
Under review as a conference paper at ICLR 2024

APPENDIX

A DOMAINS FOR EMPIRICAL EVALUATION

We consider six domains of Metaworld Yu et al. (2020) and three domains of DM Control Tunyasu-
vunakool et al. (2020) for our empirical evaluation.

For all our experiments we use the internal state representation as the agent state. This includes
reward learning, policy learning and world model training. The state features are as described in Yu
et al. (2020). Further we follow Park et al. (2022) to utilize the packaged task rewards in MetaWorld
for our synthetic oracles.

B REWARD ARCHITECTURE FOR PRIOR

We follow Park et al. (2022) reward architecture for Metaworld and DMControl domains.

C WORLD MODEL LEARNING

We generally follow the training paradigm suggested in TWM Robine et al. (2023) to learn our
forward dynamics model. Furter, we follow the same architecture with minor changes to work with
continuous control domains : :

1. TWM is proposed for discrete actions image based atari Brockman et al. (2016) domains,
therefore we modify the observation encode layer to take in a 1-D state vector (instead of 3
channel image vector). Additionally, the original TWM makes use of frame-stacking which
we do not.

2. We change the state predictor to take continuous valued vector based action space (as in
our case) instead of discrete 1-D actions (as in Atari).

Finally, we modify the world model sequence length and memory length to be same as the query
length such that we can feed the whole trajectory as an input to the TWM model.

To obtain an attention map from TWM we auto-repressively feed in a trajectory, i.e. first we feed in
the first state,action tuple as trajectory of size 1, then the next state, action tuple and so on. At the
final step we take the attention vector from the attention layers in the architecture.

C.1 OBSERVATION MODEL

The observation model in our world model encodes the input state,action tuple. The observation
model has two components, an encode and a decoder both of which are multi-layer perceptrons.

The encoder has two hidden layers of size 512 and an output layer of size (32,). The decoder layer
has an input size of (32,) followed by two hidden layers of size 512 and the output shape is same as
the number of state features. As recommended by Robine et al. (2023) we use SiLU activation in
the MLP.

C.2 LATENT STATE PREDICTOR

We follow Robine et al. (2023) to contruct the world model architecture with minor changes required
to adapt to continuous control action space and 1-D state vector. That is, vanilla TWM requires
categorical action embeddings (because of the discrete action space) but we do not. Finally, TWM
Robine et al. (2023) can operate in different modes with respect to the prediction heads from the
latent state predictor such as, next state prediction, reward prediction, and discount prediction. For
Hindsight PRIOR we only require the next-state prediction output head.

Similarly TWM supports different input modes i.e. it can take (state,action) tuple and (state, action,
reward) tuple. We compute state conditioned hindsight priors and therefore only need the (state,
action) as input. Robine et al. (2023) is inconclusive on the need for rewards in the inputs. Moreover,

14

Under review as a conference paper at ICLR 2024

since PRIOR is learning the reward model to begin with we only use (state, action) as input. Robine
et al. (2023) uses a Transformer XL architecture which we borrow as is.

C.3 TRAINING WORLD MODEL

We share the replay buffer of the agent with the world model. Similar to PbRL paradigm, the world
model first gets access to a bank of state transitions during PbRL’s pre-training step. Once the
pretraining step is complete the world model is trained on this data (to get the observation model).
After this pretraining step only the dynamics model is trained on incoming data every jth step of
PbRL loop. The world model is trained on its bank of transitions as suggested by Robine et al.
(2023).

D POLICY EVALUATION METRICS

Algorithms are evaluated according to their learning curves over the course of policy and reward
training along with their normalized returns for Deep Mind Control Suite and normalized success
rates for MetaWorld Lee et al. (2021b). An algorithm’s normalized return or success rate measures
how well the policies trained jointly with a preference-learned reward function recovers the perfor-
mance of a policy trained on the target reward function. For each episode of policy training, the
PbRL or SAC policy’s return or success rate is computed and then the PbRL policy is evaluated
based on how well it is able to recover “optimal” performance approximated with SAC trained on
the ground truth reward. The normalized returns are computed as:

normalized returns =
1

T

X

t

r (st,⇡
r̂
� (at))

r (st,⇡
r
� (at))

, (6)

where T is the number of policy training training steps, r̄ is the target reward function, ⇡r̂
� is the

policy trained in conjunction the learned reward function, and ⇡r̄
� is the policy trained on the target

reward function. The normalized success rates are computed as:

normalized success rates =
1

T

X

t

success(⇡r̂
� (at))

success(⇡r
� (at))

, (7)

where success(·) indicates whether action at resulted in the policy reaching the goal state.

E HYPER-PARAMETERS

A results in the paper are reported over five random seeds: [12345, 23456, 34567, 45678, 56789].

E.1 TRAIN HYPER-PARAMETERS

This section specifies the hyper-parameters (e.g. learning rate, batch size, etc) used for the exper-
iments and results. The SAC, and PEBBLE experiments all match those used in Haarnoja et al.
(2018) and Lee et al. (2021a) respectively. The SAC hyper-parameters are specified in Table 2, the
PEBBLE hyper-parameters are given in Table 3, the hyper-parameters used to train on with Hind-
sight PRIOR are in Table 4, and finally the hyperparameters used for training our world model in
Table 5. Table 5 only mentions the hyper-parameters that we change in the prescribed Robine et al.
(2023) configuration.

15

Under review as a conference paper at ICLR 2024

Table 2: Training hyper-parameters for SAC (Haarnoja et al., 2018).

HYPER-PARAMETER VALUE

Learning rate 1e-3 (cheetah), 5e-4 (walker),
1e-4 (quadruped), 3e-4 (Meta-World)

Batch size 512 (DMC), 1024 (Meta-World)

Total timesteps 500k, 1M (quadruped, sweep into)

Optimizer Adam (Kingma & Ba, 2015)

Critic EMA ⌧ 5e-3

Critic target update freq. 2

(B1,B2) (0.9, 0.999)

Initial Temperature 0.1

Discount � 0.99

Table 3: PEBBLE hyper-parameters (Lee et al., 2021a).

HYPER-PARAMETER VALUE

Learning rate PEBBLE
3e-4 (Metaworld),
5e-4 (Walker, Cheetah),
1e-4 (Quadruped)

Optimizer Adam (Kingma & Ba, 2015)

Segment length l 50

Feedback amount / number queries (M) 1000/100, 100/10 (DMC)
10000/50, 4000/20, 2000/25, 400/10 (Meta-World)

Steps between queries (K) 20000 (walker, cheetah), 30000 (quadruped),
500 (Meta-World)

Table 4: Hindsight PRIOR hyper-parameters.

HYPER-PARAMETER VALUE

� 1000 (MetaWorld), 5 (DMC)

update frequency j 2000 steps

Table 5: World Model hyper-parameters in Hindsight PRIOR

HYPER-PARAMETER VALUE

world model sequence length 50

world model memory length 50

world model batch size 100

16

Under review as a conference paper at ICLR 2024

F NORMALIZED RETURNS AND SUCCESS RATES BY TASK

The mean normalized scores for each algorithm on each task are given for MetaWorld in Table 6
and DMC in Table 7.

A two-tailed paired t-test with dependent means (significant at p ¡ .05) was performed over the
normalized returns and success rates to determine that Hindsight PRIOR’s performance gains are
statistically significant over:

1. MetaWorld: PEBBLE (t = �3.92, p = 0.006), SURF (t = �2.85, p = 0.025), RUNE
(t = �5.39, p = 0.001), and MRN (t = �4.91, p = 0.002)

2. DMC: PEBBLE (t = �3.47, p = 0.00843), SURF (t = �2.52, p = .03541), RUNE
(t = �7.745967, p = 0.00006), and MRN (t = �2.392232, p = 0.0437)

Table 6: Normalized Success Rate for MetaWorld domains

Env/Algorithm PRIOR PEBBLE SURF RUNE MRN

Window Open 0.55 0.40 0.45 0.35 0.43
Door Open 0.65 0.62 0.55 0.53 0.53

Drawer Open 0.68 0.59 0.59 0.59 0.53
Sweep Into 0.69 0.51 0.54 0.52 0.62

Button Press 0.69 0.65 0.65 0.67 0.65
Door Unlock 0.68 0.62 0.64 0.53 0.54

Table 7: Normalized Returns for DM Control domains

Env/Algorithm PRIOR PEBBLE SURF RUNE MRN

Walker Walk 0.60 0.46 0.66 0.47 0.59
Cheetah Run 0.51 0.33 0.36 0.39 0.46

Quadruped Walk 0.65 0.66 0.64 0.60 0.54

G ADAPTED BASELINES FOR PBRL

Figure 5: Learning curves of PRIOR, BISIM, RVAR and baseline PEBBLE

G.1 UNINFORMED RETURN REDISTRIBUTION (RVAR)

Inspired from Ren et al. (2021) we consider the Uninformed return redistribution baseline that es-
sentially has reward targets as the mean reward in the trjaectory, i.e. rtarget = G

|⌧ | . This essentially
reduces the variance of the trajectory rewards (hence the name RVAR). As discussed previously,
RVAR is marginally better than PEBBLE and PRIOR is superior to such an uninformed redistribu-
tion technique. (See Fig. 5).

G.2 BISIMULATION METRIC : BISIM

To incorporate the bisimulation metrics into PbRL, we use the following bisimulation metric loss:

Jbisim() = (||zi � zj ||1 � |ri � rj |� �||z
0(zi,ai)
i � z

0(zj ,aj)
j)2, (8)

17

Under review as a conference paper at ICLR 2024

adapted from Equation 4 in Kemertas & Aumentado-Armstrong (2021). We use the reward model
to provide the predicted rewards ri, rj required by bisim loss. Further we use the penultimate layer
as the embedding layer to obtain zi, zj . Next, we add an additional head from the penultimate layer
that predicts the next state embedding to obtain z

0
i, z

0
j as next state predictors. Finally, we reuse the

trajectory buffer (as used by Hindsight PRIOR) to obtain the states on which we compute the bisim-
target distance and finally optimize the loss as above. We verify that the BISIM adapted baseline
offers only marginal improvements over baseline PEBBLE as given in Fig. 5.

G.3 NORMALIZED REDISTRIBUTION PRIOR (NRP)

Readers may question whether the raw attention values extracted from the forward dynamics predic-
tion task are the best choice or certain post processing may further improve PRIOR’s performance.
We construct a variant of PRIOR referred to as PRIOR-NRP where we perform a min-max normal-
ization of the attention vector ↵. That is :

↵̂i = softmax(
↵i � ↵min

↵max � ↵min
) (9)

The above equation amplifies the attention values thereby preventing the reward targets to become
uniform. Fig. 6 shows that default PRIOR (without any postprocessing of attention) performs well
and NRP like post-processing is not required.

Figure 6: Learning curves of PRIOR, PRIOR-NRP and baseline PEBBLE

H LONG TRAJECTORIES

Figure 7 shows the performance of PRIOR compared to PEBBLE when the trajectory length is 4x
(200). While the Transformer XL architecture is already known for scaling to much longer trajectory
lengths Robine et al. (2023) our experiments conclude that this is indeed the case for the challenging
continuous control domains.

Figure 7: Learning curves of PRIOR and PEBBLE on query segment lengths of 50 and 200.

18

Under review as a conference paper at ICLR 2024

I QUALITATIVE STATE IMPORTANCE ASSESSMENT

Figure 8: Attention analysis on Montezuma’s Revenge. The plot shows a situation where the agent
(red animated character) attempts to jump from the green platform towards the rope. Each row
represents a layer in the Transformer Model and the columns represent time step where left most
column is time t-T and right most column is the present state of the agent. In hindsight, we compute
this attention map to obtain the attention over the past states (given as blue cells) and attention over
past actions (given as red cells). Note that the map begins with a blue cell (as s0, a0, a1, a1 · · ·).
We highlight that the agent attends to past states which corresponds to point of launch which can be
considered as an important summary state for the complete trajectory of jumping from the platform
to the rope.

We qualitatively evaluate the states identified by the attention weights ↵ as important for a given
trajectory. We evaluate whether the attention map A salience over a trajectory can capture critical
events. We conduct experiments on Atari (Montezuma’s Revenge) and Metaworld (Window-Open,
Door Open) domains, and seek to answer whether the world model attends to states in the complete
history (even for Markovian transitions) and whether that correlates with ”critical” events (similar to
how ? describes it). From figure 8 we can see that the forward model does attend to past states and
actions. Moreover, upon closer inspection by executing known maneuvers, such as jumping across
the platform to the rope in Montezuma’s Revenge, we find that the agent is attending to past critical
events like the point of launch. We do not expect attention over states in history to be aligned with
human’s reward function as human may have arbitrary preference unknown to the dynamics model.
However, we do expect the attention to be aligned with ”critical events” loosely defined as apriori
states enough to summarize a trajectory. To further investigate this we force the reward model to
predict rewards aligned with the PRIOR reward targets by very high value �prior in equation eqn
and find that the reward model is unable to learn preference-relevant reward model at all. This shows
that PRIOR reward targets are not task specific but contains salience information on states which
can be considered ”critical” in the sampled trajectory.

19

	Introduction
	Related Work
	Preference-based Reinforcement Learning
	Hindsight PRIORs
	Approximating State Importance with Forward Dynamics
	Computing the Hindsight PRIORs
	Reward Redistribution and Constructing the Hindsight PRIOR Loss

	Empirical Evaluation
	Comparing Against PbRL Baselines
	Understanding the Performance Gains
	Assessing Scalability and Compatibility

	Conclusion
	Domains for Empirical Evaluation
	Reward Architecture for PRIOR
	World Model Learning
	Observation Model
	Latent State Predictor
	Training World Model

	Policy Evaluation Metrics
	Hyper-parameters
	Train Hyper-parameters

	Normalized Returns and Success Rates by Task
	Adapted Baselines for PbRL
	Uninformed Return Redistribution (RVAR)
	Bisimulation Metric : BISIM
	Normalized Redistribution PRIOR (NRP)

	Long Trajectories
	Qualitative State Importance Assessment

