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APPENDIX

OpenIns3D is a powerful, 2D input-free, fast-evolving, complex-input-handling framework for 3D
open-world scene understanding. We showcase the differences between OpenIns3D and other
frameworks in Figure 1.
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Figure 1: Comparison of the OpenIns3D framework with other models. OpenIns3D offers a
unique capability of using only 3D input, making it more applicable in real-life scenarios. a) 3D
feature distillation frameworks, where 2D images are used as a bridge to distill language-aligned
features into 3D, with typical works including OpenScene (?) and Clip2Scene (?). b) Building
3D-text pairs, where 2D captioning models are used to build 3D-text pairs for feature learning, with
typical works including PLA-family (???). c) CLIP and Projection, where objects are cropped out of
2D images before being processed by CLIP, and the results are directly projected into 3D, including
OpenMask3D (?), OV-3DET (?) and CLIP2 (?). d) Mask-Snap-lookup, where only 3D input is
needed for 3d open world scene understanding tasks
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A MORE DETAILS ON METHODOLOGIES

A.1 CLASS-AGNOSTIC MASK PROPOSAL MODULE

We modified components in Mask3D ? that require classification labels to make it a class-agnostic
setting. This includes removing semantic probability components in Hungarian Matching, elimi-
nating semantic classification loss, discarding classification logits-based ranking, and getting rid of
classification logits-based filtering. Instead, we added the Mask Scoring module and Mask Filtering
techniques to acquire high-quality mask proposals without relying on semantic labels.

Mask scoring firstly utilizing the Hungarian Match to pair N proposed masks with n ground truth
masks and calculating the IoU values. For N − n unmatched masks, the IoU is set to zero. This
yields GT IoUs for all proposed masks. Training involves using a two-layer MLP to process N
mask queries and predict their IoU values. The training is supervised by the the difference between
predicted IoU and Ground Truth IoU, as shown in formula ??.

A.2 CAMERA POSE GENERATION WITH Lookat FUNCTION

Here we detail how the pose matrix Pose can be obtained using the Lookat function, followed by ?.

Given the camera position coordinates Pcam, which are located even at the top of the scene, and the
camera target coordinate Ptarget, which is always the centre of the scene, along with the up axis of
the scene U (i.e. [0, 0,−1]), the pose matrix Pose can be obtained as follows:

Pose =

rightx upx −forwardx Tx

righty upy −forwardy Ty

rightz upz −forwardz Tz

0 0 0 1


Following the convention, ”right” corresponds to the positive x-axis, ”up” corresponds to the positive
y-axis, and ”forward” corresponds to the negative z-axis.

The normalized forward vector is the negative normalized direction from Pcam to Ptarget:

forward =
Pcam − Ptarget

∥Pcam − Ptarget∥

The normalized right vector is the cross-product between the up axis U and the forward vector:

right =
U × forward

∥U × forward∥

The normalized up vector is the cross-product between the forward vector and the right vector:

up =
forward× right

∥forward× right∥

The translation values Tx, Ty , and Tz are simply the components of the camera position Pcam:
Tx = Pcamx

, Ty = Pcamy
, Tz = Pcamz

Finally, the Pose matrix can be obtained by assembling these values into the 4× 4 matrix format.

A.3 CAMERA INTRINSIC CALIBRATION

Once the Pose matrix is obtained, we initialize the intrinsic matrix with a standard intrinsic matrix
Intri. Using both the Pose and Intri, we perform a rapid point projection with the completed
camera model, resulting in randomly positioned 2D scene. Subsequently, we uniformly scale the
values of fx, fy, cx, and cy in the initialized intrinsic matrix Intri by the same factor to reposition
and rescale the projected image into the center of the image plane. For example, if the original
projected point was located in image coordinates within the range of [−1000,−192] in x, our cali-
brated intrinsic metrics transform it to [0, 2000] in x. Crucially, we preserve the ratio between x and
y coordinates to achieve the final image without any additional loss in proportion. This procedure
ensures that the utilization of each image is extensive and encompasses all the proposed masks.
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Figure 2: Illustration of Local Enforced Lookup. The remaining masks from phase one first go
through the Occlusion Report module to select the best K views. The selected images are cropped
before being processed by the 2D detectors to encourage a classification result.

A.4 LOCAL ENFORCED LOOKUP

Here, we provide a detailed explanation of the Occlusion Report module that we proposed to effec-
tively evaluate the occlusion condition of masks in all synthetic images. Specifically, the following
four steps are executed:

• Step 1. Point Count Array: We initiate the process by constructing a 3D array with
dimensions W ×H × (M + 1), where M represents the number of masks, and 1 is added
to account for the background points. This array will be denoted as PC, i.e. point count,
as it is designed to store the number of points of the 3D mask projected onto each pixel in
the images. For example, if the pixel at coordinates i, j is occupied by two points from the
3D mask k during the projection, PTi,j,k will be assigned the value 2.

• Step 2. Foremost Point Identification: Utilizing the depth map generated during the
projection process, we construct a 2D array named FP with dimensions W ×H , which is
used to identify the foremost point in each pixel and indicate the originating mask number.
For example, if pixel i,j’s foremost point is projected from Mask k, we denote FPi,j = k.

• Step 3. Occlusion Rate Calculation: To evaluate the occlusion rate (OR) for mask k
within specific images, we compute the following formula:

ORk =

∑W
i=1

∑H
j=1 PCi,j,k · (FPi,j = k)

Tk

where T represent the total number of point in mask k.

• Step 4. All Images Report: Finally, we repeat steps 1-3 for all images to obtain an overall
report of the occlusion rate of each mask across all images, forming the final Occlusion
Report.

After selecting the best view, synthetic scene-level images are cropped to focus on a specific mask
proposal and then reprocessed by 2D detectors. The results are also searched with the help of
Mask2Pixel maps to form the final classification prediction for the mask, as shown in Figure 2.
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B IMPLEMENTATION DETAILS

B.1 MASK

The Mask Proposal Module is built upon a lightweight version of Mask3D ? with 3 decoder layers.
During training, we used 100 non-parameter queries for mask proposals. The bipartite matching
process relies solely on the focal loss (weighted by 5) and dice loss (weighted by 2), without incor-
porating classification results. Despite not utilizing classification information, the Mask Proposal
module is still capable of generating high-quality results. This is attributed to the diverse spatial
distribution of 3D points, where two losses based on spatial information alone are sufficient for ef-
fective matching. For the mask quality scoring module, we set λ to 0.1 to down-weight zero IOU
masks.

The Mask Proposal module is trained using the ADAM optimizer with a learning rate of 0.0003, and
the one-cycle scheduler is applied. For ScanNetv2, we follow the downsampling approach described
in ?, voxelizing the original input with a resolution of 0.02. We apply a series of augmentations,
including flipping, elastic distortion, random rotation, chromatic auto-contrast, chromatic jitter, and
translation. For S3DIS, we adopt the same settings as described in ?, training the MPM on Areas 1,
2, 3, 4, and 6, and testing on Area 5. For STPLS3D, we split the scene into 50-meter spans and use
preprocessing steps as outlined in ?. We follow the training and validation split on STPLS3D and
evaluate the performance of the validation set. All datasets are trained for 600 epochs on a single
Nvidia A100 80G GPU.

B.2 SNAP

We captured 16 images of the scene, evenly distributed along its outer boundary and focused on the
centre of the scene. For all three datasets, we capture images with dimensions of 1000 x 1000 for a
great trade-off between speed and performance. Additionally, to avoid the occlusion effect caused
by the ceiling, we discard the top 0.3m points in the STPLS3D and ScanNetv2 datasets. As a result,
the ceiling categories in the S3DIS dataset are completely discarded. We assign it a value of 0 in all
matrices when evaluating and comparing with other methods. For STPLS3D, the camera position is
located 5m higher than the top of the scene to acquire a better view.

B.3 LOOKUP

During the Lookup stage, we only assign a classification label to each mask if the results have been
verified in at least two views. This approach ensures a higher level of confidence in the assigned
class labels. In the case of Local Enforced Lookup, we crop the images using bounding boxes that
are twice the size of the target masks. The results are then fed into 2D detectors to refine the results.
Mask2Pixel maps, in this case, binary maps, are used to accurately search for the detection results,
as shown in Figure 2.

C EXPERIMENT ON SCANNET200

We further evaluate OpenIns3D’s performance on a more challenging dataset ScanNet200 (?), which
features a larger vocabulary and more categories. ScanNet200 comprises 200 classes, and based on
the frequency of labeled points in the training set, these 200 classes are split into three groups:
”head,” which contains 66 categories; ”common,” which contains 68 categories; and ”tail,” which
contains 66 categories. We report the results for each category groups.

While most other OpenScene models require 2D images during inference, the OpenScene 3D dis-
tillation model can process 3D point clouds directly for Open world understanding, making it also
a 2d-input free model. Compared with this model, OpenIns3D demonstrates stronger performance
across all category groups, with a notable 5.4% improvement, in head group.

In comparison to methods that use 2D aligned images during inference, OpenIns3D performs com-
petitively on the head categories, yet its performance drops in the common and tail categories.
This decline stems from OpenIns3D’s sole reliance on the input 3D reconstruction. Within this
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reconstruction, visual information for many small objects, particularly those in the common and tail
groups, are likely to be diluted or lost, resulting in less optimal performance on these categories.

On the other hand, OpenMask3D leverages original 2D image for mask understanding, showcasing
robust performance across all categories. However, this enhanced performance comes at the cost of
incorporation of additional modality, leading to a reduction in flexibility in its application.

Table 1: 3D instance segmentation results on the ScanNet200 validation set. OpenIns3D demon-
strates robust performance, when compared to 2D-input free models. In comparison with models
utilizing 2D images, it maintains competitive performance within the head categories split. How-
ever, notable limitations emerge when dealing with small objects in the common and tail classes.

Model Image Features use 2D head (AP) common (AP) tail (AP) AP AP50 AP25

OpenScene (2D Fusion) + masks OpenSeg ✓ 13.4 11.6 9.9 11.7 15.2 17.8
OpenScene (2D/3D Ens.) + masks OpenSeg ✓ 11.0 3.2 1.1 5.3 6.7 8.1
OpenScene (2D Fusion) + masks LSeg ✓ 14.5 2.5 1.1 6.0 7.7 8.5
OpenMask3D CLIP ✓ 17.1 14.1 14.9 15.4 19.9 23.1
OpenScene (3D Distill) + masks OpenSeg ✗ 10.6 2.6 0.7 4.8 6.2 7.2
OpenIns3D ODISE ✗ 16.0 6.5 4.2 8.8 10.3 14.4

D PER CATEGORIES ANALYSIS

D.1 COMPARISON WITH SOTA

Table 2 and Table 3 provide the per-class results of the proposed OpenIns3D on the S3DIS and
ScanNetv2 datasets. We follow the performance of PLA and highlight the novel (unseen) classes.
Note per categories results for RegionPLA and Lowis3D are not available. Table 4 represents the
per-categories results for STPLS3D data, compared with PointCLIP and PointCLIPV2.

Table 2: Per-class Results of 3D Open-vocabulary Instance Segmentation on S3DIS AP50.
Performance on novel classes is marked in blue .
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PLA ? B8/N4 89.5 100.0 50.8 00.0 35.3 36.2 60.5 00.1 84.6 01.9 00.8 59.4
B6/N6 89.5 60.2 17.9 00.0 41.5 10.2 02.1 00.6 86.2 45.1 00.1 02.2

OpenIns3D –/N12 00.0 84.4 29.0 00.0 00.0 62.6 25.2 25.5 52.0 60.0 00.0 00.0

Table 3: Per-class Results of 3D Open-vocabulary Instance Segmentation on ScanNet AP50.
Performance on novel classes is marked in blue .
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PLA ?
B13/N4 50.5 77.0 82.9 43.4 75.4 49.0 46.0 43.7 46.5 33.7 23.2 54.1 49.6 56.0 97.8 47.5 85.8
B10/N7 53.7 62.7 11.2 70.5 27.2 47.7 45.7 30.0 01.5 39.9 40.8 50.6 68.6 84.6 92.9 24.6 00.0
B8/N9 45.1 77.4 82.2 84.2 74.2 48.9 51.0 30.0 00.5 02.1 16.8 44.9 28.3 35.1 94.3 16.6 00.0

OpenIns3D –/N17 24.3 52.5 75.7 61.6 40.6 39.7 45.5 54.8 0.5 33.5 16.7 48.1 18.5 4.3 50.1 16.8 7.6

Table 4: Per-class Results of 3D Open-vocabulary Instance Segmentation on STPLS3D AP50.
All models are tested in a zero-shot manner.
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PointCLIP 15.3 0.4 10.2 06.6 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0
PointCLIPV2 20.3 0.2 12.3 5.8 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0
OpenIns3D 40.4 01.2 54.2 24.2 30.0 05.5 02.1 03.0 00.0 00.0 00.0 08.3
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In S3DIS, OpenIns3D consistently achieves high results for novel classes. We attribute this to the
high quality of 3D point data in S3DIS, which ensures favourable conditions for recognition in Snap
images.

However, for classes like columns, OpenIns3D struggles to produce meaningful results. Our perfor-
mance on categories such as windows, floors, doors, tables, and sofas is typically at least 20% higher
than PLA results. It is worth noting that PLA is partially trained on the base class and requires 2D
images for captioning purposes.

For the ScanNetv2 dataset, our model performs better than PLA in certain categories such as chairs,
sofas, tables, bookshelves, pictures, counters, and bathtubs. However, it slightly underperforms
PLA in categories like beds, fridges, shower curtains, toilets, and sinks. In ScanNetv2, the quality
of the point cloud data is not very high, especially for scans with higher scene IDs. As a result, the
quality of Snap output is limited by the original point cloud, leading to slightly lower performance.
Nevertheless, OpenIns3D, as a 2D input-free and label-free scheme, still achieves competitive per-
formance on the ScanNetv2 dataset.

In the case of STPLS3D, our model outperforms PointCLIP and PointCLIPV2 by a significant mar-
gin in almost every category, achieving very high results, particularly in categories such as buildings,
vehicles, trucks, and aircraft. However, the performance on very small objects, such as bikes, motor-
bikes, signs, and light poles, is not as strong. This is because the Snap module positions the camera
at a high-level point to capture point cloud data from buildings, resulting in a limited number of
pixels available for these smaller objects. This presents a challenge for OpenIns3D.

D.2 CROSS-DOMAIN ANALYSIS

Table 5 presents the per-category results for the cross-domain OpenIns3D model, trained on S3DIS
and tested on ScanNetv2. Despite the performance being relatively lower than that of the in-domain
model (trained and tested on the same dataset), the performance is still competitive when compared
to other SOTA results. Note that these SOTA models use pre-trained 2D/3D models to propose
bounding boxes, which are trained with in-domain data (ScanNetv2)

The class categories between S3DIS and ScanNetv2 are very different. Within the 17 classes in
ScanNetv2, only 6 classes exist in S3DIS. However, OpenIns3D, trained on S3DIS, can still per-
form relatively well in other categories that have never been seen before, demonstrating its good
generalization capability.

This outcome is as anticipated, as the design of MPM closely resembles that of SAM in the 2D
context, which has shown remarkable capabilities in mask proposal generation after being trained
on a substantial amount of data. We believe that with more 3D class-agnostic labels available, the
MPM module is capable of generating higher-quality Class-agnostic mask proposals.

Table 5: Cross-domain Analysis of OpenIns3D on OVOD on ScanNetv2 AP25. OpenIns3D
achieves competitive results on the cross-domain dataset, even on categories at are not available on
the training dataset, highlighted in blue . Compared with other SOTA models on OVOD, cross-
domain OpenIns3D still has competitive performance. MPM-SC: MPM trained on ScanNetv2;
MPM-S3: MPM trained on S3DIS.
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OpenIns3D MPM-SC 17.1 57.5 74.5 59.2 36.9 29.3 47.5 26.4 0.0 31.1 32.2 55.4 39.1 0.0 57.4 42.1 6.6
OpenIns3D MPM-S3 16.1 43.5 45.7 41.8 28.6 17.7 18.3 31.9 1.2 1.0 29.3 23.1 20.1 8.0 63.6 16.4 1.7
SOTA models
PointCLIP P-3DE 6.0 4.8 45.2 4.8 7.4 4.6 2.2 - - 1.0 4.0 - - - - 13.4 6.5
PointCLIPV2 P-3DE 19.3 21.0 61.9 15.6 23.8 13.2 17.4 - - 12.4 21.4 - - - - 14.5 16.8
OV-3DET P-2DE 3.0 42.3 27.1 31.5 14.2 9.6 - 5.6 - 0.3 19.7 10.5 11.0 - 57.3 31.6 56.3

E OTHER ATTEMPTS FOR IMAGE GENERATION

Figures 3 and Table 6 illustrate the alternative approaches we explored before arriving at the con-
clusion that synthetic scene-level images offer the optimal solution for open vocabulary instance
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Figure 3: Visualization of Attempts Made to Generate 2D Images from 3D. I: LAR-point pro-
jection; II: LAR-point-bg-project; III: Mesh rendering; IV Mesh-in-scene Rendering; V: Mesh-bg-
Rendering; VI: Cropped from Original 2D images; VII: Scene Level Rendering from Mesh; VIII:
Scene Level Rendering from Point. Performance can be found in Table 6.
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Table 6: Evolution of Snap and Lookup Module. The corresponding image visualization is shown
in Figure 3. Scene-level rendering not only requires fewer images but also achieves superb results
when compared to other pre-mask levels of rendering. *: The image sizes of VI are adjusted to fit the size of the mask area on the
original images.

Idx Methods Job intensity Imgs needed Original
2D

Img size 2D backbone AP50 AP25

I LAR-point projection per mask 250 ✗ 1282 CLIP 5.3 8.6
II LAR-point-bg-projection per mask 250 ✗ 1282 CLIP 6.3 10.5
III mesh-rendering per mask 250 ✗ 1282 CLIP 6.8 7.2
IV mesh-scene-rendering per mask 250 ✗ 1282 CLIP 6.7 7.3
V mesh-bg-rendering per mask 250 ✗ 1282 CLIP 4.3 5.3
VI crop-original2d per mask 250 ✓ −∗ CLIP 24.3 29.6
VII scene-mesh-rendering per scene 8 ✗ 10002 ODISE 18.8 29.8
VIII scene-mesh-rendering per scene 8 ✗ 10002 ODISE 28.7 38.9
IX scene-point-rendering per scene 8 ✗ 10002 ODISE 21.5 33.6

segmentation. These methods primarily relied on per-mask rendering, i.e. generating multiple 2D
images for each mask.
Attempts I, II: Inspired by the success of LAR ?, which uses synthetic images of objects to
assist in the 3D visual grounding task, we first explore a similar approach. This involves positioning
the camera around the object and projecting point clouds to generate multi-view images for each
mask. However, these approaches yielded unsatisfactory performance when integrated with the
CLIP model, even with their background being projected. This is mainly due to the fact that many
masks are too broken, and the projected images are difficult to recognize even for humans.
Attempts III, IV, V: We redirected our attention to the mesh model. Although meshes are not
always available for all 3D point clouds, we decided to investigate whether the mesh model could
enhance the quality of rendered images, thereby making them more recognizable with 2D models.
However, the outcomes of pre-mask rendering III, IV, V still encountered challenges in achieving
reasonable performance, not to mention the considerable rendering time they demanded. The prob-
lem still boils down to the quality of the point clouds themselves. For masks with very clear and
complete point clouds, such as the chair presented in Figures 3, these approaches can produce rea-
sonable results. However, most masks are very difficult to recognize even in the mesh model. Even
for human beings, a substantial amount of contextual information is required to understand those
broken, distorted, and sparse mask instances.
Attempt VI: We then start to experiment with using original images and cropping out masks in
the images for evaluation VI. We believe this offers the best quality of images, therefore making
them most likely to be recognizable with 2D models. We use Occlusion Reports methods to select
the top K views from all frames and crop out mask pixels with an enlarged bounding box. This
approach did achieve notable performance, primarily due to the high quality of 2D images. How-
ever, we ultimately abandoned this approach due to concerns about its applicability in general
scenarios for two reasons:

1. Such an approach requires well-aligned 2D images in both the training and inference stages.
Our argument is that if well-aligned 2D images are readily available and can be seamlessly
linked with 3D data, meaning they have pose, intrinsic, and depth information, it is much
easier to approach open-world tasks from a 2D perspective. The open-world understanding
of 3D can be achieved by conducting open-world detection in 2D images and projecting
the results into 3D point clouds using available camera models and depth maps. Similar
approaches have been shown to be feasible in SAM3D ?. Therefore, the motivation for
such an approach is questionable.

2. In many instances, 2D images occupy a significant portion of storage space, and it would
be more practical to not rely solely on 2D images. For example, in ScanNetv2, the point
cloud/mesh file of a scene occupies around 3MB, while the entire 2D image collection con-
sumes roughly 3GB. Additionally, in many cases, 2D images are not available, as discussed
in the introduction section.

Attempt VII, VIII, XI: Turning our attention to scene-level rendering, our model demonstrated
a significant enhancement in performance (VII) with a notable increase of 12.0% on AP50. This
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was because, by observing all broken instances from a distance and incorporating a large amount of
contextual information, objects became clear and recognizable. Switching the 2D backbone from
Grounding-DINO to ODISE offers further improvement (+8.9%), as ODISE proves to be more
robust for diverse input queries. While rendering by the mesh model contributed to improved clarity
(VIII) in images, leading to enhanced results, rendering from the point cloud made the approach
more applicable (XI), and the performance remained decent when compared to other state-of-the-art
methods. This is why we rendered from the point cloud in most of the datasets we tested.

F LIMITATIONS AND FUTURE WORK

OpenIns3D is a novel framework that achieves remarkable performance in open-vocabulary in-
stance segmentation, surpassing many existing methods. However, there are some limitations of
OpenIns3D that need further investigation in future studies.

• Reliance on Ground Truth Instance Masks: Similar to SAM ?, OpenIns3D still relies on
ground truth mask supervision. While it does prove to have the capability to generalize
masks that have never been seen before, the performance on mask proposal at scale still
has a large room for improvement. Learning from the success of SAM, a query-based
transformer decoder backbone could yield impressive results when trained with a large-
scale dataset. There is a line of research dedicated to learning 3D class-agnostic masks,
exemplified by approaches like UnScene3D ? and SAM3D ?. These approaches could
serve as either alternatives to MPM or as a means of generating class-agnostic labels at
scale for MPM to be trained on. Exploring this path further could be an interesting avenue
for future research.

• Limited Performance in Semantic Segmentation: OpenIns3D heavily relies on filtering to
refine the mask proposals, discarding masks with low quality directly. While this approach
benefits instance segmentation by reducing false positive instances, it may limit its per-
formance in semantic segmentation. We have also calculated the semantic segmentation
results of OpenIns3D on four categories, as reported by OpenScene ?, as shown in Table 7.
Our method still exhibits a gap compared to OpenScene in terms of semantic segmentation.

• Small Object Performance: As shown in Table 1, the performance of OpenIns3D is ulti-
mately closely linked to the quality of the point cloud itself. Masks that are very small or
made of sparse point clouds would be difficult to recognize in the rendered images, as they
either occupy a small portion of the image pixels or are too fragmented to be detected by
the 2D models.

Nonetheless, while most researchers in the community are focused on aligning point and image
features for open-world capabilities in the 3D domain, we aim to propose a simple, flexible, and
powerful framework that requires no 2D input but can still achieve impressive results. OpenIns3D
can easily evolve with the rapid development of 2D open-world models. In this era of rapid evolution
of foundation models, we believe this attribute makes OpenIns3D powerful in many settings.

Table 7: Comparison with OpenScene and other Frameworks on Semantic Segmentation. Our
framework prioritises mask quality and suffers overall semantic segmentation results.

Semantic Seg. mIoU mAcc

Methods Bookshelf Desk Sofa Toilet Mean Bookshelf Desk Sofa Toilet Mean
3DGenZ (?) 6.3 3.3 13.1 8.1 7.7 13.4 5.9 5.9 26.3 12.9
MSeg Voting (?) 47.8 40.3 56.5 68.8 53.3 50.1 67.7 67.7 81.0 66.6
OpenScene-LSeg (?) 67.1 46.4 60.2 77.5 62.8 85.5 69.5 69.5 90.0 78.6
OpenScene-OpenSeg (?) 64.1 27.4 49.6 63.7 51.2 73.7 73.4 73.4 95.3 79.0
OpenIns3D 54.8 16.7 61.6 50.6 45.9 59.0 32.3 76.7 79.8 61.9

G VISUALIZATION

Mask Proposal Figure 4 and 5 present a qualitative evaluation of the mask proposal module. The
learned mask proposals exhibit great similarity to the ground truth masks, often capturing additional
unlabeled masks. This demonstrates the effectiveness of our class-label-free learning scheme in
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producing high-quality class-agnostic mask proposals. Moreover, through the application of Mask
Scoring and Mask Filtering techniques, we are able to connect fragmented or fragile masks, resulting
in a substantial improvement in mask quality. These advancements provide a strong foundation for
the Snap and Lookup understanding scheme.

Snap visualization Figure 6, 7 and 8 demonstrate the capability of the Snap module. With the
proposed pose and intrinsic optimization scheme, the Snap module is capable of generating decent-
quality images from point clouds, regardless of whether the dataset is indoor or outdoor.

Lookup Results Visualization The Lookup module effectively links 2D results with 3D. Here,
we present visualizations of its outcomes from all three datasets (Figure 9, 10, 11). OpenIns3D is
capable of capturing the most interesting objects in the scene without relying on any corresponding
2D images.
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Raw point clouds GT instance masks

Predicted masks without filtering Predicted masks with filtering

Raw point clouds GT instance masks

Predicted masks without filtering Predicted masks with filtering

Figure 4: Qualitative Evaluation of the Mask Proposals. Our class-label-free approach produces
high-quality masks that closely resemble the ground truth. Additionally, the incorporation of Mask
Scoring and Mask Filtering further enhances the overall quality of the masks. Quantitative evalua-
tion is shown in Table ??.
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Raw point clouds GT instance masks

Predicted masks without filtering Predicted masks with filtering

Raw point clouds GT instance masks

Predicted masks without filtering Predicted masks with filtering

Figure 5: Qualitative Evaluation of the Mask Proposals. Our class-label-free approach produces
high-quality masks that closely resemble the ground truth. Additionally, the incorporation of Mask
Scoring and Mask Filtering further enhances the overall quality of the masks. Quantitative evalua-
tion is shown in Table ??.
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Figure 6: Synthetic Scene-level Images of S3DIS Generated by Snap. The first image is the
original spare point cloud, and the following three images are outcomes of the Snap module.
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Figure 7: Synthetic Scene-level Images of ScanNetv2 Generated by Snap. The first image is the
original spare point cloud, and the following three images are outcomes of the Snap module.
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Figure 8: Synthetic Scene-level Images of STPLS3D Generated by Snap. The first image is the
original spare point cloud, and the following three images are outcomes of the Snap module.
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Input Queries: 'ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door', 'table', 'chair', 'sofa', 
'bookcase', 'board'

Figure 9: Open-vocabulary Instance Segmentation Results of S3DIS by OpenIns3D (ODISE).
Instance and class labels are presented in the same color.
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Input Queries: 'cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', 'bookshelf', 'picture', 
'counter', 'desk', 'curtain', 'refrigerator', 'shower curtain', 'toilet', 'sink', 'bathtub'

Figure 10: Open-vocabulary Instance Segmentation Results of ScanNetv2 by OpenIns3D
(ODISE). Instance and class labels are presented in the same color.
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Input Queries: 'building', 'vegetation', 'vehicle', 'truck', 'Aircraft', 'military vehicle', 'bike', 
'motorcycle', 'light pole', 'street sign', 'clutter', 'fence'

Figure 11: Open-vocabulary Instance Segmentation Results of STPLS3D by OpenIns3D
(ODISE). Instance and class labels are presented in the same color.
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