edge.csv saves all the edges

node-feat.csv saves all the edge feature
num-edge-list.csv saves the number of edges in each graph
num-node-list.csv saves the number of nodes in each graph
edge-feat.csv saves the edge features of each graph
flexible may save the labels

Examples of the raw data can be found at ./data_raw/.

DataProcessor to handle the raw data

One need to customize a Data processor to process the raw data into PyG compatible
data. The file name should be NEWDATA _data_processor.py (e.g. AMP_data_processor),
saved in the folder ./data_processor.

A tutorial to customize such data processor is as follows:



Customize new datasets and tasks — DGRL-Hardware 0.1 documentation

class [$NEWDATA]DataProcessor(InMemoryDataset):
def __init_ (self, config, mode):
# one may directly follow/copy the implementation of the initialization of
data processors in existing datasets

def process(self):
# here to process the raw data into the PyG compatible data format

def read_csv_graph_raw(self, raw_dir, check_repeat_edge):
# this is the key function to process .csv files into the PyG data,
# for setails please see https://github.com/Graph-
COM/Benchmark_for_DGRL_in_Hardwares/tree/main/DGRL_Hardware/data_processor.

Runner to Run with the New Datasets

One also needs to customize a Runner to run with the new dataset. The file name
should be NEWDATA _runner.py (e.g. AMP_runner.py). saved in the folder ./runner.

A tutorial to customize such runner is as follows:

class [$NewDatalRunner():
def __init_ (self, config):
# one may follow/copy the implementation of any existing DatasetRunners.
def train_ray(self, tune_parameter_config):
# the function that tuning with RAY would call for training, one may refer
to the implementation of existing datasets
# ALl the datasets/tasks share almost the same implementation

def train(self):
# the function that evaluation would call for training, one may refer to
the implementation of existing datasets
# ALl the datasets/tasks share almost the same implementation

def raytune(self):
# the function to load hyper-parameter design space
# A1l the datasets/tasks share almost the same implementation

def train_one_epoch(self, data_loader, mode, epoch_idx):
# One may need to customize due to the difference in evaluation metrics

def test(self, load statedict = True, test _num_idx = @):
# One may need to customize due to the difference in evaluation metrics



Customize new datasets and tasks — DGRL-Hardware 0.1 documentation

The other functions in the Runner class share the same implementation across the
datasets.



Tune with RAY after Model Configuration — DGRL-Hardware 0.1 documentation

#  Tune with RAY after Model Configuration

Tune with RAY after Model Configuration

Users could design the hyper-parameter search space simply with a config, for the
config we used for our benchmark, please refer to ./configs/ray/.

A sample config of RAY to search the hyper-parameter space is as follows:

name: BIGINE

hidden_dim: [2,7]

num_layers: [3,8]

# for HLS lr: [le-4, 5e-3]

1r: [1le-4, 1le-2]

batch_size: [64, 128, 256, 512, 1024]
dropout: [0, 0.1, 0.2, 0.3]

# for HLS node_input_dim: 7
pe_dim_input: 20

pe_dim_output: 8

mlp_out:
num_layer: [2,5]

An example command to tune with ray could be:

nohup python —u main.py —-mode tune —--general_config amp/gain/bigine --pe_config
lapl@/lap_spe \

——ray_config BIGINE --device '1,3,4,5' ——num_gpu_per_trial 0.24 \
>./ray_amp_gain_bigine_lapl@_lap_spe.log 2>&1 </dev/null &

The scripts to tune the methods from our benchmark is provided in ./tune.sh.

In each Runner, we use similar functions to call RAY for hyper-parameter search, an

example of the function is as follows:



Tune with RAY after Model Configuration — DGRL-Hardware 0.1 documentation

def raytune(self, tune_config, num_samples, num_cpu, num_gpu_per_trial):
reporter = CLIReporter(parameter_columns=["'hidden_dim'],metric_columns=
['loss', 'mse', 'r2'l)
# init ray tune
dropout_p = hp.choice('dropout_p', tune_config['dropout'])
if self.config['model'].get('pe_file_name') in ['lap_naive',
'maglap_1g_naive'] and self.config['model'] ['name'] in ['GPS', 'GPSSE', 'DIGPS',
'BIGPS']:
hidden_dim = 14 + 28 * hp.randint('hidden_dim',
int(tune_config['hidden_dim'] [@]), int(tune_config['hidden_dim"'][1]))
else:
hidden_dim = 28 % hp.randint('hidden_dim', int(tune_config['hidden_dim']
[@]), int(tune_config['hidden_dim'][1]))
tune_parameter_config = {
'name': tune_config['name'],
'batch_size': hp.choice('batch_size', tune_config['batch_size']),
'hidden_dim': hidden_dim,
'num_layers': hp.randint('num_layers', int(tune_config['num_layers'][@]),
int(tune_config['num_layers'][1])),
'"Ir': hp.uniform('lr', float(tune_config(['lr'][@]), float(tune_config['lr']
[11)),
"dropout’': dropout_p,
'mlp_out': {'num_layer': hp.randint('mlp_out', int(tune_config['mlp_out']
['num_layer'][0@]),
int(tune_config['mlp_out'] [ 'num_layer']
[11))},
'node_input_dim': self.config['model']['node_input_dim'],
'edge_input_dim': self.config['model']['edge_input_dim'],
'pe_dim_input': tune_config['pe_dim_input'],
'pe_dim_output': tune_config['pe_dim_output'],
'criterion': 'MSE',
'attn_type': 'multihead',
'attn_kwargs': {'dropout': dropout_p},
}
tune_parameter_config = {*xself.config['model'], sxtune_parameter_config}
scheduler = ASHAScheduler(
max_t=800,
grace_period=80,
reduction_factor=2)

hyperopt_search = HyperOptSearch(tune_parameter_config, metric='mse',
mode="'min")

tuner = tune.Tuner(

tune.with_resources(
tune.with_parameters(self.train_ray),
resources={"'cpu': num_cpu, 'gpu': num_gpu_per_trial}

),

tune_config=tune.TuneConfig(
metric="'mse',
mode="'min',
scheduler=scheduler,



Tune with RAY after Model Configuration — DGRL-Hardware 0.1 documentation

num_samples=num_samples,
search_alg=hyperopt_search,
),

run_config=RunConfig(progress_reporter=reporter),

)

results = tuner.fit()

best_result = results.get_best_result('mse', 'min')



Model Evaluation with Existing Methods — DGRL-Hardware 0.1 documentation

# Model Evaluation with Existing Methods

Model Evaluation with Existing Methods

PE Config RAY Config Jconfigs

Jrunner J

-

DataProcessor

J

Jdata_processor

-
o

‘\
Tune with RAY

/

main.py

( TaskModel \

MiddleModel

BaseModel
o v

J/models

After configuring a DGRL method and specify a dataset, one could perform evaluation

by training and testing with different seeds, an example command to evaluate could be:

nohup python —u main.py —--mode get_result —--general_config amp/gain/bigine_lap \
——pe_config lapl@/lap_spe ——device 1 \
>./amp_gain_bigin_lap_spe_final_results_origin.log 2>&1 </dev/null &

The scripts to tune the methods from our benchmark is provided in ./main.sh.



High-Level Synthesis (HLS) — DGRL-Hardware 0.1 documentation

# High-Level Synthesis (HLS)

High-Level Synthesis (HLS)

Overview

HLS is originally from High-Level Synthesis Performance Prediction using GNNs:

Benchmarking, Modeling, and Advancing.

After HLS front-end compilation, six node features are extracted, as summarized in the

table below:
Feature Description Values
Node type General node type operation nodes, block
Bitwidth Bitwidth of the node 0-256, misc
Opcode type Opcode categories based on LLVM binary_unary, bitwise,
Opcode Opcode of the node load, add, xor, icmp, et
Is start of path Whether the node is the starting node of a path 0, 1, misc
Cluster group Cluster number of the node -1 - 256, misc

Each edge has two features, the edge type represented in integers, and a binary value
indicating whether this edge is a back edge. Each graph is labeled based on its post-
implementation performance metrics, which are synthesized by Vitis HLS and
implemented by Vivado. Three metrics are used for regression: DSP, LUT, and CP. The
first two are integer numbers indicating the number of resources used in the final
implementation; the last one is CP timing in fractional number, determining the
maximum working frequency of FPGA. The DFG and CDFG datasets consists of 19,120
and 18,570 C programs, respectively. The figure below shows an example C program
from the CDFG dataset, with the corresponding control dataflow graph shown in the
right. More information can be found in the original paper.



High-Level Synthesis (HLS) — DGRL-Hardware 0.1 documentation

Interface

Runner

class HLSRunner():

def __init_ (self, config):
# init takes a config

def train_ray(self, tune_parameter_config):
# function to implement training when tuning with ray

def train(self):
# function to implement training when evaluation

def train_one_epoch(self, data_loader, mode, epoch_idx):
# function that do back propogation for one epoch

def test(self, load_statedict = True, test_num_idx = 0):
# function for testing

def raytune(self, tune_config, num_samples, num_cpu, num_gpu_per_trial):
# main function to take the hyper-parameter search space in RAY

Details are in

DataProcessor

class HLSDataProcessor(InMemoryDataset):
def __init_ (self, config, mode):
# init takes a config, mode takes from “tune' for tuning, ‘get _result' for
evaluation

def process(self):
# key functions to implement HLS data processing

def read_csv_graph_raw(self, raw_dir, check_repeat_edge):
# key function to process raw data into PyG data



High-Level Synthesis (HLS) — DGRL-Hardware 0.1 documentation

Details are in ./data_processor/HLS_data_processor.py.



Symbolic Regression (SR) — DGRL-Hardware 0.1 documentation

# Symbolic Regression (SR)

Symbolic Regression (SR)

Overview

SR is originally from Gamora: Graph Learning based Symbolic Reasoning for Large-Scale
Boolean Networks.

In this dataset, all the circuit designs are represented as and-inverter graphs (AlGs), a
concise and uniform representation of BNs consisting of inverters and two-input AND
gates, which allows rewriting, simulation, technology mapping, placement, and
verification to share the same data structure. In an AlG, each node has at most two
incoming edges; a node without incoming edges is a primary input (PI); primary outputs
(POs) are denoted by special output nodes; each internal node represents a two-input
AND function. Based on De Morgan’s laws, any combinational BN can be converted
into an AlG in a fast and scalable manner.

For each node, there are three node features represented in binary values denoting
node types and Boolean functionality. The first node feature indicates whether this
node is a PI/PO or intermediate node (i.e., AND gate). The second and the third node
features indicate whether each input edge is inverted or not, such that AIGs can be
represented as homogeneous graphs without additional edge features.

Node Feature Description Size

Net edge) Distances along x/y direction 2
Cell edge) LUT is valid or no 8
Cell) LUT indices 8 * (7+7)
Cell) LUT value matrices 8*(7*7)

— — — —

Edge Feature Description Size

Is primary 1/O pin or not 1



Symbolic Regression (SR) — DGRL-Hardware 0.1 documentation

Is fan-in or fan-out 1
Distance to the 4 die area boundaries 4
Pin capacitance 4 (EL/RF)

This dataset aims to leverage graph learning based approaches to accelerate the adder
tree extraction in (integer) multiplier verification, which involves two reasoning steps: (1)
detecting XOR/MAJ functions to construct adders, and then (2) identifying their
boundaries. Thus, there are two sets of node labels, i.e., two node-level classification
tasks. One task provides labels specifying whether a node (i.e., a gate) in the AIG
belongs to MAJ, XOR, or is shared by both MAJ and XOR. The other task provides labels
specifying whether a node is the root node of an adder. These AlGs and ground truth
labels are generated by the logic synthesis tool ABC. Figure below shows the AIG of an
8-bit multiplier: the blue and red nodes are the root nodes of XOR functions, with the
red nodes directly connecting to the POs; the green nodes are the root nodes of MAJ
functions By pairing one XOR function with one MAJ function sharing the same set of
inputs, we can extract the adder tree.



Symbolic Regression (SR) — DGRL-Hardware 0.1 documentation

Interface

Runner




Symbolic Regression (SR) — DGRL-Hardware 0.1 documentation

class SRRunner():

def __init_ (self, config):
# init takes a config

def train_ray(self, tune_parameter_config):
# function to implement training when tuning with ray

def train(self):
# function to implement training when evaluation

def train_one_epoch(self, data_loader, mode, epoch_idx):
# function that do back propogation for one epoch

def test(self, load_statedict = True, test_num_idx = 0):
# function for testing

def raytune(self, tune_config, num_samples, num_cpu, num_gpu_per_trial):
# main function to take the hyper-parameter search space in RAY

Details are in ./runner/SR_runner.py.

DataProcessor

class SRDataProcessor(InMemoryDataset):
def __init_ (self, config, mode):
# init takes a config, mode takes from ‘tune' for tuning, ‘get_result' for
evaluation
def process(self):
# key functions to implement SR data processing
def read_csv_graph_raw(self, raw_dir, check_repeat_edge):
# key function to process raw data into PyG data

Details are in ./data_processor/SR_data processor.py.



Pre-routing Timing Prediction (TIME) — DGRL-Hardware 0.1 documentation

#  Pre-routing Timing Prediction (TIME)

Pre-routing Timing Prediction (TIME)

Overview

TIME is originally from A Timing Engine Inspired Graph Neural Network Model for Pre-
Routing Slack Prediction.

Similar to timing analysis tools, circuits in this dataset are represented as heterogeneous
graphs consisting of two types of edges: net edges and cell edges. The nodes in graphs
denote pins in circuits. The TIME dataset collects 21 real-world benchmark circuits from
OpenCores with OpenROAD on SkyWater 130nm technology (i.e. blabla, usb_cdc_core,
BMé64, salsa20, aes128, aes192, aes256, wbqspiflash, cic_decimator, des, aes_cipher,
picorv32a, zipdiv, genericfir, usb, jpeg_encoder, usbf_device, xtea, spm, y_huff, and
synth_ram). More information can be found in the original paper.



Pre-routing Timing Prediction (TIME) — DGRL-Hardware 0.1 documentation

Module Register R1 Register R2
Combo .
Data — D Q Delay Hold WD,"Setu

tlme," J tim
i

1T Q T @
Data launched Data captured
on this edge on thliedge
CLK
Clock period o
I

Waveform

ek 4 ¥

Pt

setup

Interface

Runner

class TIMERunner():

def __init__ (self, config):
# init takes a config

def train_ray(self, tune_parameter_config):
# function to implement training when tuning with ray

def train(self):
# function to implement training when evaluation

def train_one_epoch(self, data_loader, mode, epoch_idx):
# function that do back propogation for one epoch

def test(self, load_statedict = True, test_num_idx = @):
# function for testing

def raytune(self, tune_config, num_samples, num_cpu, num_gpu_per_trial):
# main function to take the hyper-parameter search space in RAY



Pre-routing Timing Prediction (TIME) — DGRL-Hardware 0.1 documentation

Details are in ./runner/TIME runner.py.

DataProcessor

class TIMEDataProcessor(InMemoryDataset):
def __init_ (self, config, mode):
# init takes a config, mode takes from ‘tune' for tuning, ‘get_result' for
evaluation
def process(self):
# key functions to implement TIME data processing
def read_csv_graph_raw(self, raw_dir, check_repeat_edge):
# key function to process raw data into PyG data

Details are in ./data_processor/TIME_data_processor.py.



Computational Graph (CG) — DGRL-Hardware 0.1 documentation

# Computational Graph (CG)

Computational Graph (CG)

Overview

CG is originally from nn-Meter: towards accurate latency prediction of deep-learning

model inference on diverse edge devices.
This dataset includes

1. 12 state-of-the-art CNN models for the ImageNet2012 classification task (i.e.,
AlexNet, VGG, DenseNet, ResNet, SqueezeNet, GoogleNet, MobileNetv1,
MobileNetv2, MobileNetv3, ShuffleNetv2, MnasNet, and ProxylessNas), each with
2,000 variants that differ in output channel number and kernel size per layer, and

2. 2,000 models from NASBench201 with the highest test accuracy on CIFAR10, each
featuring a unigue set of edge connections.

In total, this dataset contains 26,000 models with different operators and
configurations. Figure below shows an example of the computational graph of a model
in NASBench201.



Computational Graph (CG) — DGRL-Hardware 0.1 documentation

-0
FQjBatchNo Relu .
Conv2D Come2D

Add b
Relu FusedBatchNorme® .
N Add QREIU.
o o I

FusedBatchN
’* ,Conﬁﬁdﬁatchmm"‘dd j\d-.us al 0‘

Cohv2D
Placehulder C""Vz\b Relu Relu Convzg’ -
usedBatchNorm Conv2D
' Relu FusedBatthNorm ‘___ FusedBatchNorm
ConvZDk Relu
.- FusedBatchNorm ' Conv. Conv2p B
6onv2D Relu 0 FusedBatchl?nd FusedBatchNorm
FusedBatchNormRelu ‘ FusedBatchNorf . NO L e el o
O Conv2D . ® : Relu@edBatchnahd L add @
Add AdisedBatchNorm [ | &cony | ; \
1 Con\erI%w?_D sedBat Conv2D Relu
chiN
' Rk Relu b
Reju . Fu.ﬁgbchﬂﬂf Add Relu ‘ Ad onv2D
b Relu & Q

Add ﬁﬂﬁedﬂatc'i Norm  Conv2DO FUSEdB,.-'atCthrﬂﬁsedBal‘chNorm

—0
CoBARaBatchno L — FusedBatchNor'® @) .
A ~ Add Conv2D Fteh‘“(:t.tn\arzD b
! “‘. FusedBathrm \ Relu FusedBatchNorm

' sedBatchﬁ Relu

Relu +

F
Relu Convza

usedBatchNorm _ Mean
add  Q

_— o usedBatchNorm #
.H Add ) -. Reshape

. Relu / Relu Cconv2D "

e FC

Coni-ZB AvgPool N FusedBatchNorm
Conv2D
Add

FusedBatchMNor p p | 120
ause dBatch : 4%
Relu @) Neng FusedB'atchNu‘ Add
Conv2D . Relu
FusedBatch o
Corw2D dBatchNorm

Relu Conv2D

Node features include input shape (5 dimensions), kernel/weight shape (padding to 4
dimensions), strides (2 dimensions), and output shape (5 dimensions). Each
computational graph is labeled with the inference latency on three edge devices (i.e.,
Cortex A76 CPU, Adreno 630 GPU, Adreno 640 GPU).

There is no edge feature in this dataset.

More information can be found in the original paper.

Interface

Runner



Computational Graph (CG) — DGRL-Hardware 0.1 documentation

class CGRunner():

def __init_ (self, config):
# init takes a config

def train_ray(self, tune_parameter_config):
# function to implement training when tuning with ray

def train(self):
# function to implement training when evaluation

def train_one_epoch(self, data_loader, mode, epoch_idx):
# function that do back propogation for one epoch

def test(self, load_statedict = True, test_num_idx = 0):
# function for testing

def raytune(self, tune_config, num_samples, num_cpu, num_gpu_per_trial):
# main function to take the hyper-parameter search space in RAY

Details are in ./runner/CG_runner.py.

DataProcessor

class CGDataProcessor(InMemoryDataset):
def __init_ (self, config, mode):
# init takes a config, mode takes from ‘tune' for tuning, ‘get_result' for
evaluation
def process(self):
# key functions to implement (G data processing
def read_csv_graph_raw(self, raw_dir, check_repeat_edge):
# key function to process raw data into PyG data

Details are in ./data_processor/CG_data_processor.py.



Multi-Stage Amplifiers (AMP) — DGRL-Hardware 0.1 documentation

# Multi-Stage Amplifiers (AMP)

Multi-Stage Amplifiers (AMP)

Overview

AMP is originally from CktGNN: Circuit Graph Neural Network for Electronic Design
Automation.

This dataset focuses on predicting circuit specifications (e.g., DC gain, bandwidth (BW),
phase margin (PM)) of 2/3-stage operational amplifiers (Op-Amps), which are simulated
by the circuit simulator Cadence Spectre. A 2/3-stage Op-Amp consists of (1) two/three
single-stage Op-Amps on the main feedforwoard path and (2) several feedback paths,
with one example shown in the right part of Figure.

To make multi-stage Op-Amps more stable, feedforward and feedback paths are used to
achieve different compensation schemes, each of which is implemented with a sub-
circuit, e.g., single-stage Op-Amps, resistors, and capacitors. Due to the different
topologies of single-stage Op-Amps and various compensation schemes, each sub-
circuit is built as a subgraph.

There are 24 potential sub-circuits in the considered 2/3-stage Op-Amps:

« Single R or C (1) in Figure, 2 types.

e R and C connected in parallel or serial (2) in Figure, 2 types.

» Asingle-stage Op-Amp (gm) with different polarities (positive, +gm, or negative, -gm)
and directions (feedforward or feedback) ((3) in Figure, 4 types).

e Asingle-stage Op-Amp (gm) with R or C connected in parallel or serial (16 types).
Note that we use the single-stage Op-Amp with feedforward direction and positive
polarities as an example for (4) in Figure.



Multi-Stage Amplifiers (AMP) — DGRL-Hardware 0.1 documentation

;:; ____________________ C.... mmi;g —AAA— {4p4vvy]
o <4< Lpl [
S Fﬂed:rﬂﬂﬂtm Backward '
Interface

Runner

class AMPRunner():
def __init_ (self, config):
# init takes a config
def train_ray(self, tune_parameter_config):

Stage Stage
Feddforward path

3-stage Op- I
Amp -

# function to implement training when tuning with ray

def train(self):
# function to implement training when evaluation

def train_one_epoch(self, data_loader, mode, epoch_idx):
# function that do back propogation for one epoch

def test(self, load statedict = True, test num_idx
# function for testing

=0):

def raytune(self, tune_config, num_samples, num_cpu, num_gpu_per_trial):
# main function to take the hyper-parameter search space in RAY

Details are in ./runner/AMP runner.py.

DataProcessor

class AMPDataProcessor(InMemoryDataset):
def __init_ (self, config, mode):

# 1init takes a config, mode takes from 'tune' for tuning,

evaluation
def process(self):
# key functions to implement AMP data processing

def read_csv_graph_raw(self, raw_dir, check_repeat_edge):

# key function to process raw data into PyG data

Output

‘get_result' for



Multi-Stage Amplifiers (AMP) — DGRL-Hardware 0.1 documentation

Details are in ./data_processor/AMP_data_processor.py.



Base Models — DGRL-Hardware 0.1 documentation

# Base Models

Base Models

The base models includes the GNN backbones/ graph transformers, and the MPNN
message passing directions.

GNN Backbones/ Graph Transformers

DGCN (DGCN in config)

class DGCNConv(improved: bool = False, cached: bool = False, add_self_loops: bool
= True, normalize: bool = True, *xkxkwargs)

def forward(x: torch.Tensor, edge_index: Union[torch.Tensor,

torch_sparse.tensor.SparseTensor], edge_weight: Optional[torch.Tensor] = None) -
torch.Tensor

The method is from Directed Graph Convolutional Network. The implementation
adopts the PyGSD library.

DiGCN (D1iGCN in config)

class DiGCNConv(in_channels: int, out_channels: int, improved: bool = False,
cached: bool = True, bias: bool = True, xxkwargs)

def forward(x: torch.FloatTensor, edge_index: torch.LongTensor,
edge_weight: Optional[torch.FloatTensor] = None) - torch.FloatTensor

The method is from Digraph Inception Convolutional Networks. The implementation
adopts the PyGSD library.



Base Models — DGRL-Hardware 0.1 documentation

Magnet (MSGNN in config)

class MSConv(in_channels: int, out_channels: int, K: int, q: float, trainable_qg:
bool, normalization: str = 'sym', bias: bool = True, cached: bool = False,
absolute_degree: bool = True, *xkwargs)

def forward(x_real: torch.FloatTensor, x_imag: torch.FloatTensor,
edge_index: torch.LongTensor, edge_weight: Optional[torch.Tensor] = None,
lambda_max: Optional[torch.Tensor] = None) - torch.FloatTensor

The method is from MagNet: A Neural Network for Directed Graphs. The
implementation adopts the PyGSD library.

GCN (GCN in config)

class GCNConv(in_channels: int, out_channels: int, improved: bool = False,
cached: bool = False, add_self_loops: Optional[bool] = None, normalize: bool =
True, bias: bool = True, **kwargs)

def forward(x: Tensor, edge_index: Union[Tensor, SparseTensor],
edge_weight: Optional[Tensor] = None)- Tensor

The method is from Semi-Supervised Classification with Graph Convolutional Networks.

The implementation adopts the PyG library.
GIN(E) (GIN, GINE in config)

class GINConv(nn: Callable, eps: float = 0.0, train_eps: bool = False, **kwargs)

def forward(x: Union[Tensor, Tuple[Tensor, Optional[Tensor]]], edge_index:
Union[Tensor, SparseTensor], size: Optional[Tuplel[int, int]] = None)- Tensor

class GINEConv(nn: Module, eps: float = 0.0, train_eps: bool = False, edge_dim:
Optional[int] = None, *xkwargs)

def forward(x: Union[Tensor, Tuple[Tensor, Optional[Tensor]]], edge_index:
Union[Tensor, SparseTensor], edge_attr: Optional[Tensor] = None, size:
Optional[Tuplel[int, int]] = None)- Tensor



Base Models — DGRL-Hardware 0.1 documentation

The method is from How Powerful are Graph Neural Networks?. The implementation

adopts the PyG library.

GAT (GAT in config)

class GATConv(in_channels: Union[int, Tuplel[int, int]], out_channels: int, heads:
int = 1, concat: bool = True, negative_slope: float = 0.2, dropout: float = 0.0,
add_self_loops: bool = True, edge_dim: Optional[int] = None, fill_value:
Union[float, Tensor, str] = 'mean', bias: bool = True, s*xkwargs)

def forward(x: Union[Tensor, Tuple[Tensor, Optional[Tensor]]], edge_index:
Union[Tensor, SparseTensor], edge_attr: Optionall[Tensor] = None, size:
Optional[Tuplel[int, int]] = None, return_attention_weights: Optional[Tensor] =

None)- Tensor

The method is from Graph Attention Networks. The implementation adopts the PyG
library.

GPS-T (GPS in config)

class GPSConv(channels: int, conv: Optional[MessagePassing], heads: int =1,
dropout: float = 0.0, act: str = 'relu', act_kwargs: Optional[Dict[str, Anyl]l] =

None, norm: Optional[str] = 'batch_norm', norm_kwargs: Optional[Dict[str, Any]] =
None, attn_type: str = 'multihead', attn_kwargs: Optional[Dict[str, Any]l] = None)

def forward(x: Tensor, edge_index: Union[Tensor, SparseTensor], batch:
Optional[Tensor] = None, xxkwargs)- Tensor

The method is from Recipe for a General, Powerful, Scalable Graph Transformer. The

implementation adopts the PyG library.

GPS-P (PERFORMER in config)



Base Models — DGRL-Hardware 0.1 documentation

class GPSConv(channels: int, conv: Optional[MessagePassing], heads: int =1,
dropout: float = 0.0, act: str = 'relu', act_kwargs: Optional[Dict[str, Any]] =
None, norm: Optional[str] = 'batch_norm', norm_kwargs: Optionall[Dict[str, Any]] =
None, attn_type: str = 'performer', attn_kwargs: Optional[Dict[str, Any]] = None)

def forward(x: Tensor, edge_index: Union[Tensor, SparseTensor], batch:
Optional[Tensor] = None, xxkwargs)- Tensor

The method is from Rethinking Attention with Performers. The implementation adopts
the PyG library.

Message Passing Directions

e undirected (-)

for undirected message passing, set directed=0 in the general config and implement the

forward function with undirected message passing:

#general config.yaml
train:
directed: 0

def init_  ():
self.conv = $model
def forward():
x = self.conv(x, edge_index)

directed (DI-)

#general config.yaml
train:
directed: 1



Base Models — DGRL-Hardware 0.1 documentation

def __init_ ():
self.conv = $model
def forward():
x = self.conv(x, edge_index)

e bidirected (BI-)

#general config.yaml
train:
directed: 1

def __init_ ():
self.forward_conv = $model
self.backward_conv = $model

def forward():
x1 = self.forward_conv(x, edge_index)
x2 = self.backward_conv(x, edge_index)
x = merge(x1l + x2)

The detailed implementation of each methods are in ./models/base_model.py.



An Overview of Positional Encodings (PE) — DGRL-Hardware 0.1 documentation

# An Overview of Positional Encodings (PE)

An Overview of Positional Encodings (PE)

Positional encodings (PE) for graphs are vectorized representations that can effectively
describe the global position of nodes (absolute PE) or relative position of node pairs
(relative PE). They provide crucial positional information and thus benefits many
backbone models that is position-agnostic. For instance, on undirected graphs, PE can
provably alleviate the limited expressive power of Message Passing Neural Networks
1], [2] ; PE are also widely adopted in many graph transformers to incorporate
positional information and break the identicalness of nodes in attention mechanism [3],
4], As a result, the design and use of PE become one of the most important factors in
building powerful graph encoders.

Likely, one can expect that direction-aware PE are also crucial when it comes to
directed graph encoders. ‘Direction-aware’ implies that PE should be able to capture the
directedness of graphs. A notable example is Magnetic Laplacian PE [5], which adopts
the eigenvectors of Magnetic Laplacian as PE. Note that Magnetic Laplacian can encode
the directedness via the sign of phase of exp (+i2mq). Besides, when q=0, Magnetic
Laplacian reduces to normal symmetric Laplacian. Thus, Magnetic Laplacian PE for
directed graphs can be seen as a generalization of Laplacian PE for undirected graphs,
and the latter is known to enjoy many nice spectral properties and be capable to capture
many undirected graph distances. Therefore, Magnetic Laplacian appears to be a strong
candidate for designing direction-aware PE. See [6] for a comprehensive introduction to
Magnetic Laplacian.

Last, it is worth mentioning that there are also other PE for directed graphs, such as
SVD of Adjacency matrix and directed random walk.



Obtain Magnetic Laplacian PE via PyG Pre-transform — DGRL-Hardware 0.1 documentation

# Obtain Magnetic Laplacian PE via PyG Pre-transform

Obtain Magnetic Laplacian PE via PyG Pre-
transform

We provide a function that could obtain magnetic Laplacian PE based on
torch_geometric.transforms, our codes is built on AddLaplacianEigenvectorPE.

An example to call our function for MagLap PE is as follows:

class DataProcessor(InMemoryDataset):
def __init_ (self, config):
self.mag_pre_transform =
Compose( [AddMagLaplacianEigenvectorPE(k=config['model'] [ 'mag_pe_dim_input'],
g=config['model']['q"'],
multiple_qg=config['model'] ['g_dim'],
attr_name='mag_pe')])

def process:
if self.mag_pre_transform is not None:
data = self.mag_pre_transform(data)

The class is located at ./maglap/get_mag_lap.py and is as follows:

@functional_transform('add_mag_laplacian_eigenvector_pe')
class AddMaglLaplacianEigenvectorPE(BaseTransform):

r'"""Adds the Magnetic Laplacian eigenvector positional encoding. The
eigenvectors are

complex number, so choosing k of them means there will be 2%k channels (k
real parts and k imaginary parts)

in total.

Args:
k (int): The number of non-trivial eigenvectors to consider.
attr_name (str, optional): The attribute name of the data object to add
positional encodings to. If set to :o0bj: None', will be
concatenated to :obj: 'data.x’.
(default: :obj: "laplacian_eigenvector_pe" ")



Obtain Magnetic Laplacian PE via PyG Pre-transform — DGRL-Hardware 0.1 documentation

skkwargs (optional): Additional arguments of

:meth: scipy.sparse.linalg.eigs’ (when :attr: is_undirected’ 1is
:obj: False') or :meth: scipy.sparse.linalg.eigsh’ (when
rattr:'is_undirected’ is :obj: True’).

def __init_ (
self,
k: int,
q: float = 0.1,
dynamic_qg: bool = False,
multiple_qg: int =1,
attr_name: Optionall[str] = 'laplacian_eigenvector_pe',
*kkwargs,

self.k = k

self.q = q

self.dynamic_q = dynamic_q
self.multiple_g = multiple_q
self.attr_name = attr_name
self.kwargs = kwargs

def _ call_ (self, data: Data) —> Data:
from scipy.sparse.linalg import eigs, eigsh
eig_fn = eigsh # always use hermitian version

num_nodes = data.num_nodes
edge_index, edge_weight_list = get_mag_laplacian(
data.edge_index,
data.edge_weight,
normalization="'sym',
num_nodes=num_nodes,
q = self.q,
dynamic_g=self.dynamic_q,
multiple_g=self.multiple_q
)

pe_list = []
eigvals_list = []
for edge_weight in edge_weight_list:
L = to_scipy_sparse_matrix(edge_index, edge_weight, num_nodes)

+H
as
"

eig_vals, eig vecs = eig _fn(
L,
k=self.k,
which='5SA",
return_eigenvectors=True,
*xself.kwargs,
)
sort = eig _vals.argsort()
eig_vals = eig_vals[sort]
eig_vecs = eig_vecs[:, sort]
#texcept:

HoH B OH K HHHHH



Obtain Magnetic Laplacian PE via PyG Pre-transform — DGRL-Hardware 0.1 documentation

#from scipy.linalg Import eigh

#eig vals, eig vecs = eigh(L.toarray())
#sort = eig_vals.argsort()[:self.k]
#eig _vals = eig vals[sort]

#eig_vecs = eig _vecs[:, sort]
#eig_vals = eig vals[:self.k]
#eig_vecs = eig_vecs[:, :self.k]

#if np.isnan(eig_vecs).any() or np.isnan(eig_vals).any():
eig_vals, eig_vecs = np.linalg.eigh(L.toarray())

sort = eig_vals.argsort()[:self.k]

eig_vals = eig_vals[sort]

eig_vecs = eig_vecs[:, sort]

# padding zeros if num of nodes less than desired pe dimension
if len(eig_vals) < self.k:
eig_vals = np.pad(eig_vals, (@, self.k - len(eig_vals)))
eig_vecs = np.pad(eig_vecs, ((0, @),(0, self.k -
eig_vecs.shape[-1])))

#pe = np.concatenate( (np.expand_dims(np.real(eig_vecs[:,
eig vals.argsort()]), -1),

# np.expand_dims (np.imag(eig_vecs|[:,
eig vals.argsort()]), -1)), axis=-1)

#pe = np.concatenate( (np.expand_dims(np.real(eig_vecs), -1),

# np.expand_dims (np.imag(eig_vecs), -1)),
axis=-1)

# pe = torch.from_numpy(pe) # [N, pe_dim, 2]

#sign = -1 + 2 * torch.randint(e, 2, (self.k, ))

#sign = torch.unsqueeze(torch.unsqueeze(sign, dim=-1), dim=0)

#pe = sign * pe

#pe = pe.flatten(1, 2) # [N, pe_dim * 2]

pe = torch. from_numpy(np.expand_dims(eig_vecs, 1))
eig_vals = np.expand_dims(np.expand_dims(eig_vals, @), @)
pe_list.append(pe)
eigvals_list.append(torch. from_numpy(eig_vals))
#pe = torch.cat(pe_list, dim=-1)
#eig vals = torch.cat(eigvals_list, dim=-1)
pe = torch.cat(pe_list, dim=1)
eig_vals = torch.cat(eigvals_list, dim=1)
data = add_node_attr(data, pe, attr_name=self.attr_name)
#data = add_node_attr(data, eig_vals.reshape(l, -1), attr_name='Lambda')
data = add_node_attr(data, eig_vals, attr_name='Lambda')
return data



Positional Encoding Usage — DGRL-Hardware 0.1 documentation

# Positional Encoding Usage

Positional Encoding Usage

We provide two ways of incorporating PEs, node PE (NPE) and edge PE (EPE), by simply

adding a configuration of PE.

The configurations can be found in ./configs/pe/, and the implementations can be found

in ./models/middle_model.py.

A sample config can be like:

model:

pe_file_name: lap_naive
pe_type: lap
pe_strategy: variant
lap_pe_dim_input: 10
lap_pe_dim_output: 10
se_pe_dim_input: 0
se_pe_dim_output: 0

eigval_encoder:
in: 1
hidden: 32
out: 8
num_layer: 3

pe_embedder:
name: naive

The table below show the configuration to use for magnetic Laplacian PE with NPE or

EPE:
stable potential q pe_type
NPE g=0 lap
NPE q>0 maglap
EPE g=0 lap

pe_strategy pe_embedder example

variant ./configs/pe/laj
variant naive ./configs/pe/m:
invariant_fixed naive ./configs/pe/laj



Positional Encoding Usage — DGRL-Hardware 0.1 documentation

EPE g>0 maglap invariant_fixed ./configs/pe/m:

The eigval_encoder is used to configure the hyper-parameters of stable PE.

Note that NPE directly concatenate PE with node feature, while EPE processes PE with
stable PE and concatenates PE on edge features.



