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Abstract

Policy gradient methods have become a standard for training reinforcement learning1

agents in a scalable and efficient manner. However, they do not account for2

transition uncertainty, whereas learning robust policies can be computationally3

expensive. In this paper, we introduce robust policy gradient (RPG), a policy-4

based method that efficiently solves rectangular robust Markov decision processes5

(MDPs). We provide a closed-form expression for the worst occupation measure.6

Incidentally, we find that the worst kernel is a rank-one perturbation of the nominal.7

Combining the worst occupation measure with a robust Q-value estimation yields8

an explicit form of the robust gradient. Our resulting RPG can be estimated from9

data with the same time complexity as its non-robust equivalent. Hence, it relieves10

the computational burden of convex optimization problems required for training11

robust policies by current policy gradient approaches.12

1 Introduction13

Markov decision processes (MDPs) provide an analytical framework to solve sequential decision-14

making problems and seek the best performance in a fixed environment. Since the resulting policy can15

be highly sensitive to parameter values [16], the robust MDP setting alternatively maximizes return16

under the worst scenario, thus yielding robustness to uncertain environments [18, 10]. In practice, the17

robust MDP paradigm quantifies the level of uncertainty through a set U determining the possible18

range of model perturbations. Then, a policy is said to be robust-optimal if it reaches maximal19

performance under the most adversarial model within the uncertainty set. Developing efficient solvers20

for robust MDPs is of great interest, as it can lead to behavior policies with generalization guarantees21

[31].22

If not computationally expensive, robust MDPs can be strongly NP-hard [30]. Thus, to preserve23

tractability, we commonly assume that U is convex and s-rectangular, i.e., U = ×s∈SUs [18, 10, 30].24

The latter assumption means that the overall uncertainty should be designed independently for25

each state. Further simplification may consider (s, a)-rectangular uncertainty sets of the form26

U = ×(s,a)∈XU(s,a), albeit this naturally leads to more conservative strategies. In any case, planning27

in robust MDPs can be computationally costly, as it involves successive max-min problems [7, 1, 30].28

To address this issue, the works [3, 12] have established an equivalence between robustness and29

regularization in reinforcement learning (RL) in order to derive efficient robust planning methods30

for s and (s, a)-rectangular robust MDPs. Indeed, it appears that resorting to proper regularization31

instead of solving a minimization problem can yield robust behavior without requiring the polynomial32

time complexity of convex optimization problems [3].33

Alternatively to planning, policy gradient algorithms (PG) directly learn an optimal policy by applying34

gradient steps towards better performance [22]. Due to its scalability, ease of implementation, and35

adaptability to many different settings such as model-free and continuous state-action spaces [11, 21],36
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PG has become the workhorse of RL. Although regularization techniques such as max-entropy [6] or37

Tsallis [13] have shown robust behavior without impairing computational cost, they only account for38

adversarial reward [2, 5, 3]. Differently, robust PG formulations (RPG) formulations aim to address39

uncertainty to reward and transition functions.40

Despite their ability to propel robust behavior, RPG methods that target robust optimal policies41

are still rare in the RL literature. The global convergence of RPG established in [14, 27] further42

motivates us to come up with a practical method for estimating the gradients. In fact, [14] occult the43

estimation part, as they assume full access to the policy gradient. Differently, the solution proposed44

in [27] requires solving convex optimization problems to find the worst model, which represents45

a time complexity of O(S4A log ϵ−1) for (s, a)-rectangular, or O(S4A3 log ϵ−1) for s-rectangular46

uncertainty sets [27, Sec. 4.1]. These worst kernel and reward models are needed to compute RPG47

using the policy gradient theorem [23]. Other approaches that elicit an expression for RPG rely on a48

specific type of uncertainty set such as reward uncertainty with known kernel [3], r-contaminated49

kernel with known reward [29], or (s, a)-rectangular uncertainty [14], whereas we aim to tackle more50

general robust MDPs.51

In this work, we introduce an RPG method for both s and (s, a)-rectangular ball-constrained un-52

certainty sets, with similar complexity as non-robust PG. Our approach provides a closed-form53

expression of RPG without relying on an oracle while applying to the most common robust MDPs.54

To this end, we derive the worst reward and transition functions, thus revealing the adversarial nature55

of the corresponding uncertainty set. Surprisingly, we also find that the worst kernel is a rank-one56

perturbation of the nominal kernel. Leveraging this rank-one perturbation enables us to derive a57

robust occupation measure. We concurrently propose an alternative definition of the robust Q-value58

together with an efficient way to estimate it. Combining these results enables us to obtain RPG in59

closed form. Our resulting RPG update requires O(S2A log ϵ−1) computations, thus showing similar60

time complexity as non-robust PG.61

To summarize our contributions: (i) We establish the worst reward and transition models in closed-62

form; (ii) We show that the worst-case transition function is a rank-one perturbation of the nominal;63

(iii) We introduce alternative robust Q-values that can be evaluated through efficient Bellman recursion64

while retrieving the robust value function; (iv) We establish an expression of RPG that can be65

estimated with similar time complexity as non-robust PG. Experiments show that our RPG speeds up66

state-of-the-art robust PG updates by 2 orders of magnitude.67

2 Related work68

Although some previous works use gradient methods to learn robust policies, they seek empirical69

robustness to adversarial behavior rather than robust MDP solutions [19, 26, 4]. In that sense, our70

study differs from adversarial RL as we explicitly optimize the max-min objective to find a robust71

optimal policy. Accordingly, the risk-averse approach focuses on the internal uncertainty due to the72

stochasticity of the system, whereas robust RL addresses the external uncertainty of the system’s73

dynamics. As a result, common risk-averse objectives can be reformulated as robust problems with74

specific uncertainty sets [24].75

Previous studies that did aim to derive robust policy-based methods are [3, 29, 27]. These are76

summarized in Table 1, which also displays the complexity of existing approaches. [3] established77

RPG for s-rectangular reward-robust MDPs, i.e., robust MDPs with uncertain reward but given78

kernel. Although it applies to general norms, their result does not account for transition perturbation.79

Differently, in [29], the authors introduced RPG for r-contaminated MDPs, i.e., robust MDPs with80

uncertainty set U := {R0}× [(1−r)P0+r∆S ×A
S ]. Although it has similar complexity as non-robust81

PG, by construction, their setting is limited to (s, a)-rectangularity with known reward and mixed82

transition. As such, the proof techniques in [29] are tailor-made to the r-contamination framework83

and do not apply to more general robust MDPs. In fact, we remark that the r-contamination setting is84

equivalent to the action robustness approach introduced in [26], which emphasizes its limitation to85

action perturbation. Differently, our RPG holds whenever the worst kernel is a rank-one perturbation86

of the nominal transition function (see Lemma 4.4).87

To address generic robust MDPs, [27] recently introduced RPG for general uncertainty sets. Their88

gradient update has a complexity of O(S6A4ϵ−4), which is more expensive than non-robust PG by a89

factor of S4A3ϵ−4. They additionally assume access to an oracle gradient of the robust return with90
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respect to the transition model. Avoiding this oracle assumption naturally leads to even higher time91

complexity. At the same time, the two works [14, 27] guarantee global convergence of projected92

robust gradient iterates, thus establishing the potential promise of RPG. In fact, equipped with RPG93

convergence, the remaining challenge in making it practical is to efficiently estimate the gradient.94

This represents the main focus of our study: We aim to explicit an RPG method that generalizes95

existing results on specific uncertainty sets [3, 29] while holding for s-rectangular robust MDPs.96

Table 1: Time complexity of RPG update according to the type of uncertainty set. For conciseness,
the displayed complexity hides logarithmic factors in A and S. Our RPG method has the same
complexity as non-robust PG while it generalizes other RPG methods with similar efficiency.

UNCERTAINTY SET U TIME COMPLEXITY REFERENCE

{R0} × {P0} S2A log ϵ−1 [23]

{R0} × [(1− r)P0 + r∆S ×A
S ] S2A log ϵ−1 [29]

(s, a)-rectangular ball Usa
p S2A log ϵ−1 This work

(s, a)-rectangular, convex Usa S4A log ϵ−1 Convex optimization

s-rectangular ball Us
p S2A log ϵ−1 This work

s-rectangular ball (R0 +Rs
p)× {P0} S2A log ϵ−1 [3]

s-rectangular, convex Us S4A3 log ϵ−1 Convex optimization
s-rectangular, convex Us S6A4ϵ−4 [27]
s-rectangular, non-convex Us NP-hard [30]

Non-rectangular, convex U NP-hard [30]

3 Preliminaries97

Notation: We denote the cardinal of an arbitrary finite set Z by |Z|. Given two real functions98

a,b : Z → R, their inner product is ⟨a,b⟩Z :=
∑

z∈Z a(z)b(z), which induces the ℓ2-norm99

∥a∥2 :=
√

⟨a,a⟩Z . More generally, the ℓp-norm of a is denoted by ∥a∥p whose conjugate norm100

is ∥a∥q := max∥b∥p≤1⟨a,b⟩Z with q−1 = 1 − p−1. The vector of all zeros (resp. all ones)101

with appropriate dimensions is denoted by 0 (resp. 1), and the probability simplex over Z by102

∆Z := {a : Z → R+ |⟨a,1⟩Z = 1}. Finally, IZ designates the identity matrix in RZ ×Z .103

3.1 Markov Decision Processes104

A Markov decision process (MDP) is a tuple (S,A, γ, µ, P,R) such that S and A are finite state
and action spaces of cardinal S and A respectively, γ ∈ [0, 1) is a discount factor and µ ∈ ∆S
the initial state distribution. Denoting X := S ×A, the couple (P,R) corresponds to the MDP
model with P : X → ∆S being a transition kernel and R : X → R a reward function. A policy
π : S → ∆A maps each state to a probability distribution over A, and we denote by Π the set
of such functions. For any policy π ∈ Π, Rπ ∈ RS is the expected immediate reward defined
as Rπ(s) := ⟨πs, R(s, ·)⟩A, ∀s ∈ S, where πs is a shorthand for π(·|s). We similarly define
the stochastic matrix induced by π as Pπ(s′|s) := ⟨πs, P (s′|s, ·)⟩A, ∀s, s′ ∈ S, and extend the
occupation measure to an arbitrary initial vector k ∈ RS by defining

dπP,k := k⊤(IS − γPπ)−1.

The performance measure we aim to maximize is the value function vπ(P,R) := (IS − γPπ)−1Rπ , or
alternatively, the return ρπ(P,R) := ⟨µ, vπ(P,R)⟩S . We denote the optimal value function (resp. optimal
return) by v∗(P,R) = maxπ∈Π vπ(P,R) (resp. ρ∗(P,R) = ⟨µ, v∗(P,R)⟩). It can be obtained using Bellman

operators, which are defined as Tπ
(P,R)

v := Rπ+γPπv and T ∗
(P,R)

v := maxπ∈Π Tπ
(P,R)

v, ∀v ∈ RS ,

respectively [20]. For any vector v ∈ RS , we associate its Q-function Q ∈ RX such that
Q(s, a) = r(s, a) + γ⟨P (·|s, a), v⟩S , ∀(s, a) ∈ X .

With a slight abuse of notation, we can similarly define a Bellman operator over Q-values as

Tπ
(P,R)

Q(s, a) := r(s, a) + γ
∑

(s′,a′)∈X

P (s′|s, a)πs′(a
′)Q(s′, a′), ∀(s, a) ∈ X .
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3.2 Robust Markov Decision Processes105

In a robust MDP setting, we assume that (P, r) ∈ U and aim to maximize return under the worst model106

from the set. We denote the robust performance of a policy π ∈ Π by ρπU := min(P,R)∈U ρπ(P,R). It107

is maximal when it reaches ρ∗U := maxπ∈Π ρπU at an optimal robust policy π∗
U ∈ argmaxπ∈Π ρπU .108

When considering the robust value function vπU := min(P,R)∈U vπ(P,R), we further need to assume109

that U is convex and rectangular so that an optimal robust policy realizing v∗U := maxπ v
π
U can110

be computed in polynomial time [30]. We thus assume U to be convex and rectangular in the111

remainder of this work. Specifically, we denote an (s, a)-rectangular uncertainty set by Usa :=112

×(s,a)∈X (P(s,a),R(s,a)). It represents a particular case of s-rectangular uncertainty which we113

similarly denote by Us := ×s∈S(Ps,Rs). In both cases, there exists an optimal robust policy that is114

stationary, although all optimal ones may be stochastic [30].115

Similarly to non-robust MDPs, robust MDPs can be solved through Bellman recursion. Indeed, the116

robust value function vπU (resp., optimal robust value function v∗U ) is known to be the unique fixed117

point of the γ-contracting robust Bellman operator Tπ
U v := min(P,R)∈U Tπ

(P,R)v (resp., the optimal118

robust Bellman operator T ∗
Uv := maxπ∈Π Tπ

U v), both defined for any v ∈ RS . Although this ensures119

linear convergence of robust value iteration, the evaluation of each Bellman operator can still be120

prohibitive for practical use.121

3.2.1 Ball Constrained Uncertainty set122

To facilitate the computation of robust Bellman updates, we consider uncertainty sets that are centered123

around a nominal model (P0, R0), i.e., of the form U = (P0, R0)+(P,R), and constrained according124

to ℓp-norm balls [3, 12, 7, 1]. In the (s, a)-rectangular case, the corresponding uncertainty set is125

denoted by Usa
p := Rsa

p × Psa
p = ×(s,a)∈X (P(s,a),R(s,a)) where for any (s, a) ∈ X ,126

R(s,a) = {r ∈ R | ∥r∥p ≤ αs,a} , and P(s,a) =
{
p ∈ RS | ⟨p,1⟩S = 0, ∥p∥p ≤ βs,a

}
.

Similarly, an s-rectangular norm-constrained uncertainty is denoted by Us
p := ×s∈S(Ps,Rs) where127

for any s ∈ S,128

Rs = {r ∈ RA | ∥r∥p ≤ αs}, and Ps = {p ∈ RX | ⟨p(·, a),1⟩S = 0 ∀a ∈ A, ∥p∥p ≤ βs}.
In both cases, the noise radius β should be small enough so that transition kernels of the form P0 +P129

are well defined. This normed ball structure on the uncertainty sets enables us to compute robust130

Bellman updates with similar time complexity as non-robust ones using regularization [3, 12].131

First, define the generalized variance function and the mean function as132

κq(v) = min
w∈R

∥v − w1∥q, ωq(v) ∈ argmin
w∈R

∥v − w1∥q,

respectively, where q is the conjugate value of p (see Tab. 2 for their closed-form expression when133

q ∈ {1, 2,∞}). Then, we can efficiently evaluate robust value functions by regularizing a standard134

Bellman operator instead of solving a minimization. We formalize this below.135

Proposition 3.1. ([12, Thm. 2-3].) For any policy π ∈ Π and any rectangular ℓp-ball-constraint136

uncertainty set, the robust Bellman operator is equivalent to its regularized form:137

(Tπ
U v)(s) = Tπ

(P0,R0)
v(s) + Ωq(α, β, v),

where Ωq(α, β, v) := −⟨πs, αs,· + γκq(v)β
P
s,·⟩A for (s, a)-rectangular uncertainty Usa

p , and138

Ωq(α, β, v) := −(αs + γβsκq(v))∥πs∥q for s-rectangular uncertainty Us
p .139

In the following, we leverage the regularized formulation of robust value functions to explicitly derive140

RPG for rectangular ℓp-ball uncertainty sets.141

3.2.2 Robust Gradient Method142

Since the robust return can be non-differentiable, we need to follow the projected sub-gradient ascent143

rule in order to optimize the robust return, namely, update πk+1 := projΠ(πk + η∂πρ
πk

U ) where144

∂πρ
π
U := ∇πρ

π
(P,R)

∣∣∣
(P,R)=(Pπ

U ,Rπ
U )
, (1)
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Table 2: Expressions of the q-mean, the q-variance, and its gradient. We assume that the vector v is
sorted, i.e., v(si) ≥ v(si+1),∀i ∈ {1, 2, · · · , S}, and denote nl := ⌊(S+1)/2⌋, nu := ⌈(S+1)/2⌉.

ωq(v) κq(v) ∇vκq(v)

q argminw∈R∥v − w1∥q minω∈R∥v − ω1∥q ∂κq(v)
∂v(si)

∞ v(s1)+v(sS)
2

v(s1)−v(sS)
2


1
2 if i = 1

− 1
2 if i = S

0 o.w.

2
∑S

i=1 v(si)

S

√∑S
i=1(v(si)− ω2(v))2

v(si)−ω2(v)
κ2(v)

1
v(snl

)+v(snu )

2

∑nl

i=1(v(si)− v(sS−i))


1 if i < nl

−1 if i > nu

0 o.w.

η is the learning rate, projΠ denotes the orthogonal projection on Π, and (Pπ
U , R

π
U ) is the worst model145

associated with π ∈ Π and U , i.e., (Pπ
U , R

π
U ) ∈ arg inf(P,R)∈U ρπ(P,R).146

Given oracle access to sub-gradient ∂ρπU , projected gradient ascent converges to an ϵ-optimal policy147

π∗
U . Moreover, under similar conditions as in the non-robust setting, projected gradient ascent holds148

an iteration complexity of O(S4A2ϵ−4) [27]. Yet, the sub-gradient in (1) is generally intractable,149

particularly because general convex uncertainty sets may yield NP-hard complexity. Instead, we150

propose to focus on ball-constrained uncertainty sets in order to efficiently compute RPG updates.151

4 Towards RPG: Expressing the worst quantities152

In this section, we provide all the ingredients needed for deriving RPG. Before diving into the153

gradient expression, we first settle on the general framework of policy gradient. Secondly, in Sec. 4.1,154

we focus on expressing the worst model according to the nominal explicitly. Surprisingly, we find155

that the worst transition kernel is a rank-one perturbation of the nominal. This finding enables us156

to derive the robust occupancy measure, i.e., the occupation measure of the worst kernel in Sec. 4.2.157

As a last piece, in Sec. 4.3, we propose an alternative definition of robust Q-value and show that158

it can be estimated from a specific Bellman recursion.159

Consider again the projected gradient ascent rule:160

πk+1 :=projΠ(πk + η∂πρ
πk

U ).

By definition of the sub-gradient in (1) and applying the standard PG theorem [23], it holds that:161

∂πρ
π
U =

∑
(s,a)∈X

dπU (s)Q
π
U (s, a)∇πs(a),

where Qπ
U := Qπ

(Pπ
U ,Rπ

U ) is the Q-value associated with the worst-case model, and dπU := dπPπ
U

the162

occupation measure of the worst transition kernel. In fact, for the uncertainty sets we focus on in163

this work, the worst Q-value Qπ
U retrieves the common definition of robust Q-value [18, 25] (see164

the appendix for a detailed discussion). Therefore, for conciseness and with a slight abuse, we shall165

designate Qπ
U by the robust Q-value, and dπU by the robust occupation measure. The remaining166

question is how to compute these quantities and in particular, can we efficiently find the worst167

parameters (Pπ
U , R

π
U )? The following part of our study aims to address these questions.168

Given an uncertainty set U , let first define the normalized and balanced robust value function as:169

uπ
U (s) :=

sign(vπU (s)− ωq(v
π
U ))∥vπU (s)− ωq(v

π
U )∥q−1

κq(vπU )
q−1

. (2)
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By construction, it has zero mean and unit norm, i.e., ⟨uπ
U ,1⟩S = 0 and ∥uπ

U∥p = 1. In fact, as170

stated in the result below, uπ
U is the gradient of the q-variance function, and correlates with the171

(unnormalized, unbalanced) robust value function according to the same q-variance.172

Proposition 4.1. For any policy π ∈ Π and ℓp-ball rectangular uncertainty set, the following holds:173

uπ
U = ∇vκq(v)

∣∣∣
v=vπ

U

,

⟨uπ
U , v

π
U ⟩ = κq(v

π
U ).

4.1 Worst Kernel and Reward174

In the following results, we explicit the relationship between the nominal and the worst-case model175

for (s, a) and s-rectangular ℓp-balls. We will then leverage this relationship to compute the robust176

Q-values and the robust occupation measure, both necessary for RPG.177

Theorem 4.2 ((s, a)-rectangular case). Given uncertainty set U = Usa
p and any policy π ∈ Π, the178

worst model is related to the nominal one through:179

Rπ
U (s, a) = R0(s, a)− αs,a and Pπ

U (·|s, a) = P0(·|s, a)− βs,au
π
U .

Based on Thm. 4.2, it follows that in the (s, a)-rectangular case, the worst reward function is
independent of the employed policy. As we establish in Thm. 4.3 below, this no longer applies under
s-rectangularity. In either case, the worst kernel is policy-dependent, discouraging the system to
move toward high-rewarding states and directing it to low-rewarding ones instead. Surprisingly, the
vector penalty uπ

U ∈ RS additionally illustrates that the worst kernel is a rank-one perturbation of the
nominal. Indeed, considering the stochastic matrix induced by any policy π ∈ Π, we have

[Pπ
U − Pπ

0 ](s
′|s) = −

(∑
a∈A

βs,aπs(a)

)
uπ
U (s

′), ∀s ∈ S,

so that the perturbation matrix Pπ
U − Pπ

0 is of rank one. In the sequel, we will leverage this finding to180

compute the robust occupation measure.181

Theorem 4.3 (s-rectangular case). Given uncertainty set U = Us
p and any policy π ∈ Π, the worst182

model is related to the nominal one through:183

Rπ
U (s, a) = R0(s, a)− αs

(
πs(a)

∥πs∥q

)q−1

and Pπ
U (·|s, a) = P0(·|s, a)− βsu

π
U

(
πs(a)

∥πs∥q

)q−1

.

Similarly to the (s, a)-case, the adversarial kernel is a rank-one perturbation of the nominal. Yet, an184

extra dependence on the policy through the coefficient
(

πs(a)
∥πs∥q

)q−1

appears in the s-case, affecting185

both the worst reward and the worst kernel. Intuitively, it means that the worst model cannot be186

chosen independently for each action, but must instead depend on the agent’s policy. This further187

explains why optimal policies can all be stochastic in s-rectangular robust MDPs [30].188

Thms. 4.2 and 4.3 enable us to derive the worst MDP model in closed form with time complexity189

O(S2A log ϵ−1), up to logarithmic factors (please see the appendix for a detailed discussion). It thus190

holds the same complexity as non-robust value iteration, since we additionally need to compute the191

value function to derive its corresponding regularizer [3, 12]. On the other hand, if we employ convex192

optimization using value methods instead, obtaining the worst model requires a time complexity193

of O(S4A log ϵ−1) in the (s, a)-rectangular case, and O(S4A3 log ϵ−1) in the s-rectangular case194

[27][Sec. 4.1].195

4.2 Robust Occupation Measure196

We finally derive the robust occupation measure using nominal values, which will lead to an explicit197

RPG. Although intractable in general, we show that focusing on ball-constrained uncertainty enables198

deriving the robust occupation matrix efficiently from the (nominal) occupation measure. We first199

establish the lemma below, which leverages the fact that the worst transition function is a rank-one200

perturbation of the nominal and represents our core contribution.201
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Lemma 4.4. Let b, k ∈ RS and P0, P1 ∈ (∆S)
S two transition matrices. If P1 = P0 − bk⊤, i.e., P1202

is a rank-one perturbation of P0, then their occupation matrices Di := (I − γPi)
−1, i = 0, 1 are203

related through:204

D1 = D0 − γ
D0bk

⊤D0

(1 + γk⊤D0b)
.

Combining Thms. 4.2 and 4.3 with the above lemma, we obtain the robust occupation in terms of the205

nominal, as stated in Thm. 4.6 below. Prior to this, we introduce the notion of expected transition206

uncertainty below.207

Definition 4.5. Let U a rectangular ℓp-ball-constrained uncertainty set of transition radius β. For208

any policy π ∈ Π, the expected transition uncertainty at any state s ∈ S is given by βπ
s :=209 ∑

a∈A πs(a)βs,a if U = Usa
p , and βπ

s := βs∥πs∥q if U = Us
p .210

Theorem 4.6. For any rectangular ℓp-ball-constrained uncertainty and π ∈ Π, it holds that:211

dπU,µ = dπP0,µ − γ
⟨dπP0,µ

, βπ⟩S
1 + γ⟨dπP0,uπ

U
, βπ⟩S

dπP0,uπ
U
. (3)

Thm. 4.6 explicitly highlights the relationship between the robust occupation measure and the nominal212

one. Thus, according to Eq. (3), the standard non-robust occupation measure in the first term needs213

to be penalized by another one, dπP0,uπ
U
= (uπ

U )
⊤(IS − γPπ

0 )
−1, to obtain the robust occupation214

measure. Recall that uπ
U is the balanced-scaled value function determined by π ∈ Π and uncertainty215

set U . Thus, the penalty term dπP0,uπ
U

tends to zero if all coordinates of the robust value function216

vector converge to the same value.217

Nonetheless, our expression (3) does present some challenges. First, the occupation measure appear-218

ing in the correction term indicates that instead of taking a fixed initial state distribution, we should219

start from a varying and signed measure represented by the balanced value function. Although it220

suggests putting more weight on worst-performing states, obtaining a non-biased estimator for this221

occupancy measure remains unclear in model-free learning.222

4.3 Robust Q-values223

In this section, we focus on the last element needed for RPG and aim to estimate the robust Q-
value denoted previously by Qπ

U := Qπ
(Pπ

U ,Rπ
U ). Define its associated value function as vπU (s) =

⟨πs, Q
π
U (s, ·)⟩,∀s ∈ S, π ∈ Π. Based on standard Bellman recursion, it thus holds that:

Qπ
U (s, a) = Rπ

U (s, a) + γ⟨Pπ
U (·|s, a), vπU ⟩S , ∀(s, a) ∈ X , π ∈ Π,

while Qπ
U is the unique fixed point of the γ-contracting operator224

(Lπ
UQ)(s, a) := Tπ

(Pπ
U ,Rπ

U )Q(s, a), ∀Q ∈ RX . (4)

The relations above hold for general uncertainty sets, provided that we have access to the worst model.225

The s-rectangularity assumption additionally enables us to retrieve the robust value function using226

the Bellman operator above [30]. Concretely, we have: vπU = min(P,R)∈U vπ(P,R) = vπ(Pπ
U ,Rπ

U ).227

The following result derives a regularized operator equivalent to Lπ
U , which results in an efficient228

iteration method to compute the robust Q-value.229

Proposition 4.7. The Bellman operator Lπ
U defined in Eq. (4) is equivalent to:230

(Lπ
UQ)(s, a) = Tπ

(P0,R0)
Q(s, a) + Ω′

q(αs,a, βs,a, v),

where v(s) := ⟨πs, Q(s, ·)⟩A, Ω′
q(α, β, v) := −(αs,a + γβs,aκq(v)) for (s, a)-rectangular uncer-231

tainty Usa
p , and Ω′

q(α, β, v) := −
(

πs(a)
∥πs∥q

)q−1

(αs + γβsκq(v)) for s-rectangular Us
p .232

5 Robust Policy Gradient233

We are now able to derive an RPG by combining our previous results. Notably, unlike previous works234

that need to sample next-state transitions based on all models from the uncertainty set [19, 15, 4],235

here, we only need the nominal kernel to get the occupation measures.236
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Theorem 5.1 (RPG). For any rectangular ℓp-ball-constrained uncertainty, the robust policy gradient237

is given by:238

∂πρ
π
U =

∑
(s,a)∈X

(
dπP0,µ(s)− cπ(s)

)
Qπ

U (s, a)∇πs(a), (5)

where239

cπ(s) :=
γ⟨dπP0,µ

, βπ⟩S
1 + γ⟨dπP0,uπ

U
, βπ⟩S

dπP0,uπ
U
(s), ∀s ∈ S .

Thm. 5.1 is a direct application of non-robust PG, as its proof simply consists in plugging Eq. (3)240

into the standard PG expression ∂πρ
π
U =

∑
(s,a)∈X dπU,µ(s)Q

π
U (s, a)∇πs(a). We obtain a regular241

PG in the first term, with the robust Q-value instead of the non-robust one, plus a correction term242

cπ resulting from taking the occupation measure of the worst kernel instead of the nominal. Unlike243

previous work that uses policy regularization to achieve empirical robustness in PG methods [2, 9],244

Thm. 5.1 establishes an RPG that accounts for transition uncertainty and targets a robust optimal245

policy.246

5.1 Complexity Analysis247

A major concern in solving robust MDPs is time complexity [30]. Similarly, it is of major importance248

to assess the additional time required for computing an RPG update, compared to its non-robust249

variant. Although previous work has analyzed the convergence rate of RPG to a global optimum250

[27], it assumes access to an oracle gradient, thus occulting the computational concerns raised from251

gradient estimation. In fact, the NP-hardness of non-rectangular and/or non-convex robust MDPs252

[30] already indicates that their resulting RPG can be intractable.253

To compute RPG in Thm. 5.1, we first need to evaluate the robust Q-value. Based on Lemma 4.7 and254

the Bellman operators introduced there, our evaluation method involves an additional estimation of255

the variance function κp. According to [12], this takes logarithmic time at most, using binary search.256

As to the compensation term cπ in Eq. (11), it requires computing occupancy measures with respect257

to two different initial vectors, namely the balanced value function and the initial distribution. Thus,258

the computational cost for estimating cπ is the same as estimating a non-robust occupancy measure.259

Tab. 1 summarizes the complexity of different approaches while a detailed discussion can be found in260

the appendix. We refer to [27][Sec. 4.1] for the complexity of RPG based on convex optimization.261

Generalization to arbitrary norms. Until now, we have focused on ℓp-norm for concreteness.262

However, the above results apply to any norm ∥·∥, at least if the uncertainty set is (s, a)-rectangular,263

in which case the variance function changes to κ(v) := min∥c∥≤1,1⊤c=0⟨c, v⟩ and the balanced value264

to argmin∥c∥≤1,1⊤c=0⟨c, v⟩. The rank-one perturbation structure of the worst kernel is preserved, so265

the robust occupation measure can be obtained similarly using Lemma 4.4. The s-rectangular is more266

involved. We defer its discussion to the appendix and leave its complete derivation for future work.267

6 Experiments268

In order to test the effectiveness of our RPG update, we evaluate its increased time complexity269

relative to non-robust PG. In the following experiments, we randomly generate nominal models for270

arbitrary state-action space sizes. Each experiment was averaged over 100 runs. We refer the reader271

to the appendix for more details on the radius levels and other implementation choices.272

We first focus on ℓ1-robust MDPs to compare our RPG with a convex optimization approach.273

Specifically, we consider a robust PG with an optimization solver, which we designate by LP-RPG.274

Indeed, recall that ℓ1-ball-constraints induce a linear program (LP) rather than a more general convex275

optimization problem. Therefore, to compute the robust value function for a given policy, we276

iteratively evaluate the robust Bellman operator using LP [27, Section 4.1]. Using this approximated277

value function, we can compute the worst value parameters to apply PG theorem by [23] and deduce278

an LP-based robust PG update. Differently, our RPG method relies on the regularized formulation279

of robust value iteration proposed in [3, 12], from which we deduce the normalized-balanced value280

function as in Eq. (10). We finally apply Thm. 4.6 to compute the robust occupation measure, and281

Prop. 4.7 to obtain the robust Q-value.282
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Tab. 3 displays the results obtained for the two alternative methods described above. In all experiments,283

the standard deviation was typically 2-10% so we omitted it for brevity. As can be seen in Tab. 3,284

LP-RPG does not scale well compared to RPG, whereas RPG has similar time complexity as PG.285

Notably, the running time of s-rectangular LP-RPG scales much better with the space size than its286

(s, a)-rectangular equivalent, which confirms the theoretical complexities from Tab. 1. Yet, since287

these methods were time-consuming, we repeated these for a few runs only. In fact, LP-RPG is more288

expensive than RPG by 1-3 orders of magnitude, which illustrates its inefficiency. We emphasize289

that here, we only focused on ℓ1-robust MDPs to leverage LP solvers in robust policy evaluation. We290

expect the computational cost of LP-RPG to scale even more poorly for other ℓp-robust MDPs that291

involve polynomial time-consuming convex programs.292

Table 3: Comparison of the relative running time between RPG and the convex optimization approach
(here, LP). Our method is faster than LP-based updates by 1 to 3 orders of magnitude.

{(P0, R0)} Usa
1 Us

1

S A PG RPG LP-RPG RPG LP-RPG

10 10 1 1.4 326 1.4 77
30 10 1 1.4 351 1.4 109
50 10 1 1.4 408 1.4 159
100 20 1 1.5 469 1.3 268
500 50 1 1.3 925 1.3 5343

We further compare our RPG to non-robust PG on different ℓp-balls. Tab. 4 confirms the comparable293

time complexity of RPG to non-robust PG, thus demonstrating the effectiveness of our method. We294

note that for p ∈ {1, 2,∞}, the corresponding regularization quantities can be computed in closed295

form, whereas they involve a binary search for other values [12]. We thus get a slight running-time296

increase for p ∈ {5, 10}.297

Table 4: Relative running time for computing RPG under different types of uncertainty sets.

S A {(P0, R0)} Usa
2 Us

2 Usa
5 Us

5 Usa
10 Us

10 Usa
∞ Us

∞

10 10 1 1.5 1.5 4.9 4.7 4.7 4.9 1.5 1.6
30 10 1 1.4 1.5 4.2 4.3 4.2 4.0 1.4 1.4
50 10 1 1.5 1.4 4.5 4.1 4.0 4.0 1.4 1.4

100 20 1 1.4 1.3 2.6 2.5 2.5 2.4 1.3 1.2
500 50 1 1.2 1.2 1.7 1.7 1.7 1.7 1.2 1.3

7 Discussion298

This paper introduced an explicit expression of RPG for rectangular robust MDPs. Our approach299

involved auxiliary results such as deriving the worst model in closed form and showing that it is a300

rank-one perturbation of the nominal kernel. The resulting RPG extends vanilla PG with additional301

correction terms that can be derived in closed form as well. Thus, the computational time of RPG is302

similar to its non-robust variant.303

A key assumption that would be interesting to relax is the normed-ball structure of the uncertainty304

sets considered in this study. Indeed, since the proofs of our technical results rely on norm properties,305

it is still unclear if and how RPG can generalize to metric-based or f -divergence uncertainty sets.306

The latter type of uncertainty can be particularly useful for data-driven settings, as the radius can be307

chosen according to cross-validation or statistical bounds [8]. Another compelling direction would be308

to explore other variants of RPG using mirror descent or natural policy gradient and examine their309

compatibility with deep architectures, which would further demonstrate the practical efficiency of our310

RPG method.311
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A Balanced and Normed Vectors408

In this section, we lay down some basic properties of p-normalized-balanced vectors.409

First recall the p-variance and the p-mean defined as:410

κp(v) = min
ω∈R

∥v − ω1∥p, ωp(v) = argmin
ω∈R

∥v − ω1∥p.

Given any v ∈ RS , let also the p-balanced-normalized function:411

up(v)(s) := SIGN(v(s)− ωp(v))

(
|v(s)− ωp(v)|

κp(v)

)p−1

, ∀v ∈ RS , s ∈ S .

According to [12][Sec. 16.1, Lemma 1], the following holds:412

κq(v) = −1

ϵ

[
min

∥c∥p≤ϵ,⟨c,1⟩=0
⟨c, v⟩

]
, (6)

namely, the p-variance function is the optimal value of a linear optimization under kernel noise413

constraint. The result below further characterizes the solution to the above problem.414

Lemma A.1. The vector defined as c∗ := −ϵuq(v) is an optimal solution to the optimization problem415

min
∥c∥p≤ϵ,⟨c,1⟩S=0

⟨c, v⟩.

Proof. It suffices to show that c∗ satisfies both constraints ∥c∗∥p ≤ ϵ and ⟨c∗,1⟩S = 0, and that it416

reaches optimal value, i.e., − 1
ϵ ⟨c

∗, v⟩ = κq(v). We thus compute:417

∥c∗∥p =

(∑
s∈S

|c∗(s)|p
) 1

p

=

(∑
s∈S

∣∣∣∣∣−ϵSIGN(v(s)− ωq(v))

(
|v(s)− ωq(v)|

κq(v)

)q−1
∣∣∣∣∣
p) 1

p

=

((
ϵ

κq(v)q−1

)p∑
s∈S

∣∣∣∣∣
(
|v(s)− ωq(v)|

κq(v)

)q−1
∣∣∣∣∣
p) 1

p

=
ϵ

κq(v)q−1

(∑
s∈S

|v(s)− ωq(v)|(q−1)p

) 1
p

=
ϵ

κq(v)q−1

(∑
s∈S

|v(s)− ωq(v)|q
) 1

p

(By assumption,
p+ q

pq
= 1)

=
ϵ

κq(v)q−1
κq(v)

q
p (By definition, κq(v) = ∥v − ωq1∥q)

= ϵ, (
q

p
− (q − 1) =

q − pq + p

p
= 0)

so the norm constraint is satisfied. We check the noise constraint by computing:418 ∑
s∈S

c∗(s) =
∑
s∈S

−ϵSIGN(v(s)− ωq(v))

(
|v(s)− ωq(v)|

κq(v)

)q−1

=
−ϵ

κq(v)q−1

∑
s∈S

SIGN(v(s)− ωq(v))|v(s)− ωq(v)|q−1.

Now, considering the real function φ : w → ∥v − w1∥q and taking its derivative, we remark the419

proportional relation:420 ∑
s∈S

c∗(s) = C · φ′(ωq(v)),
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where C ∈ R is the proportionality coefficient. By construction, ωq(v) is a minimizer of φ, so we421

must have φ′(ωq(v)) = 0 and c∗ satisfies the noise constraint.422

We finally show that c∗ reaches the optimal value:423

−1

ϵ
⟨c∗, v⟩ = −1

ϵ
⟨c∗, v − ωq(v)1⟩ (⟨c∗,1⟩S = 0)

=
∑
s∈S

|v(s)− ωq(v)|q

κq(v)q−1
(Putting the value of c∗)

=
κq(v)

q

κq(v)q−1
(κq(v) = ∥v − ωq1∥q)

=κq(v).

424

A.1 Proof of Proposition 4.1425

Proposition. For any policy π ∈ Π and ℓp-ball rectangular uncertainty set, the following holds:426

uπ
U = ∇vκq(v)

∣∣∣
v=vπ

U

,

⟨uπ
U , v

π
U ⟩ = κq(v

π
U ).

Proof. The second claim directly follows from Lemma A.1 applied to v := vπU , so that by optimality,427

κq(v
π
U ) = ⟨uπ

U , v
π
U ⟩. For the first claim, we take the gradient of κp(v) := minw∈R∥v−w1∥p w.r.t. v428

using the envelope theorem [17]. Then, the p-balanced-normalized vector up(v) is a sub-gradient of429

κp(v), that is,430

up(v) = ∇κq(v),

which we apply to v := vπU .431

We have the additional properties below:432

• The variance function κq is translation-invariant in all-ones directions, i.e., for all ω ∈433

R, κq(v) = κq(v + ω1). As a result, ⟨∇κq(v),1⟩S = 0.434

• The balanced-normalized vector up(v) has unit norm, i.e., ∥up(v)∥p = 1 by Lemma A.1.435

B Worst Kernel and Reward436

Here we present the proofs for the worst/adversarial kernel and reward function characterization.437

B.1 Proof of Theorem 4.2438

Theorem ((s, a)-rectangular case). Given uncertainty set U = Usa
p and any policy π ∈ Π, the worst439

model is related to the nominal one through:440

Rπ
U (s, a) = R0(s, a)− αs,a and Pπ

U (·|s, a) = P0(·|s, a)− βs,au
π
U .

Proof. By definition,441

(Pπ
Usa

p
, Rπ

Usa
p
) ∈ argmin

(P,R)∈Usa
p

Tπ
(P,R)v

π
Usa

p
.

Additionally, since Usa
p = (R0 +R)× (P0 + P), it results that:442

(Rπ
Usa

p
, Pπ

Usa
p
) = (P0 + P ∗, R0 +R∗)

where443

(P ∗, R∗) ∈ argmin
(P,R)∈P×R

Tπ
(P,R)v

π
Usa

p
.
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By the (s, a)-rectangularity assumption, we get that for all (s, a) ∈ X ,444

(P ∗(·|s, a), R∗(s, a)) ∈ argmin
(ps,a,rs,a)∈Ps,a×Rs,a

{
rs,a + γ

∑
s′∈S

ps,a(s
′)vπUsa

p
(s′)

}
It is clear from the above that the worst reward is independent of policy π. Thus, by the ball constraint,445

it is given by446

R∗(s, a) = −αs,a, ∀(s, a) ∈ X .

Differently, the worst kernel depends on the value function which itself depends on the policy. It is447

given by448

P ∗(·|s, a) = argmin
ps,a∈Psa

{∑
s′∈S

ps,a(s
′)vπUsa

p
(s′)

}
, ∀(s, a) ∈ X .

The optimization is of the form449

argmin
∥c∥p≤β,⟨c,1⟩=0

⟨c, v⟩,

so by Lemma A.1,450

P ∗(s′|s, a) = −βs,aSIGN
(
vπUsa

p
(s′)− ωq(v

π
Usa

p
)
) ∣∣∣vπUsa

p
(s′)− ωq(v

π
Usa

p
)
∣∣∣q−1

κq(v)q−1
.

As a result, we proved that for all (s, a) ∈ X , Rπ
Usa

p
(s, a) = R0(s, a)− αs,a and451

Pπ
Usa

p
(s′|s, a) = P0(s

′|s, a)− βs,aSIGN
(
vπUsa

p
(s′)− ωq(v

π
Usa

p
)
) ∣∣∣vπUsa

p
(s′)− ωq(v

π
Usa

p
)
∣∣∣q−1

κq(v)q−1
.

452

B.2 Proof of Theorem 4.3453

Theorem (s-rectangular case). Given uncertainty set U = Us
p and any policy π ∈ Π, the worst model454

is related to the nominal one through:455

Rπ
U (s, a) = R0(s, a)− αs

(
πs(a)

∥πs∥q

)q−1

and Pπ
U (·|s, a) = P0(·|s, a)− βsu

π
U

(
πs(a)

∥πs∥q

)q−1

.

Proof. By definition,456

(Pπ
Us

p
, Rπ

Us
p
) ∈ argmin

(P,R)∈Us
p

Tπ
(P,R)v

π
Us

p
,

and since Us
p = (R0 +R)× (P0 + P), we have457

(Pπ
Us

p
, Rπ

Us
p
) = (P0 + P ∗, R0 +R∗)

where458

(P ∗, R∗) ∈ argmin
(P,R)∈P×R

Tπ
(P,R)v

π
Usa

p
.

By the s-rectangularity assumption, we get that for all s ∈ S459

(P ∗(·|s, ·), R∗(s, ·)) = argmin
(ps,rs)∈Ps×Rs

∑
a∈A

πs(a)

{
rs,a + γ

∑
s′∈S

ps,a(s
′)vπUsa

p
(s′)

}
.

Here, the worst reward does depend on policy π and is given by460

R∗(s, a) = −αs
πs(a)

q−1∑
a πs(a)q−1

, ∀(s, a) ∈ X .
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As for the worst kernel, it depends both on the value function and the policy. It is given by461

P ∗(·|s, ·) = argmin
ps∈Ps

{∑
a∈A

πs(a)
∑
s′∈S

ps,a(s
′)vπUs

p
(s′)

}
.

The optimization of interest is of the form462

min
∥ca∥p≤βs,⟨ca,1⟩=0,a∈A

{∑
a′∈A

πs(a
′)⟨ca′ , v⟩

}
,

which is equivalent to the following two-fold minimization:463

min∑
a∈A(βs,a)p≤(βs)p

min
∥ca∥p≤βs,⟨ca,1⟩=0,a∈A

{∑
a′∈A

πs(a
′)⟨ca′ , v⟩

}
.

Thus, rewriting the problem in our context,464

min∑
a(βs,a)p≤(βs)p

min
∥psa∥p≤βs,a,

∑
s′ psa(s′)=0

∑
a

πs(a)⟨ps,a, v⟩

= min∑
a(βs,a)p≤(βs)p

∑
a

πs(a) min
∥psa∥p≤βs,a,

∑
s′ psa(s′)=0

⟨ps,a, v⟩

= min∑
a(βsa)p≤(βs)p

∑
a

πs(a)(−βsaκq(v)) (By Lemma A.1)

=− κq(v) max∑
a(βsa)p≤(βs)p

∑
a

πs(a)βsa.

Computing the optimal β above, the optimization is now the same as in the (s, a)-rectangular case.465

Hence, we have466

P ∗(s′|s, a) = −βs
πs(a)

q−1

∥πs∥q−1
q

SIGN(vπUs
p
(s′)− ωq(v

π
Us

p
))

∣∣∣vπUs
p
(s′)− ωq(v

π
Us

p
)
∣∣∣q−1

κq(v)q−1
,

which ends the proof by definition of the balanced value function uπ
U .467

C Occupation Matrix468

C.1 Proof of Lemma 4.4469

Lemma. Let b, k ∈ RS and P0, P1 ∈ (∆S)
S two transition matrices. If P1 = P0 − bk⊤, i.e., P1470

is a rank-one perturbation of P0, then their occupation matrices Di := (I − γPi)
−1, i = 0, 1 are471

related through:472

D1 = D0 − γ
D0bk

⊤D0

(1 + γk⊤D0b)
.

Proof. By definition, D1 = (IS − γP1)
−1 so it follows that:473

(IS − γP1)D1 = IS
⇐⇒ IS + γP1D1 = D1

⇐⇒ IS + γ(P0 − bk⊤)D1 = D1 (By assumption, P1 = P0 − bk⊤)

⇐⇒ IS − γbk⊤D1 = (IS − γP0)D1

⇐⇒ (IS − γP0)
−1(IS − γbk⊤D1) = D1 (Multiplying both sides by (IS − γP0)

−1)

⇐⇒ D0(IS − γbk⊤D1) = D1 (By definition, D0 = (IS − γP0)
−1 )

⇐⇒ D0 − γD0bk
⊤D1 = D1. (7)
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Now, multiplying both sides by k and noticing that k⊤D0b is a scalar we get474

k⊤D0 − γk⊤D0bk
⊤D1 = k⊤D1

⇐⇒ k⊤D0 = (1 + γk⊤D0b)k
⊤D1

⇐⇒ k⊤D1 =
k⊤D0

(1 + γk⊤D0b)
. (8)

Combining Eqs. (7) and (8) thus yields:475

D1 = D0 − γ
D0bk

⊤D0

(1 + γk⊤D0b)
,

which concludes the proof.476

C.2 Proof of Theorem 4.6477

Theorem. For any rectangular ℓp-ball-constrained uncertainty and π ∈ Π, it holds that:478

dπU,µ = dπP0,µ − γ
⟨dπP0,µ

, βπ⟩S
1 + γ⟨dπP0,uπ

U
, βπ⟩S

dπP0,uπ
U
.

Proof. From Thms. 4.2 and 4.3, it holds that:479

Pπ
U (s

′|s) = Pπ
0 (s

′|s)− βπ
s u

π
U (s

′), ∀s, s′ ∈ S .

Therefore, setting P1 := Pπ
U , P0 := Pπ

0 , b := βπ and k := uπ
U , we can apply Lemma 4.4 and480

relate the corresponding occupation matrices. Additionally multiplying both sides of the relation by481

µ⊤ ∈ R1×S yields the desired result.482

D Robust Q-value483

D.1 Basic Properties484

In the literature, robust Q-values are defined in various ways that turn out to be conflicting for s485

but non-(s, a) rectangular uncertainty sets. In this section, we propose to define the robust Q-value486

solely based on the worst model. Define the robust Q-value, the robust value function, and the robust487

occupation respectively as:488

Qπ
U := Qπ

(Pπ
U ,Rπ

U ), dπU := dπ(Pπ
U ,Rπ

U ), vπU := vπ(Pπ
U ,Rπ

U ).

For s-rectangular uncertainty sets (in particular, for (s, a)-rectangular), the above definition of robust489

value function coincides with the common one, i.e., vπ(Pπ
U ,Rπ

U ) = min(P,R)∈U vπ(P,R) [30]. If the490

uncertainty set is additionally (s, a)-rectangular (as in [28] or [3, 12]), the above definition of robust491

Q-value also coincides with the common one because then,492

Qπ
Usa(s, a) = min

(P,R)∈Usa

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)vπUsa(s′)

)
, ∀(s, a) ∈ X .

Getting back to our own definition, robust Q-value and value functions are related through:493

vπU (s) = ⟨πs, Q
π
U (s, ·)⟩A

Qπ
U (s, a) = Rπ

U (s, a) + γ
∑
s′∈S

πs(a)P
π
U (s

′|s, a)vπU (s′),

as both quantities are defined based on worst kernel and reward, i.e., Qπ
U := Qπ

(Pπ
U ,Rπ

U ) and vπU :=494

vπ(Pπ
U ,Rπ

U ).495

Given an optimal robust policy π∗
U , we further use P ∗

U , R
∗
U , v

∗
U , Q

∗
U , d

∗
U as a shorthand for496

P
π∗
U

U , R
π∗
U

U , v
π∗
U

U , Q
π∗
U

U , d
π∗
U

U respectively. For (s, a)-rectangular uncertainty set Usa, the optimal value497

function is the best optimal Q-value, that is498

v∗Usa(s) = max
a∈A

Q∗
Usa(s, a), ∀s ∈ S .
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because an optimal policy deterministically takes the action with the highest Q-value [18, 10]. This499

does no longer hold for s-rectangular or coupled uncertainty sets, as there, an optimal policy may be500

stochastic [30]. Still, based on Thms. 4.2 and 4.3, we get the Bellman recursion below.501

Proposition D.1. Let an ℓp-ball constrained uncertainty set. Then, for all (s, a) ∈ X and π ∈ Π, the502

robust Q-value satisfies the following recursion in the (s, a) and s-rectangular case respectively:503

Qπ
Usa

p
(s, a) =Tπ

(P0,R0)
Qπ

Usa
p
(s, a)− αsa − γβsaκq(v

π
Usa

p
),

Qπ
Us

p
(s, a) =Tπ

(P0,R0)
Qπ

Us
p
(s, a)−

(
πs(a)

∥πs∥q

)q−1 (
αs + γβsκq(v

π
Us

p
)
)
.

Proof. We give proof for the (s, a)-rectangular case only. The s-rectangular case follows the exact504

same lines except that it uses Thm. 4.3 instead of Thm. 4.2. We have:505

Qπ
U (s, a) = Qπ

(Pπ
U ,Rπ

U )(s, a) (By definition)

= Rπ
U (s, a) +

∑
s′∈S

Pπ
U (s

′|s, a)vπUsa
p
(s′)

= R0(s, a)− αsa + γ
∑
s′∈S

(
P0(s

′|s, a)− βsau
π
Usa

p
(s′)
)
vπUsa

p
(s′) (By Thm. 4.2)

= R0(s, a)− αsa + γ
∑
s′∈S

P0(s
′|s, a)vπUsa

p
(s′)− γβsaκq(v

π
Usa

p
) (2d statement of Prop. 4.1)

= R0(s, a) + γ
∑
s′,a′

P0(s
′|s, a)πs′(a

′)Qπ
Usa

p
(s′, a′)− αsa − γβsaκq(v

π
Usa

p
)

= Tπ
(P0,R0)

Qπ
Usa

p
(s, a)− αsa − γβsaκq(v

π
Usa

p
).

506

The above recursion applies the standard Bellman operator on robust Q-values. We can similarly507

apply it on the robust value function (itself can be computed efficiently based on [3, 12]).508

Corollary D.2. Let an ℓp-ball constrained uncertainty set. Then, for all (s, a) ∈ X and π ∈ Π, the509

robust Q-value satisfies the following recursion in the (s, a) and s-rectangular case respectively:510

Qπ
Usa

p
(s, a) = R0(s, a) + γ

∑
s′

P0(s
′|s, a)vπUsa

p
(s′)− αsa − γβsaκq(v

π
Us

p
),

Qπ
Us

p
(s, a) = R0(s, a) + γ

∑
s′

P0(s
′|s, a)vπUsa

p
(s′)−

(
πs(a)

∥πs∥q

)q−1 (
αs + γβsκq(v

π
Us

p
)
)
.

D.2 Evaluation511

Based on the Bellman recursion above, we now derive robust Q-learning equations to learn a robust512

Q-value. Precisely, we investigate if the linear operator below is contracting and can be evaluated513

efficiently:514

(Lπ
UQ)(s, a) := Rπ

U,v(s, a) + γ
∑

(s′,a′)∈X

Pπ
U,v(s

′|s, a)πs′(a
′)Q(s′, a′), ∀Q ∈ RX , (9)

where (Pπ
U,v, R

π
U,v) ∈ argmin(P,R)∈U Tπ

(P,R)
v and v(s) = ⟨πs, Q(s, ·)⟩A, ∀s ∈ S.515

Proposition D.3. Consider an ℓp-ball constrained uncertainty set. Then, for all Q ∈ RX and π ∈ Π,516

the operator Lπ can be evaluated as:517

(Lπ
Usa

p
Q)(s, a) = Tπ

(P0,R0)
Q(s, a)− αsa − γβsaκq(v),

(Lπ
Us

p
Q)(s, a) = Tπ

(P0,R0)
Q(s, a)−

(
πs(a)

∥πs∥q

)q−1

(αs + γβsκq(v)) ,

where for all Q ∈ RX , its corresponding value is v(s) := ⟨πs, Q(s, ·)⟩, ∀s ∈ S.518
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Proof. We give proof for the (s, a)-rectangular case only. The s-rectangular case follows the exact519

same lines except that we take the worst model for s-rectangular balls. By definition,520

(Lπ
Usa

p
Q)(s, a) = min

(P,R)∈Usa
p

R(s, a) + γ
∑

(s′,a′)∈X

P (s′|s, a)πs′(a
′)Q(s′, a′)


= min

R∈Rsa
p

R(s, a) + γ min
P∈Psa

p

{∑
s′∈S

P (s′|s, a)v(s′)

}
= R0(s, a)− αs,a + γ

∑
s′∈S

P0(s
′|s, a)v(s′)− βs,aκq(v) (By [12])

= R0(s, a)− αs,a + γ
∑

(s′,a′)∈X

P0(s
′|s, a)πs′(a

′)Q(s′, a′)− βs,aκq(v)

= Tπ
(P0,R0)

Q(s, a)− αs,a − βs,aκq(v).

521

D.3 Convergence522

In the rest of this section, we focus on ℓ-ball constrained uncertainty sets of the form Usa
p or Us

p . Let523

our Q-value iteration Qn+1 := Lπ
UQn, and denote vn(s) = ⟨πs, Qn(s, ·)⟩A,∀s ∈ S, n ∈ N.524

Proposition D.4. For all Q ∈ RX , denote v(s) := ⟨πs, Q(s, ·)⟩A,∀s ∈ S. Then, for any policy525

π ∈ Π, the Q-value iteration defined according to Qn+1 = Lπ
UQn induces526

vn+1 := T π
U vn.

Proof. By construction, for all s ∈ S we have527

vn+1(s) = ⟨πs, Qn+1(s, ·)⟩A
= ⟨πs, (Lπ

UQn)(s, ·)⟩A

=
∑
a∈A

πs(a)

Rπ
U,vn(s, a) + γ

∑
(s′,a′)∈X

Pπ
U,vn(s

′|s, a)πs′(a
′)Qn(s

′, a′)

 (By Eq. 9)

=
∑
a∈A

πs(a)

[
Rπ

U,vn(s, a) + γ
∑
s′∈S

Pπ
U,vn(s

′|s, a)vn(s′)

]
(By definition of vn)

= (T π
U vn)(s),

where the last equality holds because (Pπ
U,vn

, Rπ
U,vn

) ∈ argmin(P,R)∈U T π
(P,R)

vn.528

As a result of the above proposition, the value iteration induced by our Q-value iteration rule converges529

linearly to the robust value function, i.e., ∥vn − vπU∥∞ ≤ γn∥v0∥∞. Therefore, Q-value iterates530

converge to a fixed point. Precisely, vn →n vπU implies that (Pπ
U,vn

, Rπ
U,vn

) →n (Pπ
U , R

π
U ), which in531

turn implies that Qn →n Qπ
U . The result below further characterizes the convergence rate.532

Proposition D.5. The Q-value iteration Qn+1 := Lπ
UQn converges linearly to Qπ

U for uncertainty533

set U = Usa
p ,Us

p for every policy π ∈ Π.534

Proof.

∥Qn+1 −Qπ
U∥∞ =∥Rπ

U,vn
+ γPπ

U,vnvn −Rπ
U + γPπ

U v
π
U∥∞,

=γ∥Pπ
U,vn

vn − Pπ
U v

π
U∥∞, ( as Rπ

U,v = Rπ
U , ∀v),

=γ∥(P0 −Bπun)vn − (P0 −Bπuπ
U )v

π
U∥∞, ( as Rπ

U,v = Rπ
U , ∀v),

where Bπ(s, a) = βs,a for U = Usa
p and Bπ(s, a) = βs

(
πs(a)
∥πs∥q

)q−1

for U = Usa
p . The equality535

comes from the worst kernel characterization. This implies536
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∥Qn+1 −Qπ
U∥∞ ≤γ∥P0(vn − vπU )∥∞ + γ∥Bπ(un)

⊤vn −Bπ(uπ
U )

⊤vπU∥∞, ,

≤γn+1∥v0 − vπU∥∞ + γ∥(un)
⊤vn − (uπ

U )
⊤vπU∥, (as Bπ(s, a) ≤ 1),

≤γn+1∥v0 − vπU∥∞ + γ∥(un)
⊤(vn − vπU )∥+ γ∥(un − uπ

U )
⊤vπU∥,

≤γn+1∥v0 − vπU∥∞ + γn+1S∥v0 − vπU∥∞ + γ
∥R∥∞
1− γ

∥un − uπ
U∥∞.

Here, un, u
π
U is the balanced normalized vector associated with vector vn and vπU respectively. Recall,537

the p-balanced normalized vector u associated with vector v is given by538

u(s) :=
sign(v(s)− ωq(v)∥v(s)− ωq(v)∥q−1

κq(v)q−1
, (10)

where κp(v) = minw∥v − w1∥p and ωp(v) =w ∥v − w1∥p. It is easy to see that ωp, κ are539

Lipschitz function in v. Hence, ∥un − uπ
U∥∞ ≤ CPol(∥vn − vπU∥∞)f(κ(vπU ), S,A), where Pol , f540

is some polynomial and some function. This implies,541

∥Qn+1 −Qπ
U∥∞ ≤ γn+1f(κ(vπU ), ∥v0 − vπU∥∞, S,A).

This concludes our proof.542

E Robust Policy Gradient543

Theorem (RPG). For any rectangular ℓp-ball-constrained uncertainty, the robust policy gradient is544

given by:545

∂πρ
π
U =

∑
(s,a)∈X

(
dπP0,µ(s)− cπ(s)

)
Qπ

U (s, a)∇πs(a), (11)

where546

cπ(s) :=
γ⟨dπP0,µ

, βπ⟩S
1 + γ⟨dπP0,uπ

U
, βπ⟩S

dπP0,uπ
U
(s), ∀s ∈ S .

Proof. The proof directly follows from plugging the robust occupation measure of Thm. 4.6 and the547

robust Q-value into standard policy-gradient theorem [23].548

F Complexity Analysis549

In this section, we study the iteration complexity to compute robust policy gradient different uncer-550

tainty set.551

Convex non-rectangular Uncertainty set. Robust policy improvement are strongly NP Hard for552

non-rectangular uncertainty set, even if it is convex [30]. The policy gradient method finds global553

optimal given oracle access to policy gradient in polynomial time [27]. This implies computation of554

policy gradient must be of NP Hard.555

Non-robust MDPs. For non-robust case, computation of Q-value and occupation is O(S2A log(ϵ−1))556

each, which are most costly computations. Computing the product of dπ, Qπ and ∇π as in policy557

gradient is O(SA) operation, which insignificant. Hence, the total cost for computing policy gradient558

is the same as cost of Q-value. More precisely, lets approximate Q-value with Q and occupation with559

d, with ϵ
SA tolerance, that is ∥Q−Qπ∥∞, ∥d− dπ∥∞ ≤ ϵ

SA . This takes O(S2A log(SAϵ−1)) each.560

Now then, we have561 ∑
s,a

d′(s)Q′(s, a)∇πs(a) =
∑
s,a

(Qπ(s, a) + ϵ1(s, a))(d
π(s, a) + ϵ2(s, a))∇πs(a)

where ϵ1(s, a) = Q(s, a)−Qπ(s, a) and ϵ2(s, a) = d(s, a)−dπ(s, a). We know, let B be the bound562

on ∥Qπ∥∞, ∥dπ∥∞ ≤ B. So now we have,563
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∑
s,a

d′(s)Q′(s, a)∇πs(a) =
∑
s,a

(Qπ(s, a) + ϵ1(s, a))(d
π(s, a) + ϵ2(s, a))∇πs(a)

=
∑
s,a

Qπ(s, a)dπ(s, a)∇πs(a) +O(ϵ).

So the exact complexity of policy gradient for non-robust MDP is O(S2A log(SAϵ−1).564

F.1 Helper results for Robust MDPs565

Computing variance and mean functions. Computing κp(v) and ωp(v) to ϵ tolerance requires566

O(S log(Sϵ−1)) and O(S log(ϵ−1)) respectively, via binary search [12].567

Computing occupation measure. Let k ∈ RS be any vector. From definition, we have568

dπP,k =

∞∑
n=0

γnk⊤(Pπ)n.

We have,569

∥dπP,k −
N−1∑
n=0

γnk⊤(Pπ)n∥ = ∥
∞∑

n=N

γnk⊤(Pπ)n∥ ≤ ∥k∥
∞∑

n=N

∥γPπ∥n.

Since, ∥Pπ∥ ≤ 1 as it is a stochastic matrix, then570

∥dπP,k −
N−1∑
n=0

k⊤γn(Pπ)n∥ ≤ ∥k∥γN∥Pπ∥N

1− γ∥Pπ∥
≤ ∥k∥γN

1− γ
.

This implies
∑N−1

n=0 γnk⊤(Pπ)n is O(γN ) approximation of dπP,k. Now, take u0 = k and571

un+1 := γ(un)
⊤P,

then
∑N−1

n=0 γnk⊤(Pπ)n =
∑N−1

n=0 un. And each iteration take O(S2) iterations, leading to total572

cost O(S2N) for N iterations. Computing Pπ from P is O(S2A). We conclude computing the573

occupation measure has complexity of O(S2A+ S2 log(ϵ−1)).574

Lemma F.1. We can approximate dπP,k with
∑N−1

n=0 γn(k′)⊤(Pπ)n with complexity O(S2A +575

S2 log(ϵ−1)) with tolerance:576

∥dπP,k −
N−1∑
n=0

γn(k′)⊤(Pπ)n∥ ≤ O(
∥k∥γN + ∥k − k′∥

1− γ
)

Proof.

∥dπP,k −
N−1∑
n=0

γn(k′)⊤(Pπ)n∥ ≤ ∥dπP,k −
N−1∑
n=0

γn(k)⊤(Pπ)n∥+ ∥
N−1∑
n=0

γn(k′)⊤(Pπ)n −
N−1∑
n=0

γn(k)⊤(Pπ)n∥

≤ O(
∥k∥γN

1− γ
) + ∥

N−1∑
n=0

γn(k)⊤(Pπ)n −
N−1∑
n=0

γn(k′)⊤(Pπ)n∥

≤ O(
∥k∥γN

1− γ
) + ∥k − k′∥∥

N−1∑
n=0

γn(Pπ)n −
N−1∑
n=0

γn(Pπ)n∥

≤ O(
∥k∥γN

1− γ
) +O(

∥k − k′∥
1− γ

).

577
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Computing Q-value given value function. Let v be ϵ1 approximation of robust value function vπU ,578

that is579

∥v − vπU∥∞ ≤ ϵ1.
We want to compute Q-value using the relation:580

Qπ
U (s, a) = Rπ

U (s, a) +
∑
s,a

πs(a)P
π
U (s

′|s, a)vπU (s′)

= R0(s, a) + γ
∑
s′

P0(s
′|s, a)vπU (s′)− ΩU (v

π
U , π).

where ΩUs
p
(vπUs

p
, π) = πs(a)

q−1

∥πs∥q−1
q

(
αs + γβsκq(v

π
Us

p
)
)

and ΩUsa
p
(vπUsa

p
, π) = αsa + γβsaκq(v

π
Usa

p
). Let581

Q be approximated from v as582

Q(s, a) = R0(s, a) + γ
∑
s′

P0(s
′|s, a)v(s′)− ΩU (v, π).

So we have,583

∥Qπ
U (s, a)−Q(s, a)∥∞ = γ∥

∑
s′

P0(s
′|s, a)(v(s′)− vπU )∥+ ∥ΩU (v, π)− ΩU (v

π
U , π)∥

≤ γϵ1 + ∥ΩU (v, π)− ΩU (v
π
U , π)∥

≤ γϵ1 + ∥β∥∞∥κq(v)− κq(v
π
U )∥

≤ γϵ1 + ∥β∥∞S
1
q ϵ1, (using lemma F.2)

= O(S
1
q ϵ1).

This implies, ∥Q−Qπ
U∥∞ ≤ O(S

1
q ϵ1).584

Lemma F.2. κp is Lipschitz function, precisely585

∥κp(v1)− κp(v2)∥ ≤ S
1
p ∥v1 − v2∥∞ ≤ S

1
p ∥v1 − v2∥∞.

Proof. Let wi ∈ argminw∥vi − w1∥p, then we have586

∥κp(v1)− κp(v2)∥ = κp(v1)− κp(v2), (WLOG, assuming κp(v1) ≥ κp(v2))
= min

w
∥v1 − w1∥p − ∥v2 − w21∥p, (From definition)

≤ ∥v1 − w21∥p − ∥v2 − w21∥p, (From definition of min operator)
≤ ∥(v1 − w21)− (v2 − w21)∥p, (Reverse triangle inequality)
= ∥v1 − v2∥p
= [
∑
s

(v1(s)− v2(s))
p]

1
p ≤ S

1
p ∥v1 − v2∥∞.

587

Lemma F.3. Qπ
Usa

p
can be approximated to ϵ tolerance with the same complexity as complexity of588

computing vπUsa
p

to S− 1
q ϵ.589

Proof. Compute value function with S− 1
q ϵ tolerance. The rest of operations are insignificant. Rest590

follows from the above.591

F.2 Computing the Policy gradient.592

Let Osa
p (ϵ) be the complexity to compute robust value function vπUsa

p
, upto ϵ tolerance, see [12] for593

details. Calculate Q-value up to ϵ1 tolerance which requires Osa
p (S− 1

q ϵ1) from lemma F.3. Let594

d1 and d2 be ϵ2 approximation of dπP0,µ
and dπP0,k

respectively, which is insignificant compared to595

Osa
p (S− 1

q ϵ2). Now let’s approximate the gradient with d1, d2, Q,∇π as in Theorem 5.1, which has a596

complexity of O(SA). Since the uncertainty set U is compact, all the quantities are bounded. And597

there are O(SA) operations in the Theorem 5.1, so taking ϵ1, ϵ2 = O( ϵ
SA ), we will get the O(ϵ) of598

the gradient. Hence, the total complexity is Osa
p (S− 1

q−1A−1ϵ) which is Õ(S2A log(ϵ−1)), by hiding599

log factors, see [12]. A similar analysis follows for the s-rectangular case.600
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G Generalization to arbitrary norms601

Here we focus on the generalization of our result to a general norm from the existing ℓp norm. We do602

it case by case.603

G.1 sa-rectangular robust MDPs.604

Lets consider sa-rectangular uncertainty set U = Usa
∥·∥ constrained by ∥·∥ norm. Precisely, defined as605

Usa
∥·∥ = (P0 + P)× (R0 +R), where (P,R) = (×s,aPsa,×s,aPsa),

606

R(s,a) = {r ∈ R | ∥r∥ ≤ αs,a} , and P(s,a) =
{
p ∈ RS | ⟨p,1⟩S = 0, ∥p∥ ≤ βs,a

}
.

The robust Bellman operator T π
U can be evaluated as607

(T π
U v)(s) =

∑
a

πs(a)
[
R(s, a)− γβs,aκ∥·∥(v) + γ

∑
s′

P (s′|s, a)v(s′)
]
,

where variance function is defined as608

κ∥·∥(v) := min
⟨u,1⟩S=0,∥u∥≤1

⟨u, vπU ⟩.

This can be used to compute the robust value function. Then the worst values can found using robust609

Bellman operator T π
U and robust value function vπU as610

(Pπ
U , R

π
U ) ∈ argmin

(P,R)∈U
T π
(P,R)v

π
U , [30].

It is easy to see that the worst values are given as611

Rπ
U (s, a) = R0(s, a)− αs,a and Pπ

U (·|s, a) = Pπ
0 (·|s, a)− βs,au

π
U ,

where normalized-balanced value function uπ
U is a solution to612

min
⟨u,1⟩S=0,∥u∥≤1

⟨u, vπU ⟩.

Observe that the worst kernel is still a rank-one perturbation of the nominal kernel. Hence, the robust613

occupation measure can be obtained using the Lemma 4.4 as614

dπU,µ = dπP0,µ − γ
⟨dπP0,µ

, βπ⟩S
1 + γ⟨dπP0,uπ

U
, βπ⟩S

dπP0,uπ
U
, (12)

where βπ(s) =
∑

a πs(a)βs,a. The last ingredient to compute RPG is robust Q-value which can be615

computed using robust value function and worst values. However, it can be computed directly using616

the following iterates:617

Qn+1(s) = min
(P,R)∈U

[
R(s, a) + γ

∑
s′

P (s′|s, a)v(s′)
]

= R(s, a)− αs,a − γβs,aκ∥·∥(v) + γ
∑
s′

P (s′|s, a)v(s′),

as Qn converges to robust Q-value Qπ
U linearly.618

The proofs of the above claims are easy or similar to the ℓp counterparts. Finally, computation of619

the variance function κ∥·∥ and normalized-value function uπ
U can be done via numerical convex620

optimization methods for general norms. However for the ℓp case, they can be obtained in concrete621

forms, hence we choose it for the main presentation.622

G.2 s-rectangular Case623

Generalization of our methods to s-rectangular balls of a general norm is not straightforward and may624

not be possible for all kinds of norms. The crucial property of ℓp norm that we exploited to prove625

rank-one perturbation is ’decoupling’, that is, for x ∈ RA×S ,626

∥x∥yp =
∑
a∈A

∥xa∥zw,

for some w, y, z. This holds for the ℓp norm with w = y = z = p. We leave the further analysis of627

this setting for future work.628
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G.3 Generalization to non-norms629

Further, generalization of our results to distance such as KL, can be tricky. The ability of our methods630

to compute RPG (particularly robust occupation measure) crucially relies on the rank-one perturbation631

result, which might not be the case for distance measures such as KL. We leave this analysis for632

future work.633

H Experiments634

Parameters. All the nominal transition kernels and reward functions are generated randomly. The635

number of states and the number of actions are varied. Discount factor γ = 0.9, reward noise radius636

αs,a, αs = 0.1, transition noise kernel βs,a, βs =
0.01
SA .637

Hardware Experiments are done on the machine with the following configuration: Intel(R) Core(TM)638

i7-6700 CPU @3.40GHZ, size:3598MHz, capacity 4GHz, width 64 bits, memory size 64 GiB.639

Software and codes All the experiments were done in Python using numpy, matplotlib. All codes640

and results will be made public on GitHub after the publication to preserve anonymity.641

Procedure and Results. All the experiments were repeated 100 times, except for Linear Programming642

(LP) cases as LP methods were very time-consuming. In LP methods, experiments were repeated643

5 times except for the case (S = 500, A = 100) which was done only once. As this case was644

prohibitively expensive. Standard deviation in all cases was less than 10%, and typically 1 − 2%.645

This conveniently illustrates the superiority of our methods over LP methods.646

Observations647

• Scalability of our methods. Note that our methods scale very well with large state-action648

space. It takes a (small) constant times the time required by non-robust MDPs. On the other649

hand, LP methods explode. Both observations confirm the theoretical time complexity.650

• sa-case vs s case in LP methods. We see s-case outperforms sa-case for small state-action651

spaces via LP methods. This is opposite to the theoretical time complexity of s-case which652

expensive than sa-case. We believe this is due to the internal implementation issues. Note653

that computing the robust value function is the most expensive step which requires evaluation654

of the robust Bellman operator. In sa case, one evaluation requires solving SA LP programs655

with S variables each, while for s-case, it is S LP programs with SA variables each. To656

solve LP, scipy.linprog is used, we believe it does some parallelization for large LPs. Hence,657

we observe less cost for sa-case. However, we observe that the cost of s-case increases658

much faster than s-case, and eventually under-performing than sa-case.659

H.1 RPG by LP660

We compute RPG using LP in the following steps:661

1. (Robust Value Iteration) Approximately compute the robust value function vπU using the662

iterates vn+1 := T π
U vn. Evaluation of robust Bellman operator T π

U is done via LPs as663

described below. This is the most expensive step as it requires evaluating robust Bellman664

operators O(log(ϵ−1)) times, and each evaluation requires many LPs.665

2. (Adversarial Values) Compute the worst values (Pπ
U , R

π
U ) using the robust value function666

from the following relation:667

(Pπ
U , R

π
U ) ∈ argmin

(P,R)∈U
T π
U vπU .

This is also solved by LP.668

3. (Policy Gradient Theorem) We now compute the RPG using policy gradient Theorem [23]669

w.r.t. the adversarial values computed above, as670

∂ρπU =
∑
s,a

dπPπ
U
(s)Qπ

Pπ
U ,Rπ

U
(s, a)∇πs(a).
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Observe that dπP can be approximated as
∑n

n=0(γP
π)n for large n enough, and Qπ

P,R can671

be approximated by dynamic programming [22]. Notably, this step and the second step are672

negligible as compared to the first step.673

Robust Value Iteration by LP674

sa-rectangular robust MDPs. We first consider sa-rectangular L1 constrained uncertainty set675

Usa
p = P ×R. Robust Bellman operator is given by676

(T π
Usa

p
v)(s) = max

a
min

p∈Psa,r∈Rsa

[
r + γ

∑
s′

p(s′)v(s′)
]

︸ ︷︷ ︸
LP with S variable

.

Note that the above can be solved by A LPs as uncertainty set Usa
p = P ×R induces linear constraint677

and the objective is also linear with S variables. Hence, evaluation of T π
Usa

p
v requires solving SA LPs678

with S variable each.679

s-rectangular robust MDPs. We now consider s-rectangular L1 constrained uncertainty set Us
p =680

P ×R. Robust Bellman operator is given by681

(T π
Us

p
v)(s) = min

p∈Ps,r∈Rs

∑
a

πs(a)
[
r(a) + γ

∑
s′

p(s′|a)v(s′)
]

︸ ︷︷ ︸
LP with SA variable

.

Note that the above can be solved by one LP as uncertainty set Us
p = P ×R induces linear constraint682

and the objective is also linear with SA variables. Hence, evaluation of T π
Us

p
v requires solving S LPs683

with SA variable each.684
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