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ABSTRACT
Designing embedding costs is pivotal in modern image steganog-
raphy. Many studies have shown adjusting symmetric embedding
costs to asymmetric ones can enhance steganographic security.
However, most existing methods heavily depend on manually de-
fined parameters or rules, limiting security performance improve-
ments. To overcome this limitation, we introduce an advanced
GAN-based framework that transitions symmetric costs to asym-
metric ones without the need for the manual intervention seen
in existing approaches, such as the detailed specification of cost
modulation directions and magnitudes. In our framework, we firstly
achieve symmetric costs for a cover image, which is randomly split
into two sub-images, with part of the secret information embed-
ded into one. Subsequently, we design a GAN model to adjust the
embedding costs of the second sub-image to asymmetric, facilitat-
ing the secure embedding of the remaining secret information. To
support our phased embedding approach, our GAN’s discriminator
incorporates two steganalyers with different tasks: distinguishing
the generator’s final output, i.e., the stego image, from both the
input cover image and the partially embedded stego image, provid-
ing diverse guidance to the generator. In addition, we introduce
a simple yet effective update strategy to ensure a stable training
process. Comprehensive experiments demonstrate that our method
significantly enhances security over existing symmetric steganogra-
phy techniques, achieving state-of-the-art levels compared to other
methods focused on embedding costs adjustments. Additionally,
detailed ablation studies validate our approach’s effectiveness.
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1 INTRODUCTION
Image steganography involves the imperceptible embedding of se-
cret messages within images for covert communication. Current
steganographic research utilizes the distortion minimization frame-
work [9]. Within this paradigm, the key challenge is to design em-
bedding costs for each embedding unit (pixels or DCT coefficients)
within an image. Subsequently, coding schemes like Syndrome-
Trellis Codes (STC) [8] and Steganographic Polar Codes (SPC) [20]
are then applied to embed secret information, aiming to approach
the rate-distortion boundary. In contrast to other information hid-
ing techniques such as watermarking, security is the foremost
metric of evaluation in steganography, defined by the method’s
effectiveness in avoiding detection by steganalyzers.

Embedding costs can be divided into symmetric and asymmetric
types. Symmetric steganography operates under the assumption
that +1 or -1 modifications on the same embedding unit have the
same impact on steganographic security, whereas asymmetric meth-
ods recognize different impacts. Among existing steganographic
approaches, the majority of embedding costs are symmetric, includ-
ing both traditional methodsmanually designed, such asWOW [13],
S-UNIWARD [14] and HILL [17], and those based on deep learning
techniques, like ASDL-GAN [32], UT-GAN [36], SPAR-RL [30] and
steg-GMAN [15]. Current research [18, 24] indicates that symmetric
steganography often fails to adequately account for the statistical
relationships between neighboring pixels in images, leading to a
security enhancement bottleneck. Consequently, the development
of asymmetric embedding costs has emerged as a pivotal research
direction for enhancing the security of steganography.

Defining or learning an effective asymmetric embedding cost
from scratch is relatively challenging, which is why most current
efforts start with a given symmetric embedding cost and then ob-
tain an asymmetric one through adjustments. For instance, CMD
[18] and Synch [6] advocate for synchronizing modification direc-
tions during the adjustment of embedding costs, which markedly
enhance the security over their symmetric counterparts. However,
these strategies [18, 6, 34, 39, 33] are largely based on heuristic
principles that require a deep understanding of image features.
In contrast, inspired by the concept of adversarial examples [12],
some studies have adopted a learning approach to derive asymmet-
ric embedding costs by countering CNN-based steganalyzers. These
methods [4, 19, 22, 23, 26, 27, 29, 31] typically involve pre-training
a CNN-based steganalyzer using existing symmetric methods like
S-UNIWARD or HILL. Following this, they adjust embedding costs
based on the signs and magnitudes of gradients provided by the
steganalyzer, adhering to specific modification rules. For instance,
the UGS [23] initially identifies embedding units necessitating ad-
justment by evaluating gradient magnitudes and initial embedding
costs, using two manually set ratios. Additionally, a pre-determined
parameter is needed to dictate the magnitude of modifications for
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each embedding unit. Although these adjusted methods can effec-
tively enhance the corresponding symmetric steganography, they
heavily depend on manually defined parameters and rules for ad-
justment. The selection of these parameters significantly influences
their performance. Unlike methods that rely on heuristic principles
and adversarial examples, ReLOAD [25] utilizes a network to learn
adjustment policies by minimizing the residual distance between
cover and stego images. While ReLOAD markedly improves the
security performance of current symmetric approaches. However,
like UGS, ReLOAD also requires meticulous choice of adjustment
amplitude, which significantly influences the security performance.
Moreover, the constant amplitude restricts the capacity to fully
leverage the potential of the adjustment, given that the optimal
amplitude might vary across various regions of an image.

GANs [11] are potent generative models extensively used in var-
ious applications, including image generation, editing, inpainting,
and style transformation. Unlike these applications, the distinct
requirements of steganography, such as ensuring the complete ex-
traction of secret information and making modifications visually
undetectable, limit the adoption of GAN-based techniques in image
steganography. Consequently, there are only a few steganographic
efforts, such as [32, 36, 30, 15, 16, 21], that are designed using GANs.
These approaches exhibit superior security compared to traditional
methods, highlighting the potent learning capability of GANs in
steganography. To our best knowledge, however, there is no ex-
isting research that specifically investigates the use of GANs to
automatically refine symmetric embedding costs, aimed at enhanc-
ing current steganography methods.

This paper presents an innovative GAN-based framework de-
signed to enhance the security of existing symmetric steganography
through the automatic adjustment of embedding costs. Initially, in
our framework’s Initial Embedding Process stage, we calculate
the embedding costs for a cover image subjected to symmetric
steganography. We then divide this cover image into two distinct,
non-overlapping equal sub-images randomly. The first sub-image
is employed to embed half of the secret information, leveraging the
initial symmetric embedding costs. The embedding costs for the
second sub-image are automatically adjusted using the proposed
GAN framework. By adopting our phased embedding strategy, we
integrate two steganalyzers within the discriminator. These stegan-
alyzers are designed to distinguish the generated stego image from
both the original cover image and the partially embedded stego
image, thus offering varying guidance to the generator. In addition,
we introduce a straightforward yet efficient update strategy to bal-
ance the performance of the generator and discriminator as much
as possible for ensuring stable and effective training. Overall, the
key contributions of this work are highlighted as follows:

• We introduce a GAN-based model capable of autonomously
adjusting existing symmetric embedding costs for enhancing
steganographic security. This approach significantly differs
from previous related steganography approaches that overly
relies on manually set adjustment parameters or rules.

• Unlike current GAN-based steganography approaches, our
approach harnesses the advantages of our phased embedding
technique, enabling the integration of two steganalyzers
with varied discrimination tasks within the discriminator.

In addition, we offer a straightforward update strategy to
achieve and maintain a relative stable and effective process
during the GAN training stage.

• Through thorough comparative experiments, we show that
our approach substantially improves the security of symmet-
ric steganography, setting a new benchmark for state-of-the-
art performance. Additionally, we provide detailed ablation
studies to validate the effectiveness of our method.

2 PROPOSED METHOD
As depicted in Figure 1, the framework of the proposed method
consists of two main stages: the Initial Embedding Process and the
GAN Framework for Refinement.

In Stage #1, we commence by calculating the preliminary em-
bedding probability map, 𝑃1, for the input cover image 𝑋 utiliz-
ing a prior symmetry method, 𝑆𝑖𝑛𝑖𝑡 (·), like HILL. Given that the
cover image 𝑋 is defined as 𝑋 = [𝑥 (𝑖, 𝑗)]𝐻×𝑊 with dimensions
𝐻 ×𝑊 , and the probability map 𝑃1 as 𝑃1 = [𝑝1 (𝑖, 𝑗)]𝐻×𝑊 , where
𝑝1 (𝑖, 𝑗) ∈ [0, 1] indicates the likelihood of the pixel value 𝑥 (𝑖, 𝑗) be-
ing altered in data embedding process. Concurrently,𝑋 is randomly
divided into two sub-images with equal size, identified by𝑀𝑎𝑠𝑘1 =
[𝑚𝑎𝑠𝑘1 (𝑖, 𝑗)]𝐻×𝑊 ∈ {0, 1} and 𝑀𝑎𝑠𝑘2 = [𝑚𝑎𝑠𝑘2 (𝑖, 𝑗)]𝐻×𝑊 ∈
{0, 1}, where𝑀𝑎𝑠𝑘1 assigning a value of 1 when the elements are
located at the first sub-image and assigning 0 when the elements
are located at the second sub-image, and inversely for the𝑀𝑎𝑠𝑘2.
Subsequently, half of the secret information is embedded into the
first sub-image marked by𝑀𝑎𝑠𝑘1 using STC, resulting in a modifi-
cation map𝑀1 = [𝑚1 (𝑖, 𝑗)]𝐻×𝑊 , where𝑚1 (𝑖, 𝑗) ∈ {−1, 0, +1}, and
the corresponding partially embedded stego image 𝑌1.

In Stage #2, a GAN is designed to modify the embedding costs
on the remaining sub-image and complete the embedding of the
remaining secret information. In the subsequent sub-sections, we
will individually and thoroughly detail the design aspects of the
generator, discriminator, and update strategy in Stage #2 within
the GAN framework.

2.1 Generator
Design of Structure: In the proposed method, the generator re-
ceives two inputs: the initial symmetric embedding probability map
𝑃1 and a modification map 𝑀1, which result from the Initial Em-
bedding Process. Leveraging the alterations indicated by 𝑀1, the
generator aims to adjust 𝑃1 in the second sub-image (identified by
𝑀𝑎𝑠𝑘2) to achieve a more secure asymmetric embedding probabil-
ity. Subsequently, it embeds the remaining secret information into
this modified probability landscape.

To this end, we firstly employ an adjustment network for the
generator, illustrated in Figure 2. This network resembles the U-
Net architecture, comprising an encoder and decoder layer. The
encoder layer consists of 8 down-sampling blocks, while the decoder
layer comprises two branches with 8 up-sampling blocks each.
Every block consists of two convolution layers, followed by batch
normalization and LeakyReLU activation. Unlike previous GAN-
based steganographic methods such as [32, 36, 30], which typically
employ the common U-Net architecture, taking the cover image
as input and outputting the corresponding symmetric embedding
probabilities, the adjustment network takes the concatenation of
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Figure 1: The framework of the proposed method.

𝑀1 and 𝑃1 as input, and directly outputs the adjusted asymmetric
probability map 𝑃+2 = [𝑝+2 (𝑖, 𝑗)]

𝐻×𝑊 and 𝑃−2 = [𝑝−2 (𝑖, 𝑗)]
𝐻×𝑊 . In

these maps, 𝑝+2 (𝑖, 𝑗) and 𝑝
−
2 (𝑖, 𝑗) represents the probability of being

embedded +1 and -1 for the pixel value 𝑥 (𝑖, 𝑗) of the cover image 𝑋 .
It should be noted that, during the Initial Embedding Process, the
sub-image within the cover image 𝑋 , identified by𝑀𝑎𝑠𝑘1, has been
utilized to embed half of the secret information. Therefore, while the
probability maps 𝑃+2 and 𝑃−2 cover the entire image, attention will
be focused solely on the probabilities associated with the second
sub-image. This strategy is employed to streamline the embedding
process for the remaining secret information.

Considering that the STC embedding process initially involves
converting embedding probabilities into embedding costs (as in-
dicated in Equation (2)), followed by the execution of STC on the
computed embedding costs, this procedure is non-differentiable
and notably slow. To circumvent these limitations, an embedding
simulator is employed during the training of the GAN model. This
simulator uses modified embedding probabilities (𝑃+2 and 𝑃−2 ) to
effectively simulate the information embedding process. Specifi-
cally, we firstly generate a random noise matrix 𝑁 = [𝑛(𝑖, 𝑗)]𝐻×𝑊 ,
where each element 𝑛(𝑖, 𝑗) falls within the range [0, 1]. Following
this, the modification map 𝑀2 is derived by comparing the noise
element with the corresponding embedding probability that are
located at𝑀𝑎𝑠𝑘2, as detailed below:

𝑚2 (𝑖, 𝑗) =

+1, 𝑛(𝑖, 𝑗) < 𝑝+2 (𝑖, 𝑗) &𝑚𝑎𝑠𝑘2 (𝑖, 𝑗) = 1,
−1, 𝑛(𝑖, 𝑗) > 1 − 𝑝−2 (𝑖, 𝑗) &𝑚𝑎𝑠𝑘2 (𝑖, 𝑗) = 1,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(1)

Then we add the partially embedded stego image 𝑌1 and the result-
ing modification map𝑀2 to achieve the final stego image 𝑌2 which
contains the whole secret information. This process ensures that
half of the secret information is embedded within the sub-image
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Figure 2: The structure of the adjustment network in the
proposed method.

identified by 𝑀𝑎𝑠𝑘1, and the remaining half is embedded within
the sub-image identified by𝑀𝑎𝑠𝑘2.

It should be emphasized that the embedding simulator is de-
ployed exclusively during the GAN model’s training phase. Upon
completing the training, the embedding costs 𝜌2 are calculated
using the following equations:

𝜌+2 = 𝑙𝑛(1/𝑝+2 − 2),
𝜌−2 = 𝑙𝑛(1/𝑝−2 − 2),
𝜌02 = 0.

(2)

Utilizing these costs, we can generate the actual stego images
through the STC process.

Design of Loss Functions: To guide the generator’s updates, the
corresponding loss function is defined as follows:

𝑙𝐺 = 𝛼 · 𝑙1𝐺 + 𝛽 · 𝑙2𝐺 + 𝛾 · 𝑙3
𝐺
, (3)

comprising the adversarial loss 𝑙1
𝐺
, the entropy loss 𝑙2

𝐺
and the

reconstruction loss 𝑙3
𝐺
. Here 𝛼 , 𝛽 and 𝛾 are the weights to attain
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a balance between the amplitudes of the loss components. In our
experiments, we set 𝛼 = 1, 𝛽 = 10−6 and 𝛾 = 10. Next, we will
discuss these three distinct losses in detail.
Adversarial Loss: The adversarial loss 𝑙1

𝐺
aims at guiding a secure

modification against discriminator, which is given by:

𝑙1𝐺 = − 1
𝐻 ×𝑊

∑︁
∀(𝑖, 𝑗 )

𝑟 (𝑖, 𝑗) · [𝑙𝑜𝑔(𝑝+2 (𝑖, 𝑗)) · 𝛿 (𝑚2 (𝑖, 𝑗) = +1)+

𝑙𝑜𝑔(𝑝−2 (𝑖, 𝑗)) · 𝛿 (𝑚2 (𝑖, 𝑗) = −1)],
(4)

where 𝑝+2 (𝑖, 𝑗), 𝑝
−
2 (𝑖, 𝑗) and𝑚2 (𝑖, 𝑗) respectively denote the (𝑖, 𝑗)-th

element in the probability map 𝑃+2 , 𝑃
−
2 and the modification map𝑀2.

𝛿 (·) represents an indicator function. The weight 𝑟𝑖, 𝑗 for position
(𝑖, 𝑗) is defined as follows:

𝑟 (𝑖, 𝑗) = 𝜖 ·𝑚2 (𝑖, 𝑗) · 𝑔(𝑖, 𝑗) · 𝑡 (𝑖, 𝑗), (5)

where 𝜖 = 107. The gradient component 𝑔(𝑖, 𝑗) represents the gradi-
ent at position (𝑖, 𝑗) provided by the discriminator, to be discussed
in Equation (10) in the subsection 2.3. This encourages modifica-
tion in the direction of the gradient, as when the sign of𝑚2 (𝑖, 𝑗)
matches that of 𝑔(𝑖, 𝑗), it increases 𝑟 (𝑖, 𝑗), aiming at confounding
the discriminator’s ability to distinguish. The residual component
𝑡 (𝑖, 𝑗) is the (𝑖, 𝑗)-th element of 𝑇 , which is the absolute values
of 𝑌1’s residual filtered by a 3 × 3 Laplacian filter kernel with a
center element 8, aimed at concentrating modifications in regions
characterized by complex textures.
Entropy Loss: The entropy loss 𝑙2

𝐺
is to ensure the embedding

capacity within the second sub-image, and is defined as follows:

𝑙2𝐺 = (𝑐 − 𝐻 ×𝑊 × 𝑞/2)2, (6)

where 𝑞 denotes the embedding payload and 𝑐 is the capacity com-
puted based on the embedding probabilities within the second
sub-image:

𝑐 = −
∑︁
∀(𝑖, 𝑗 )

∑︁
∀𝑘

𝑝𝑘2 (𝑖, 𝑗) · 𝑙𝑜𝑔(𝑝
𝑘
2 (𝑖, 𝑗)) ·𝑚𝑎𝑠𝑘2 (𝑖, 𝑗), (7)

where 𝑘 ∈ {−1, 0, +1}. Due to the second sub-image embedding
only half the amount of secret information, the target embedding
capacity in the loss function (6) is also halved.
Reconstruction Loss:As outlined earlier, the proposed adjustment
network alters embedding probabilities across the whole image,
not just within the area defined by 𝑀𝑎𝑠𝑘2. Given that the sub-
image indicated by 𝑀𝑎𝑠𝑘1 already contains embedded data, our
goal is to maintain the probabilities in the first sub-image and limit
adjustments solely to the second sub-image. To achieve this, the
reconstruction loss 𝑙3

𝐺
is specifically engineered to maintain the

embedding probabilities within the first sub-image, identified by
𝑀𝑎𝑠𝑘1. This mechanism is encapsulated in the following expression:

𝑙3𝐺 =
1

𝐻 ×𝑊

∑︁
∀(𝑖, 𝑗 )

∑︁
∀𝑘

| (𝑝𝑘2 (𝑖, 𝑗) − 𝑝𝑘1 (𝑖, 𝑗)) ·𝑚𝑎𝑠𝑘1 (𝑖, 𝑗) |, (8)

where 𝑘 ∈ {−1, 0, +1} and 𝑝𝑘1 (𝑖, 𝑗) represents the initial embedding
probability to embed 𝑘 for pixel 𝑥 (𝑖, 𝑗). Due to the symmetric nature
of the initial embedding probabilities, 𝑝+1 (𝑖, 𝑗) and 𝑝

−
1 (𝑖, 𝑗) are both

equal to 𝑝1 (𝑖, 𝑗)/2, and 𝑝01 (𝑖, 𝑗) = 1 − 𝑝1 (𝑖, 𝑗).
It’s important to highlight that this particular loss function is not

found in earlier GAN-based steganography methods. Our design is
tailored to the unique requirements of our adjustment task, taking

cues from the domain of image inpainting [38, 28, 40]. In these
works, reconstruction loss is frequently used to ensure the inpainted
image closely matches the original in areas that are not modified,
thereby maintaining the integrity of the unaltered sections while
effectively restoring the altered or missing areas. This principle
mirrors the objectives of our task. Furthermore, empirical evidence
from our experiments suggests that incorporating reconstruction
loss positively influences the generator’s performance, enhancing
it to a certain degree, notably achieving over an 1% improvement
against the steganalyzer Yedroudj-Net [37].

2.2 Discriminator
Design of Structure: The primary goal of the discriminator is
to distinguish between the input cover image 𝑋 and the stego
image 𝑌2 that contains all the secret information, created by the
generator. In our proposed framework, the process of embedding
information is divided into two phases: initially embedding half
of the secret information onto the sub-image identified by 𝑀𝑎𝑟𝑘1,
and subsequently embedding the remaining secret information
onto another sub-image identified by𝑀𝑎𝑟𝑘2. To fully leverage the
information from the stego images generated during these two
phases to guide the modification of embedding probabilities, we
incorporate two steganalyzers, 𝐷1 and 𝐷2, into the discriminator,
each tasked with specific discriminating functions.

Specifically, besides setting up steganalyzer 𝐷1 to differentiate
the cover image 𝑋 from the final stego image 𝑌2, we recognize
that 𝑌2 is modified on the basis of the stego 𝑌1. Therefore, the
modification locations and their directions in 𝑌2 (i.e., 𝑀2) are in-
fluenced by the first round of steganographic modifications in 𝑌1
(i.e.,𝑀1). Previous steganographic studies such as [6, 18] have in-
dicated that concentrating modifications in specific locations and
maintaining consistent modification directions among adjacent pix-
els can significantly improve steganographic security. Thus, we
additionally configure steganalyzer 𝐷2 to distinguish between the
partially embedded stego image 𝑌1 and the final stego 𝑌2, with the
aim of effectively learning the impact of modifications of neigh-
boring pixels between𝑀1 and𝑀2 on steganographic security, and
guiding the adjustments to the embedding probabilities accordingly.
By integrating feedback from both steganalyzers, the discriminator
provides diverse guidance to the generator.

It should be noted that, unlike existing GAN-based stegano-
graphic methods that rely on a single discriminator, as referenced
in [32, 36, 30], and those utilizing multiple discriminators, such as
[15, 16], we propose a steganographic framework based on two
discriminators with two distinct discriminating tasks. In contrast,
in current GAN steganography approaches, the task of the discrim-
inator is uniform, focusing solely on distinguishing between the
cover and the final obtained stego image.

Design of Loss Functions: To update the discriminator, we take
the cross-entropy loss as the discriminant loss as follows:

𝑙𝐷1 = −[𝑧0𝑙𝑜𝑔(𝐷1 (𝑋 )) + 𝑧1𝑙𝑜𝑔(𝐷1 (𝑌2))]
𝑙𝐷2 = −[𝑧0𝑙𝑜𝑔(𝐷2 (𝑌1)) + 𝑧1𝑙𝑜𝑔(𝐷2 (𝑌2))],

(9)

where 𝐷1 (𝑋 ) and 𝐷1 (𝑌2) indicate the output classification vectors
for the cover image 𝑋 and the final stego image 𝑌2 by 𝐷1. Likewise,
𝐷2 (𝑌1) and 𝐷2 (𝑌2) denote the output classification vectors for the
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partially embedded stego images 𝑌1 and 𝑌2 by 𝐷2. The ground truth
label for 𝑋 and 𝑌1 is denoted as 𝑧0, while for 𝑌2 it is denoted as 𝑧1.

2.3 Update Strategy
For stable training in GANs, maintaining a balance between the
generator and the discriminator is essential. Our proposed method,
which incorporates two steganalyzers 𝐷1 and 𝐷2 with distinct dis-
criminating tasks into the discriminator, further complicates this
balance, as the generator must effectively deceive both steganalyz-
ers simultaneously.

Due to the differences in embedding capacity modifications, it is
evident that 𝐷1’s task of distinguishing between the cover image
𝑋 and the final stego image 𝑌2 is relatively simpler than that of
𝐷2, which distinguishes between the partially embedded stego
image 𝑌1 and the final stego image 𝑌2. Hence, 𝐷1 is relatively more
adept at discerning the output of the generator compared to 𝐷2.
Efforts should be made to narrow the performance gap between the
generator and𝐷1. Furthermore, considering the crucial role of𝐷1 in
the security evaluation for steganography, prioritizing its guidance
is essential. Taking all these factors into account, we propose an
update strategy to strive to ensure balance between the generator
and each steganalyzer in the discriminator, as well as ensuring that
each steganalyzer operates according to its respective importance
level, thereby enabling a stable and effective training process.

The proposed update strategy consists of two aspects. On the
one hand, we decrease the initial learning rate of 𝐷1 to weaken
its discriminatory capability, thereby reducing the performance
gap between 𝐷1 and the generator. On the other hand, we increase
the weight of 𝐷1’s gradient feedback to the generator compared
to that of 𝐷2, as depicted in Equation (10). This enhances the gen-
erator’s focus on 𝐷1 and further bridges the gap between them.
Additionally, it amplifies the guidance provided by 𝐷1 compared to
𝐷2, assigning it a more significant role. The gradient component
𝑔(𝑖, 𝑗), as previously presented in Equation (5), comprises two parts:
the partial derivative of the loss function 𝑙𝐷1 and 𝑙𝐷2 with respect
to the modification𝑚2 (𝑖, 𝑗), respectively, which is given by:

𝑔(𝑖, 𝑗) = 𝜂 ·
𝜕𝑙𝐷1

𝜕𝑚2 (𝑖, 𝑗)
+

𝜕𝑙𝐷2

𝜕𝑚2 (𝑖, 𝑗)
. (10)

𝜂 is a parameter to control the weight of the gradients from 𝐷1.
We set 𝜂 = 5 based on experiments. Further details regarding the
update strategy will be provided in Section 3.4.

3 EXPERIMENTS
3.1 Experimental Setups
In our experiments, we firstly pre-trained our proposed GANmodel
with 40,000 images sourced from SZUBase [32]. Following this, we
employed the pre-trained generator to adjust the embedding costs
for a specific steganography (i.e., WOW [13], S-UNIWARD [14],
HILL [17], and steg-GMAN [15]). Leveraging the adjusted embed-
ding costs, we then produced stego images through the application
of STC on an additional compilation of 10,000 images drawn from
both BOSSBase [3] and BOWS2 [2]. This process enabled us to cre-
ate a dataset of 10,000 cover-stego image pairs. For the evaluation
phase, we randomly selected 5,000 of these pairs for the training
set, reserved 1,000 pairs for validation, and utilized the remaining

4,000 pairs for the final evaluation. Following the precedent set
by ReLOAD, we standardized the resolution of all source images
to 256 × 256 pixels using MATLAB’s imresize function, ensuring
uniformity across our datasets. Our experiments considered two dif-
ferent embedding payloads, 0.2 bpp and 0.4 bpp. To demonstrate the
efficacy of our approach, we conducted comparative analyses with
three established steganography techniques known for embedding
costs adjustment: CMD [18], UGS [23], and ReLOAD [25]. Moreover,
the security are evaluated using five steganalyzers, including one
traditional method SRM [10] and four CNN-based methods, namely,
Xu-Net [35], Yedroudj-Net [37], SRNet [5], and Deng-Net [7].

In our model training process, we configured the batch size to 24.
The initial learning rates were set at 10−4 for both the generator
and steganalyzer 𝐷2, and 10−5 for steganalyzer 𝐷1. These rates
are programmed to reduce to 40% of their previous values every
20 epochs. Our training regimen spanned 72 epochs in total. For
optimization, we employed the Adam optimizer, configured with
beta values of 0.5 and 0.999. To support reproducibility and further
research, the source code of our model will be made available online
upon the paper’s acceptance.

3.2 Comparison with Related Methods
In this section, we begin by comparing the security performance
of the proposed method to that of three related methods based on
embedding costs adjustment: CMD [18], UGS [23], and ReLOAD
[25]. The comparative results are shown in Table 1. From the table,
we can formulate the following conclusions:

• First of all, the proposed method surpasses the three com-
pared methods in terms of overall performance. Remarkably,
it consistently achieves either the first or second highest
security performance, underscoring our method’s effective-
ness. For instance, when considering S-UNIWARD at 0.4 bits
per pixel (bpp), our method registers the highest detection er-
ror rates across all five steganalyzers. It shows improvements
of 1.03%, 0.73%, 5.43%, 2.20%, and 3.15% respectively, when
compared to the second-best performing methods. Such en-
hancements are considerable within the domain of image
steganography.

• Compared to the four baseline methods, which include three
conventional approaches (WOW, S-UNIWARD, and HILL)
and a current leading symmetric embedding cost model
based on deep learning (namely, steg-GMAN), our proposed
method consistently enhances performance across all cases.
For example, in comparison with steg-GMAN, our method
shows performance improvements of 2.75% against SRM,
4.71% against Xu-Net, 3.93% against Yedroudj-Net, 4.37%
against SRNet, and 5.56% against Deng-Net, respectively, at
the payload of 0.4 bpp. However, the method CMD even fails
to surpass the performance of steg-GMAN when evaluated
against CNN-based steganalysis models.

We also compare the training time and the average time to gen-
erate stego images. For a fair comparison, all experiments are con-
ducted on the same server, equipped with an Intel(R) Core(TM)
i7-6900K CPU @ 3.20GHz and 4 NVIDIA TITAN X GPUs. The re-
sults are presented in Table 2. From this table, we observe that the
training time for our method is 13.87 hours, which is slightly slower
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Table 1: Detection error rate (%) of the proposed method and related methods. In the following tables, values with an asterisk(*)
denote the best performance in the corresponding case, while the values with an underline denote the second best. The values
in parentheses represent differences compared to the baseline, with blue indicating improvement and red indicating decline.

Steganalyzer Method
WOW [13] S-UNWARD [14] HILL [17] Steg-GMAN [15]

0.2 bpp 0.4 bpp 0.2 bpp 0.4 bpp 0.2 bpp 0.4 bpp 0.2 bpp 0.4 bpp

SRM

Baseline 36.03 24.65 36.79 24.26 41.65 30.10 42.69 33.81
CMD [18] 38.78(2.75) 28.38(3.73) 39.94(3.15) 29.56(5.30) 43.38(1.73) 35.77*(5.67) 43.24(0.55) 35.92(2.11)
UGS [23] 38.70(2.67) 29.08(4.43) 38.32(1.53) 27.06(2.80) 42.95(1.30) 33.68(3.58) 44.30*(1.61) 35.71(1.90)

ReLOAD [25] 37.32(1.29) 27.12(2.47) 38.20(1.41) 25.99(1.73) 42.96(1.31) 33.20(3.10) 43.56(0.87) 36.08(2.27)
Proposed 39.35*(3.32) 29.18*(4.53) 41.30*(4.51) 30.59*(6.33) 43.50*(1.85) 34.63(4.53) 44.02*(1.33) 36.56*(2.75)

Xu-Net

Baseline 36.39 24.10 40.12 28.41 39.55 30.42 42.40 36.28
CMD [18] 40.96(4.57) 30.96(6.86) 44.14(4.02) 35.19(6.78) 44.81(5.26) 37.49(7.07) 43.45(1.05) 32.94(−3.34)
UGS [23] 40.30(3.91) 29.90(5.80) 41.93(1.81) 31.73(3.32) 43.51(3.96) 34.99(4.57) 45.16(2.76) 37.86(1.58)

ReLOAD [25] 42.17(5.78) 31.40(7.30) 43.04(2.92) 31.54(3.13) 44.35(4.80) 36.03(5.61) 45.93*(3.53) 39.79(3.51)
Proposed 42.75*(6.36) 34.20*(10.10) 44.60*(4.48) 35.92*(7.51) 45.11*(5.56) 38.84*(8.42) 45.80(3.40) 40.99*(4.71)

Yedroudj-Net

Baseline 23.61 14.04 31.23 17.64 29.79 19.96 41.93 33.07
CMD [18] 26.10(2.49) 16.83(2.79) 35.51(4.28) 23.56(5.92) 36.00(6.21) 26.71(6.75) 40.20(−1.73) 31.21(−1.86)
UGS [23] 32.75(9.14) 21.12(7.08) 36.41(5.18) 22.74(5.10) 39.30(9.51) 28.23(8.27) 43.35(1.42) 35.28(2.21)

ReLOAD [25] 25.28(1.67) 16.00(1.96) 32.53(1.30) 20.60(2.96) 34.91(5.12) 25.20(5.24) 43.60(1.67) 36.58(3.51)
Proposed 33.13*(9.52) 23.53*(9.49) 38.99*(7.76) 28.99*(11.35) 41.59*(11.80) 33.14*(13.18) 43.96*(2.03) 37.00*(3.93)

SRNet

Baseline 22.06 12.25 25.14 13.89 29.44 19.91 35.69 27.84
CMD [18] 23.70(1.64) 14.48(2.23) 28.16(3.02) 17.33(3.44) 32.57(3.13) 23.06(3.15) 36.45(0.76) 26.04(−1.80)
UGS [23] 28.97*(6.91) 17.50(5.25) 30.51(5.37) 17.65(3.76) 35.55*(6.11) 24.72(4.81) 39.54(3.85) 32.40*(4.56)

ReLOAD [25] 22.71(0.65) 13.78(1.53) 27.78(2.64) 16.34(2.45) 30.75(1.31) 20.98(1.07) 38.45(2.76) 30.21(2.37)
Proposed 28.44(6.38) 18.47*(6.22) 31.55*(6.41) 19.85*(5.96) 34.24(4.80) 25.68*(5.77) 40.26*(4.57) 32.21(4.37)

Deng-Net

Baseline 20.81 11.34 25.32 12.25 27.54 18.65 36.68 27.09
CMD [18] 22.49(1.68) 12.86(1.52) 28.15(2.83) 16.24(3.99) 32.51(4.97) 21.54(2.89) 34.17(−2.51) 27.00(−0.09)
UGS [23] 28.05*(7.24) 17.05(5.71) 30.19(4.87) 16.65(4.40) 33.77(6.23) 22.02(3.37) 36.64(−0.04) 29.90(2.81)

ReLOAD [25] 22.25(1.44) 12.41(1.07) 27.21(1.89) 14.04(1.79) 30.56(3.02) 20.09(1.44) 38.62(1.94) 31.89(4.80)
Proposed 27.65(6.84) 17.19*(5.85) 32.13*(6.81) 19.80*(7.55) 35.06*(7.52) 25.48*(6.83) 41.83*(5.15) 32.65*(5.56)

Table 2: The time for training (hour) and generating a stego
image (second) of the proposed and related methods. Note
that CMD does not require training.

Methods CMD UGS ReLOAD Proposed
Training (h) / 9.78* 85.49 13.87

Generating a stego (s) 0.05 2.04 2.66 0.04*

than the 9.78 hours required by UGS, yet significantly shorter than
the 85.49 hours required by ReLOAD. Once training is complete,
our proposed method requires only 0.04 seconds to generate a stego
image, a duration similar to that required by CMD, and considerably
less than the times required by UGS and ReLOAD.

3.3 Comparative Study on Different
Steganalyzers in Discriminator

In the proposed model, we incorporate two steganalyzers (i.e., 𝐷1
and𝐷2) within the discriminator, each tasked with unique classifica-
tion roles. Precisely, their objective is to distinguish the generator’s
output (i.e., the stego image 𝑌2) from the cover image 𝑋 , and the
stego image 𝑌1 that has undergone partial information embedding.
In this section, we undertake an experiment involving various
combinations of four typical steganalyzers: Xu-Net, Yedroudj-Net,
SRNet, and Deng-Net for 𝐷1 and 𝐷2. For the sake of simplicity, we
limit our scenarios to those where the same steganalyzer is utilized

for both 𝐷1 and 𝐷2, and the original embedding cost is calculated
by the steganography HILL at 0.4 bpp. The results are summarized
in Table 3. From this table, it is evident that:

• Using two steganalyzers typically results in improved secu-
rity compared to relying on just one. In our setup, we utilized
Deng-Net as both 𝐷1 and 𝐷2, achieving the highest level of
security in most scenarios. Employing a single steganalyzer,
particularly 𝐷2, proved to be less effective. This highlights
the benefit of combining two steganalyzers, each analyzing
distinct inputs, to provide comprehensive insights, substan-
tially boosting the robustness of steganographic security.

• The selection of steganalyzers significantly influences the
security effectiveness of the proposed method, whether em-
ploying a single steganalyzer or a combination of two. Specif-
ically, utilizing Deng-Net as𝐷1 in a single steganalyzer setup,
or as both 𝐷1 and 𝐷2 in a dual steganalyzer configuration,
demonstrates a noticeable advantage.

3.4 Comparative Study on Different Update
Strategies

In the proposed model, we allocate two steganalyzers, namely 𝐷1
and 𝐷2, in the discriminator and implement a straightforward up-
date strategy to maintain equilibrium between the generator and
discriminator for stable training. This is achieved by decreasing the
initial learning rate of𝐷1 and enhancing the weight 𝜂 of its gradient
feedback to the generator. In this section, we compare our approach
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Table 3: Detection error rate (%) of the proposed method with different combinations of steganalyzers in Discriminator.

Combinations Configuration SRM Xu-Net Yedroudj-Net SRNet Deng-Net Average

Single Steganalyzer 𝐷1

Xu-Net 33.70 40.64* 28.35 24.42 20.96 29.61
Yedroudj-Net 33.81 38.79 32.76 24.31 23.10 30.55

SRNet 33.66 37.49 28.94 22.58 18.96 28.33
Deng-Net 34.19 38.46 33.18 25.15 24.81 31.16

Single Steganalyzer 𝐷2

Xu-Net 34.27 37.36 26.59 22.76 21.71 28.54
Yedroudj-Net 34.06 36.22 27.59 24.89 22.60 29.07

SRNet 33.93 36.92 26.80 23.29 22.16 28.62
Deng-Net 33.81 36.14 26.99 24.59 23.14 28.93

Two Steganalyzers, 𝐷1 =𝐷2

Xu-Net 34.56 39.71 28.80 24.11 21.07 29.65
Yedroudj-Net 33.22 38.61 33.49* 23.84 22.91 30.41

SRNet 34.28 38.05 32.45 25.49 24.34 30.92
Deng-Net (proposed) 34.63* 38.84 33.14 25.68* 25.48* 31.55*

Table 4: Detection error rate (%) of the proposed method with
different update strategies or parameters.

Strategies SRM Yedroudj-Net Deng-Net Average
Strategy #1 34.04 28.77 24.54 29.11
Strategy #2 34.60 29.73 24.58 29.64
Strategy #3 34.11 29.47 24.48 29.35
Strategy #4 33.52 27.16 22.78 27.82

∗ 34.75* 31.25 24.59 30.20
Proposed 0.5 33.78 28.24 23.96 28.66

𝜂 = 1 34.57 29.10 24.30 29.32
5 34.63 33.14* 25.48* 31.08*

with four alternative strategies as outlined below. Besides, we also
investigate on different parameters 𝜂 in the proposed strategy. Note
that 𝜂 = ∗ indicates that 𝜂 is adaptively learned from the generator,
while 𝜂 = 0.5 signifies that the generator is instructed to focus more
on 𝐷2 instead of on 𝐷1.

• Strategy #1: The generator is updated with both 𝐷1 and
𝐷2, with the initial learning rate and gradient weight of 𝐷1
set identical to those of 𝐷2. This implies that 𝐷1 and 𝐷2 are
directly combined without any modulation.

• Strategy #2: The generator is updated with only 𝐷2 for the
initial 1/2 training period (i.e., 30 epochs) and then combines
𝐷1 and 𝐷2 for the remaining epochs.

• Strategy #3: The generator is updated with both 𝐷1 and 𝐷2,
but 𝐷1 is updated every 5 epochs, which means the update
times of 𝐷1 is 1/5 of that of the generator.

• Strategy #4: Both 𝐷1 and 𝐷2 share the same parameters, in-
dicating using a single steganalyzer to differentiate between
two distinct classification tasks.

The comparative results are shown in Table 4. From Table 4,
we observe that the choice of update strategy plays a crucial role
in enhancing the security performance of our proposed method.
Specifically, by reducing the initial learning rate and fixing 𝜂 at 5,
our strategy achieves superior performance compared to Strategies
#1 to #4, with an impressive average performance boost of 31.08%,
an improvement of at least 1.44%. This represents a commendable

Table 5: Detection error rate (%) of the proposed method with
different inputs to the Generator.

Inputs SRM Yedroudj-Net Deng-Net Average
Input #1 30.20 26.34 22.33 26.29
Input #2 34.15 32.81 24.39 30.45
Input #3 34.20 33.13 25.44 30.92
Proposed 34.63* 33.14* 25.48* 31.08*

advancement in the field of image steganography security. Secondly,
the application of the weight 𝜂 within our model also impacts its
security effectiveness. Compared to a learnable 𝜂 (i.e., 𝜂 = ∗), using
a large 𝜂 can achieve better security performance. However, if 𝜂 ≤ 1,
it would significantly reduce security.

3.5 Comparative Study on Different Inputs to
the Generator

In the proposed method, we concatenate the modification map𝑀1
and the initial embedding probability map 𝑃1 as the inputs of the
generator, as illustrated in Figure 2. In this section, three alternative
forms of input to the generator are included for comparative study,
which are designed as follows:

• Input #1: We only input 𝑃1 to the generator, excluding𝑀1,
in order to explore the effects of𝑀1 on adjustments.

• Input #2:We input the concatenation of 𝑃1 and the residual
of𝑀1, extracted by a 3 × 3 filter with 0 at the middle and 1
around, which tends to capture neighboring modifications
instead of directly feeding 𝑀1 to the generator, following
the principle of typical steganography CMD [18].

• Input #3:Weemploy a generatorwith two encoding branches
and input 𝑃1 and𝑀1 respectively to one branch. This aims at
investigating on the impact of employing multiple branches
instead of multi-channel inputs.

The comparative results are presented in Table 5. From the table, we
observe three key points: 1) The modification map𝑀1 is highly ben-
eficial for the generator in adjusting to obtain safe embedding costs.
This is evident as the results of Input #1 demonstrate a significant
decrease of 4.43%, 6.80%, and 3.15%, respectively, when compared
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Table 6: Detection error rate (%) of the proposed method with
different partition proportions for the two sub-images.

𝑀𝑎𝑠𝑘1-𝑀𝑎𝑠𝑘2 SRM Yedroudj-Net Deng-Net Average
30% - 70% 34.33 31.84 26.55* 30.91
40% - 60% 34.36 33.19* 25.62 31.05
50% - 50% 34.63 33.14 25.48 31.08*
60% - 40% 34.76* 30.55 23.94 29.75
70% - 30% 32.96 27.28 21.04 27.09

Table 7: Detection error rate (%) and training time (hour) of
the proposed method with varying numbers of sub-images
used in image partitioning.

# of sub-images 1(HILL) 2(Proposed) 3 4
SRM (%) 30.10 34.63 35.72 36.39*

Yedroudj-Net (%) 19.96 33.14 34.62 36.02*
Deng-Net (%) 18.65 25.48 26.84 27.42*

Training Time (h) / 13.87 * 30.71 42.63

to the proposed method; 2) After first performing filtering prepro-
cessing on the modification map 𝑀1 and then inputting it along
with the probability map 𝑃1 into the generator, it does not enhance
the steganographic security performance; 3) Incorporating a dual
encoding branch for𝑀1 and 𝑃1 in the generator does not contribute
to enhancing security performance and instead increases model
complexity. Although this approach performs better than other
inputs, it still falls short of the effectiveness achieved by directly
concatenating𝑀1 and 𝑃1 for the input.

3.6 Comparative Study on Different Partition
Proportions

In the proposed method, we divide the secret messages into two
equal halves for embedding into each sub-image with equal size. In
this section, we explore scenarios where the cover image is parti-
tioned into varying proportions, with secret information allocated
accordingly. This includes proportions of 30%-70%, 40%-60%, 50%-
50% (proposed), 60%-40%, and 70%-30%. The results are summarized
in Table 6. From Table 6, we obtain two following observations:

• On average, equal partitioning achieves the highest security
performance. As the difference in the partitioning ratio in-
creases—for example, changing from an equal partition to
more imbalanced ratios like 30%-70% or 70%-30%—a signifi-
cant decrease in security performance is observed.

• For the steganalyzer Deng-Net, allocating a larger proportion
of the secret message to the second sub-image (indicated by
𝑀𝑎𝑠𝑘2) enhances security performance. The primary reason
is that Deng-Net serves as the targeted steganalyzer (𝐷1 =
𝐷2 = Deng-Net) within the proposed discriminator.

3.7 Comparative Study on Different Number of
Sub-images

In our prior methodological discussions, we began by randomly
splitting the cover image into two non-overlapping sub-images.

Initially, we utilized an existing symmetric steganography method
to embed half of the secret information into one of the sub-image.
Then, we employed a trained GAN model to adjust the embedding
costs for the other sub-image, facilitating the embedding of the
remaining secret information. Importantly, our approach can be
expanded to divide the image into multiple sub-images, with each
sequentially embedding a corresponding portion of information
until the entire secret message is concealed.

In this section, we investigate the effects of varying the number
of sub-images (1, 2, 3, 4) on the steganographic security and the
efficiency of the training process. Here, the use of 1 signifies no
division into sub-images, depending entirely on the original HILL
steganography for data embedding. The comparative results are
detailed in Table 7. It is observed that with an increase in the num-
ber of divisions, there is a progressive improvement in the security
of image steganography. Specifically, when the division increases
to four, our method shows an approximate 2% performance en-
hancement compared to the earlier experiments with two divisions.
However, this improvement in performance comes with an increase
in training time. Since the adjustment and embedding of each sub-
image require the full image information for GAN training, each
stage of GAN training for one sub-image takes approximately 14
hours, leading to an overall training time that increases linearly
with the number of divisions. Considering the training time, we
only conducts experiments with the image divided into two sub-
images previously.

4 CONCLUSION
In this paper, we introduced an innovative GAN-based framework
to enhance the security of existing symmetric steganography meth-
ods by adjusting their embedding costs to asymmetric ones. Our
approach overcomes the limitation of previous related techniques
that heavily relied on heuristics andmanually defined parameters or
rules. Tailoring to the unique demands of steganographic tasks, we
meticulously designed a steganographic framework utilizing GAN,
encompassing generators, discriminators, and their respective loss
functions. Notably, in line with our phased embedding strategy, we
introduce a dual-discriminator and dual-tasks mechanism and an
associated update policy, ensuring a stable and efficacious training
regime. Through extensive comparative analysis, our approach is
shown to outperform traditional symmetric steganography tech-
niques and other relevant methods that aim to adjust embedding
costs, marking a significant advancement in the field.

While our framework represents a significant step in the research
on automatic embedding costs adjustment, certain aspects warrant
further investigation. To better capture the correlation and inter-
action of neighboring pixel modifications, we plan to explore an
improved architecture for the generator, potentially incorporating
an attention module or drawing inspiration from network architec-
tures used in image inpainting tasks. Additionally, we will explore
adaptively introducing noise to the discriminator’s input as a data
augmentation technique, contingent upon its relative performance
compared to the generator, thereby achieving dynamic balance
between the two. Furthermore, given the scarcity of methods ad-
dressing embedding costs adjustment for JPEG images, we intend
to extend our framework to the JPEG domain in future research.
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