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ABSTRACT
Visual grounding, which aims to ground a visual region via natural
language, is a task that heavily relies on cross-modal alignment.
Existing works utilized uni-modal pre-trained models to transfer
visual or linguistic knowledge separately while ignoring the multi-
modal corresponding information. Motivated by recent advance-
ments in contrastive language-image pre-training and low-rank
adaptation (LoRA) methods, we aim to solve the grounding task
based on multimodal pre-training. However, there exists signifi-
cant task gaps between pre-training and grounding. Therefore, to
address these gaps, we propose a concise and efficient hierarchi-
cal multimodal fine-grained modulation framework, namely HiVG.
Specifically, HiVG consists of a multi-layer adaptive cross-modal
bridge and a hierarchical multimodal low-rank adaptation (HiLoRA)
paradigm. The cross-modal bridge can address the inconsistency
between visual features and those required for grounding, and es-
tablish a connection between multi-level visual and text features.
HiLoRA prevents the accumulation of perceptual errors by adapting
the cross-modal features from shallow to deep layers in a hierarchi-
cal manner. Experimental results on five datasets demonstrate the
effectiveness of our approach and showcase the significant ground-
ing capabilities as well as promising energy efficiency advantages.
The project page: https://github.com/linhuixiao/HiVG.
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1 INTRODUCTION
Visual Grounding (VG), also known as Referring Expression Com-
prehension (REC) or Phrase Grounding (PG) [9, 19, 29, 41, 47, 62, 63,
75], is a fundamental and challenging task at the intersection fields
of vision-language understanding, which can be potentially used
in a wide range of applications [1, 6, 35], such as visual question
answering [1], human-machine interaction [6] etc.. Unlike object
detection [37, 38], which requires a predefined and fixed set of cat-
egories, grounding is not limited to specific categories but instead
needs to identify the specific image region according to the lan-
guage expression semantics. Thus, grounding is a task that strongly
relies on the interaction and alignment of multimodal features.

Existing state-of-the-art (SOTA) approaches [9, 10, 16, 55, 71,
76, 78] utilize uni-modal pre-trained detection models or language
models (e.g., ResNet [15], Swin Transformer [39], DETR [4], ViT-
Det [28], BERT [11], RoBERTa [36] etc.) to facilitate grounding
learning. These methods separately transfer the language or vision
knowledge from pre-trained models by using resource-consuming
fully parameter fine-tuning, ignoring themultimodal corresponding
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“a left giraffe 
nursing her

young."
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(a) The visual attentions when directly using vanilla CLIP in visual grounding.

(b) The visual attentions of the proposed HiVG (for Query-1).

(c) The visual attentions of the proposed HiVG (for Query-2).
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Figure 1: Visual attentions and grounding results of CLIP
and the proposed HiVG. The attentions are perceived by the
[CLS] token over vision tokens.

information. Therefore, it is natural for us to consider using cross-
modal pre-trained models as a solution to the grounding problem.

By utilizing language supervision from large-scale unlabeled
data, Vision-Language Pre-training (VLP) can acquire comprehen-
sive multimodal representations. Recently, the remarkable suc-
cess of Contrastive Language-Image Pre-training (CLIP) [48] has
demonstrated its ability to learn general visual concepts, which as-
sists many multimodal tasks to achieve remarkable improvements
[23, 44, 48, 61]. In visual grounding, there are also works, e.g., CLIP-
VG [63] and Dynamic-MDETR [53], which consider using CLIP.
However, existing methods mainly utilize the CLIP as a backbone
to extract strong vision and language features, without compre-
hensively investigating on the significant task gap between the
pre-trained CLIP and the downstream grounding, which hinders
exploiting the full potential of pre-training models. In this work,
we scrutinize the task gap from two aspects. (1) Data bias. There
inevitably exists a certain bias in data between the large-scale pre-
training and grounding. Directly utilizing the frozen vision back-
bone of the CLIP may extract visual features sensitive to general
objects that are not the focus of the query in visual grounding. For
example, as shown in Fig. 1-(a), the middle giraffe receives highlight
attention, but it has little relation to the grounding task. (2) Differ-
ence in learning objectives. The visual grounding task needs to
find the precise image region that has the target object expressed
by the query sentence. In contrast, CLIP works as a multimodal
pre-trained model, which is only constrained to coarsely align noisy
image and text data [51] in a self-supervised way. In addition, the
self-supervised constraint is only performed at the final layer. When
directly using the pre-trained CLIP in visual grounding, some valu-
able fine-grained visual information in the bottom vision layers
may be discarded, which brings challenges for accurately locating
the object box. For example, as shown in Fig. 1-(a), the left giraffe
receives relatively small attention areas, which leads to inaccurate
box of the target object.

It is not trivial to address the two kinds of task gaps. (1) For the
task gap of data bias, extracting the features of the query text to
guide the visual feature learning is a potential way to solve it. How-
ever, the query text has a feature space that is very different from
the visual space and it is difficult to find the appropriate semantic
information from the query features to guide the learning of differ-
ent vision layers. (2) For the task gap of learning objectives, to

adapt the pre-trained CLIP to the grounding task, a straightforward
way is fine-tuning the pre-trained weights. Whereas, this scheme
may lead to catastrophic forgetting, which is harmful to retain the
general knowledge learned by the pre-trained models. Another po-
tential solution is to employ Low-Rank Adaptation (LoRA) [18] by
fine-tuning only a few parameters. However, simply applying LoRA
does not achieve fine-grained adaptation and even lead to perfor-
mance degradation. Since high-level features depend on low-level
features, and they are susceptible to perturbations of the shallow
features. If all layers of a large-scale pre-trained model are adapted
simultaneously, perceptual errors in bottom layers may accumulate
and amplify. Therefore, it is necessary to consider a hierarchical
approach for progressively adapt fine-grained visual features from
shallow to deep layers.

In this paper, we propose a hierarchical multimodal fine-grained
modulation framework to more effectively adapt the pre-trained
CLIP to grounding, namely HiVG. It is a concise and efficient end-
to-end framework that can alleviate two kinds of task gaps (i.e., data
bias and learning objectives) through a multi-layer adaptive cross-
modal bridge and a hierarchical low-rank adaptation paradigm.

Firstly, to address the inconsistency between visual features
of the pre-trained CLIP and those required for grounding, as well
as establish a connection between multi-level visual and text fea-
tures, we have designed a multi-layer adaptive cross-modal bridge.
Specifically, the cross-modal bridge includes a sample-agnostic se-
mantic weighting module and a multi-head cross-attention module.
The weighting module incorporates learnable multi-level sample-
agnostic adaptive weights, facilitating the selection of appropriate
linguistic features through a residual operation. The multi-head
cross-attention utilizes the selected multi-level text features for
guiding the learning of the visual features required in grounding.
The sample-agnostic semantic weighting scheme is inspired by
[3, 8], i.e., specific layers of a pre-trained model may have distinct
responses to certain concepts or semantics that are independent of
the input and relevant to the network layers.

Secondly, to prevent the accumulation of errors layer by layer
in the downstream adaptation process of the pre-trained model, we
propose Hierarchical Low-rank Adaptation (HiLoRA) paradigm.
Existing methods mainly utilize LoRA[18] as a parameter-efficient
fine-tuning (PEFT) method to learn a single round along with the en-
tire model. Different from previous methods [18, 54], we divide the
network layers of the pre-trained CLIP into multiple layer groups.
The low-rank adaptation is allocated into multiple stages where
each stage relates to several layer groups. Then, during the adap-
tation process, visual features are recursively and hierarchically
adapted from shallow to deep layers in a hierarchical manner. Si-
multaneously, with the assist of the multi-layer cross-modal bridge,
HiLoRA can not only achieve fine-grained hierarchical adaptation,
but also enable the low-rank matrix perception based on the vision
and language cross-modal information.

As show in Fig. 1-(b) and (c), benefiting from the hierarchi-
cal multimodal fine-grained modulation structure, HiVG exhibits
heightened sensitivity towards visual region information, demon-
strates enhanced comprehension of complex text, and significantly
bridges the gap between pre-training and grounding tasks. Our
method achieves SOTA performance on five widely used datasets,
including RefCOCO/+/g [41, 75], ReferitGame [21] and Flickr30K
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Entities [46]. HiVG outperforms the CLIP-based SOTA method,
Dynamic-MDETR [53], on RefCOCO/+/g datasets by 3.15%(testB),
2.11%(testA), 4.30%(test), and also outperforms the strong detector-
based SOTA method, TransVG++ [10], on the three datasets by
2.30%(testB), 3.36%(testA), 2.49%(test), respectively. Meanwhile, our
model can obtain SOTA results on 224×224 small-resolution im-
ages without relying on high-resolution images (e.g., 640×640) like
other works [10, 55, 71]. Additionally, it significantly accelerates
inference processes and is 8.2× faster than TransVG++ (Fig. 4).

The main contributions can be summarized as three-fold:
• We proposed a concise hierarchical multimodal modulation
framework, which utilizes the hierarchical structure to grad-
ually adapt CLIP to grounding. HiVG achieves fine-grained
interaction between multi-level visual representations and
language semantics, and significantly alleviates the task gap
between CLIP and grounding.

• We are the first to propose the hierarchical multimodal low-
rank adaptation structure. HiLoRA is a basic and concise
hierarchical adaptation paradigm, which is task-agnostic.

• We conducted extensive experiments to verify the effective-
ness of HiVG approaches. Results show that our method
achieves promising results, surpassing the SOTA methods
under the same setting by a significant margin. Besides, our
model offers significant computing efficiency advantages.

2 RELATEDWORK
2.1 Visual Grounding
Visual grounding has recently received significant research atten-
tion, and it can be categorized into several settings. On the one hand,
represented by TransVG [9], this setting involves full-parameter
fine-tuning utilizing pre-trained closed-set detectors and language
models. It is considered the most conventional and extensively
studied setting. Under this setting, numerous complex two-stage
[17, 31, 34, 74] and one-stage [68, 70, 77] methods emerged based
on traditional detection networks in the early CNN era. After
the introduction of ViT [12, 58], the Transformer-based networks
[9, 10, 16, 20, 27, 40, 42, 55, 71, 72] constantly pushes the accuracy to
new limits. However, these works only focus on achieving ground-
ing by using independently pre-trained uni-modal detectors and
language encoders while ignoring the alignment of cross-modality
information within pre-trained model itself. More recent works,
such as QRNet [71], VG-LAW [55], TransVG++ [10], etc., only in-
corporate language-guided knowledge in vision backbone without
attempting multi-level fine-grained alignment of multimodal fea-
tures. Motivated by this setting, several works, such as CLIP-VG
[63] and Dynamic-MDETR [53], have recently sprung up to the
setting of fine-tuning with vision and language (VL) self-supervised
pre-trained models. Following this setting, our study delves into
a deeper perspective of hierarchical multimodal information and
achieves fine-grained interaction of cross-modal features. On the
other hand, with the evolution of the pre-training paradigm, many
new settings have recently emerged that significantly improve the
grounding performance, such as fine-tuning with box-level dataset-
mixed open-set detection pre-trained models (e.g., MDETR [20],
Grounding-DINO [33], etc.), fine-tuning with box-level / multi-task
mixup-supervised pre-trained models (e.g., UniTAB [69], UNITER

[7], OFA [60], etc.), and grounding multimodal large language mod-
els (GMLLMs, e.g., Shikra [6], Kosmos-2 [45], Ferret [73], LION [5],
etc.). However, these works require a large amount of fine-grained
labeled data, resulting in a relatively high training cost.

2.2 Contrastive Language-Image Pre-training
With the promotion of learning general and transferable cross-
modal representations [14, 64–67], VLP has become the core train-
ing paradigm ofmodern VL research. Benefiting from self-supervised
contrastive learning, CLIP has demonstrated impressive generaliza-
tion and downstream transfer ability in a series of studies [44, 48].
More recently, some works utilized CLIP to realize grounding trans-
fer, such as adapting-CLIP [26], ReCLIP [56] etc., but these works
are limited to using CLIP features as aids in an unsupervised or
zero-shot setting [22, 56] and cannot directly perform grounding.
Although CLIP-VG [63], Dynamic-MDETR [53], JMR [79] etc., real-
izes grounding transfer, it does not conduct more in-depth research
on the task gaps and the hierarchical cross-modal features. Un-
like previous work, our study fills the gap by conducting a more
comprehensive study of the cross-modal task gaps between CLIP’s
pre-training and downstream grounding.

2.3 Low-Rank Adaptation
LoRA [18] freezes the weights of pre-trained model and injects
trainable rank decomposition matrices into each layer of the Trans-
former [59], thereby significantly reducing the number of trainable
parameters for downstream tasks. Vanilla LoRA has been proposed
in the field of natural language processing for Large Language
Models (LLM) such as LLaMA2 [57], GPT-2 [49], GPT-3 [2] with
175B parameters, etc.. Recently, researchers have attempted to apply
vanilla LoRA in the fields of cross-modal tasks [54]. However, since
cross-modal tasks primarily emphasize the interaction of multi-
modal information in contrast to unimodal language or visual tasks,
the application of LoRA to grounding tasks remains unexplored.
Consequently, we propose HiLoRA as an effective solution for ad-
dressing the existing gaps in multimodal downstream transfer.

3 METHODOLOGY
In this section, we propose our hierarchical multimodal fine-grained
modulation framework for visual grounding, namely HiVG, which
mainly consists of the multi-layer adaptive cross-modal bridge and
the hierarchical low-rank adaptation (HiLoRA) paradigm. We will
introduce each of these methods in the following sections.

3.1 Framework Overview
Our aim is to achieve fine-grained hierarchical cross-modal fea-
ture modulation, so as to narrow the task gap between the self-
supervised pre-training and grounding. Therefore, we integrate the
multi-level image and text representations from a hierarchical per-
spective with the facilitation of multi-layer adaptive cross-modal
bridge and the hierarchical LoRA paradigm. Specifically, as shown
in Fig. 2, the network architecture of HiVG consists of a CLIP image
encoder, a CLIP text encoder, a grounding encoder and a regression
head. Firstly, for any given image I ∈ R3×𝐻×𝑊 and text T ∈ R𝐿𝑙

pairs, the visual and text encoders encode the image and text to-
kens to obtain the visual feature 𝒇𝑣 ∈ R𝐿𝑣×𝐻𝑣 and text feature
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𝒇𝑙 ∈ R𝐿𝑙×𝐻𝑙 , respectively, where 𝐻,𝑊 are the image size, 𝐻𝑣 and
𝐻𝑙 are the visual and text hidden embedding dimension, 𝐿𝑣 is the
length of image token, which tokenized by a convolution projection,
and 𝐿𝑙 is the length of text token, which tokenized by a lower-cased
Byte Pair Encoding (BPE) with a 49,152 vocab size [52]. We extract
the multi-level intermediate visual features {𝒇 𝑖𝑣 }𝑚𝑖=1 ∈ R𝑚×𝐿𝑣×𝐻𝑣

and text features {𝒇 𝑖
𝑙
}𝑛
𝑖=1 ∈ R𝑛×𝐿𝑙×𝐻𝑙 , which obtained by the ViT

block and text Transformer block, respectively, where𝑚 and 𝑛 are
the numbers of extracted layers.

Simultaneously, to reduce the inconsistency between the visual
features of the uni-modal image backbone and those required for
grounding, we introduce a multi-layer adaptive cross-modal bridge
to the visual encoder that bridges image and text modalities. Each
layer of the bridge has a learnable sample-agnostic weighting mod-
ule, thus enabling the uni-modal visual backbone to perceive hier-
archical cross-modal text features.

Additionally, to prevent the accumulation and amplification of
perceptual errors in the visual encoder, we propose a hierarchical
low-rank adaptation (HiLoRA) paradigm to adapting the pre-trained
frozen parameters. During HiLoRA training, the entire adaptation
process learns from shallow to deep layers. The gradients back-
ward from the grounding encoder are updated hierarchically and
adaptively into the low-rank matrix based on both visual features
and hierarchical language features. Besides, the intermediate visual
features are aggregated and fed to the grounding encoder, which
not only benefits the perception of multi-level visual features but
also facilitates direct gradient backward updates without going
from deep to shallow in the HiLoRA low-stage training.

Finally, in the grounding encoder, we concatenate the multi-level
visual features along with the hidden dimension, and leverage the
weight𝑊𝑚𝑣𝑝 ∈ R(𝑚 ·𝐻𝑣 )×𝐻𝑔 of a MLP-based visual perceiver to
project them into embedding space 𝒈𝑣 ∈ R𝐿𝑣×𝐻𝑔 with dimension
𝐻𝑔 to perceive multi-level visual representations:

𝒈𝑣 = concat[𝒇 1𝑣 ,𝒇 2𝑣 , · · · ,𝒇𝑚𝑣 ] ⊗𝑊𝑚𝑣𝑝 . (1)
To prevent any perturbation on [𝐸𝑂𝑆] token and ensure the sub-
sequent constraints remain unaffected, we exclusively utilize the
linear projection features 𝒈𝑙 ∈ R𝐿𝑙×𝐻𝑔 of the last layer’s text fea-
tures 𝒇 𝑙𝑎𝑠𝑡

𝑙
to feed the grounding encoder. Finally, the input tokens

of the grounding encoder are as follows:
𝒙𝒈 = [g𝑟 , 𝑐𝑙𝑠, 𝑔1𝑣, 𝑔2𝑣, 𝑔3𝑣, · · · , 𝑔

𝐿𝑣
𝑣︸                     ︷︷                     ︸

CLIP image tokens 𝒈𝑣

, 𝑔1
𝑙
, 𝑔2

𝑙
, 𝑔3

𝑙
, · · · , 𝑔𝐿𝑙

𝑙︸                    ︷︷                    ︸
CLIP text tokens 𝒈𝑙

], (2)

where 𝑐𝑙𝑠 represents the classification token [𝐶𝐿𝑆], 𝑔𝑟 represents
the learnable [𝑅𝐸𝐺] token, which is used to output the regression re-
sults [9]. The [𝐸𝑂𝑆] token is the end token of each sequence within
𝒇𝑙 and 𝒈𝑙 . The regression head is employed to conduct bounding
box regression, which is a three-layer MLPs [9], each consisting
of a linear layer and a ReLU activation layer. It outputs the final
coordinate of the predicted grounding box B̂ = (𝑥,𝑦, �̂�, ℎ̂).

3.2 Multi-layer Adaptive Cross-modal Bridge
The visual encoder of CLIP independently encodes the image, and
the obtained multi-level visual features may be inconsistent with
those required for grounding. Additionally, as inspired by [3, 8],
specific layers of a pre-trained model may exhibit distinct responses
to certain concepts or semantics that are independent of the input
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Figure 2: Schematic representation of the hierarchical multi-
modal fine-grained modulation framework.

and relevant to the network layers. Therefore, we should provide
a wide range of multi-level text features for different visual layers
to select and calibrate. Thus, to address these issues, we propose
integrating amulti-layer adaptive cross-modal bridge into the image
encoder to achieve fine-grained visual features.

The multi-layer adaptive cross-modal bridge (MACB) mainly
consists of a sample-agnostic semantic weighting module and a
multi-head cross-attention. It is inserted into specific ViT blocks,
and we define the layer index set 𝐶 as the insertion positions. The
sample-agnostic weighting module enables distinct hierarchical
language feature perception among different layers. Specifically,
we first extract and aggregate the intermediate language features
{𝒇 𝑖
𝑙
}𝑛
𝑖=1 ∈ R𝑛×𝐿𝑙×𝐻𝑙 . Then, to stably strengthen or weaken the text

features preferred by different visual layers, we utilize a residual
operation to achieve selection of multi-level text features:

∗𝒇 𝑖𝑙 = 𝒘𝑖
𝑙
⊙ 𝒇 𝑖

𝑙
+ 𝒇 𝑖

𝑙
. (3)

where {𝒘𝑖
𝑙
}𝑛
𝑖=1 ∈ R𝑛×𝐿𝑙×𝐻𝑙 represent the learnable multi-level

sample-agnostic adaptive weights within different layers, which
can promote different visual layers respond distinctly to specific
textual concepts or semantics. The weighted features are obtained
by dot product between the sample-agnostic adaptive weights and
multi-level features. We then add the weighted features to the
original features to obtain the calibrated text features {∗𝒇 𝑖

𝑙
}𝑛
𝑖=1. Sub-

sequently, we concatenate and project them into visual embedding
space ∗𝒇𝑚𝑙

𝑙
∈ R𝐿𝑙×𝐻𝑣 to perceive multi-level language representa-

tions with linear projection weight𝑊𝑝𝑟𝑜 𝑗 ∈ R(𝑛 ·𝐻𝑙 )×𝐻𝑣 :
∗𝒇𝑚𝑙

𝑙 = concat[∗𝒇 1𝑙 ,
∗𝒇 2𝑙 , · · · ,

∗𝒇𝑛𝑙 ] ⊗𝑊𝑝𝑟𝑜 𝑗 . (4)
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HiLoRA employs a hierarchical approach to adapt the pre-
trained model in a progressive manner, thereby finely reduc-
ing the task gap between pre-training and transfer tasks.

Finally, we perform a multi-head cross-attention on the calibrated
multi-level text features ∗𝒇𝑚𝑙

𝑙
(as key and value) and the layer-

normalized visual features outputted by the self-attention in the ViT
block (as query). Then, we add the resulting semantic-aware visual
features 𝒇𝑠𝑎𝑣 back to the block as residuals after a FFN operation.

3.3 Hierarchical Low-Rank Adaptation
Although the cross-modal bridge enables the visual encoder to
incorporate language information, its residual connection manner
cannot adapt the frozen parameters of the pre-trained model. As
a result, there is still a discrepancy between the visual features
and those required for grounding, which may lead to cumulative
and amplified perceptual errors layer by layer. LoRA [18] presents
a potentially feasible solution. However, as clarified in the Sec. 1,
the vanilla LoRA performs one-round learning also cannot address
these issues. To avoid cumulative and amplified perceptual errors,
we need to design a hierarchical adaptation paradigm.

Instead of directly training specific dense layers in a neural net-
work, vanilla LoRA [18] indirectly optimizes the rank-decomposition
matrices of the changes occurring in dense layers while keeping the
pre-trained weights frozen. As depicted in Fig. 3-(a), based on the
vanilla LoRA definition, we can substitute the weight updates for
a pre-trained weight𝑊0 ∈ R𝑑×𝑘 with a low-rank decomposition
𝑊0+Δ𝑊 =𝑊0+𝐵𝐴, where 𝐵 ∈ R𝑑×𝑟 , 𝐴 ∈ R𝑟×𝑘 , and 𝑟 ≪ min(𝑑, 𝑘),
i.e., the low rank 𝑟 is much smaller than the dimension (𝑑, 𝑘) of the
original model. Throughout training,𝑊0 remains frozen, while 𝐴
and 𝐵 encompass trainable parameters. For hidden state ℎ =𝑊0𝑥 ,
the forward procedure can be formulated as:

ℎ =𝑊0𝑥 + Δ𝑊𝑥 =𝑊0𝑥 + 𝐵𝐴𝑥. (5)
To consider the hierarchical scenario, we first define two con-

cepts, i.e., layer group and LoRA stage. Layer group represents
the divisions of the pre-trained network layers, while LoRA stage
represents the execution of a small LoRA operation. By dividing the
network layers of the pre-trained model into multiple layer groups,
the learning of LoRA is divided into multiple stages where each
stage relates to several layer groups. As depicted in Fig. 3-(b), from
a hierarchical perspective, Hierarchical LoRA (HiLoRA) structure
enables downstream task adaptation progressively from the shallow
to deep layer within the network with multiple LoRA stages.

Specifically, we define the total layers of the pre-trained network
as 𝐿, and then divide it into𝐺 groups, each containing 𝐿/𝐺 layers.
Then, we denote 𝑊 𝑙

0 ∈ R𝑑×𝑘 as the pre-trained weights of 𝑙𝑡ℎ
layer block in the network, where 𝑙 ∈ [1, 𝐿]. We utilize LoRA 𝑗

(1 ≤ 𝑗 ≤ 𝐺) to represent the 𝑗𝑡ℎ adaptation stage. We denote the
low-rank matrices of HiLoRA at the 𝑗𝑡ℎ stage of the 𝑙𝑡ℎ layer block
as 𝐴𝑙

𝑗
and 𝐵𝑙

𝑗
, and 𝐴 𝑗 contains {𝐴𝑙

𝑗
} 𝑗 ·𝐿/𝐺
𝑙=1 , 𝐵 𝑗 contains {𝐵𝑙𝑗 }

𝑗 ·𝐿/𝐺
𝑙=1 ,

then each LoRA stage 𝑗 will update the low-rank matrices of 𝐴 𝑗

and 𝐵 𝑗 . We denote ℎ𝑙
𝑗
as the hidden state ℎ at HiLoRA 𝑗𝑡ℎ stage of

the 𝑙𝑡ℎ layer block. Then, the forward process of HiLoRA in each
hidden state ℎ𝑙

𝑗
( 𝑗 ∈ [1,𝐺]) can be formulated as:

ℎ𝑙𝑗 =

{
𝑊 𝑙

0𝑥
𝑙 , 𝑤ℎ𝑒𝑛 𝑙 > 𝑗 · 𝐿/𝐺,

𝑊 𝑙
0𝑥

𝑙 +∑𝑗

𝑘=⌈𝑙 ·𝐺/𝐿⌉ 𝐵
𝑙
𝑘
𝐴𝑙
𝑘
𝑥𝑙 , 𝑤ℎ𝑒𝑛 𝑙 ≤ 𝑗 · 𝐿/𝐺, (6)

where ⌈·⌉ indicates rounding up to an integer, and ⌈𝑙 ·𝐺/𝐿⌉ stands
for calculating the index of layer groups in which 𝑙𝑡ℎ layer is located.

With the assistance of the hierarchicalmechanism,we can achieve
better multimodal low-rank adaptation of multi-level visual fea-
tures by utilizing textual semantic-aware visual features provided
by the adaptive cross-modal bridge. Specifically, the layer groups of
HiLoRA are associated with the insertion positions 𝐶 of the bridge.
When 𝑙 > 𝑗 · 𝐿/𝐺 , the forward process of HiLoRA in each hidden
state ℎ𝑙

𝑗
can be formulated as:

ℎ𝑙𝑗 =

{
𝑊 𝑙

0𝒇𝑣
𝑙−1, 𝑤ℎ𝑒𝑛 𝑙 ∉ 𝐶,

𝑊 𝑙
0 (𝒇𝑣

𝑙−1 + 𝒇𝑠𝑎𝑣 ), 𝑤ℎ𝑒𝑛 𝑙 ∈ 𝐶.
(7)

While in 𝑙 ≤ 𝑗 · 𝐿/𝐺 , the process can be formulated as:

ℎ𝑙𝑗 =

{
𝑊 𝑙

0 𝒇𝑣
𝑙−1 +∑𝑗

𝑘=⌈𝑙 ·𝐺/𝐿⌉ 𝐵
𝑙
𝑘
𝐴𝑙
𝑘
𝒇𝑣

𝑙−1, 𝑤ℎ𝑒𝑛 𝑙 ∉ 𝐶,

𝑊 𝑙
0 (𝒇𝑣

𝑙−1 + 𝒇 𝑠𝑎𝑣 ) +∑𝑗

𝑘=⌈𝑙 ·𝐺/𝐿⌉ 𝐵
𝑙
𝑘
𝐴𝑙
𝑘
(𝒇𝑣𝑙−1 + 𝒇 𝑠𝑎𝑣 ), 𝑤ℎ𝑒𝑛 𝑙 ∈ 𝐶.

(8)
During the backward process, the updates are gradually per-

formed from 1𝑠𝑡 to 𝐺𝑡ℎ stage, and the learning rate can vary at
different stages. Additionally, we use a random Gaussian initializa-
tion for𝐴 and 0 for 𝐵, so Δ𝑊 = 𝐵𝐴 is 0 at the beginning of training.
We then scale Δ𝑊𝑥 by 𝛼

𝑟 , where 𝛼 is a constant in 𝑟 . To mitigate in-
ference latency or parameter increase, we incorporate the low-rank
matrix into the pre-trained weights after every training stage.

HiLoRA provides a new interaction for refining latent represen-
tation, preventing direct gradient propagation of vanilla LoRA from
deep to shallow layers. Simultaneously, through its hierarchical
mechanism, it can avoid the accumulation of perceptual errors in
the fine-tuning process, enabling fine-grained cross-modal inter-
action. Finally, it is worth noting that HiLoRA represents a basic
hierarchical adaptation paradigm that is task-agnostic.

3.4 Training Objectives
To ensure the features learned by the cross-modal hierarchical
structure meet the fine-grained and regional properties, we design
multiple constraints to facilitate the training of HiVG framework.
Contrastive Learning Constraint. To enhance training stability,
we employ image-text Contrastive Learning (CL) as a constraint for
HiLoRA. CL can also be formed between the grounding expression
and the images within a shuffled training batch when differences
are adequate. We treat the grounding image-text pairs as positive
and all other random pairs as negative. We minimize the sum of
two losses, one for text-to-image matching:
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Table 1: Comparison with latest SOTA methods on RefCOCO/+/g [41, 75], ReferItGame [21] and Flickr30k Entities [46] for
grounding task. * represents utilizing ImageNet [25] pre-training. † indicates that all of the RefCOCO/+/g training data has been
used during pre-training. RN101, DN53, Swin-S, and ViT-B are shorthand for the ResNet101, DarkNet53, Swin-Transformer
Small, and ViT Base, respectively. The latest CLIP-based SOTAmethods are shaded in gray . We highlight the best performance
of the base model in the red colors and bold the best results for the large model.

Methods Venue
Visual Language Multi- RefCOCO RefCOCO+ RefCOCOg ReferIt Flickr

Backbone Backbone task val testA testB val testA testB val test test test

Fine-tuning w. uni-modal pre-trained close-set detector and language model: (traditional setting)
TransVG [9] ICCV’21 RN101+DETR BERT-B % 81.02 82.72 78.35 64.82 70.70 56.94 68.67 67.73 70.73 79.10
SeqTR [78] ECCV’22 DN53 BiGRU % 81.23 85.00 76.08 68.82 75.37 58.78 71.35 71.58 69.66 81.23
RefTR* [27] NeurIPS’21 RN101+DETR BERT-B ! 82.23 85.59 76.57 71.58 75.96 62.16 69.41 69.40 71.42 78.66

Word2Pix [76] TNNLS’22 RN101+DETR BERT-B % 81.20 84.39 78.12 69.74 76.11 61.24 70.81 71.34 – –
QRNet [71] CVPR’22 Swin-S[39] BERT-B % 84.01 85.85 82.34 72.94 76.17 63.81 71.89 73.03 74.61 81.95
VG-LAW [55] CVPR’23 ViT-Det [28] BERT-B % 86.06 88.56 82.87 75.74 80.32 66.69 75.31 75.95 76.60 –
TransVG++[10] TPAMI’23 ViT-Det [28] BERT-B % 86.28 88.37 80.97 75.39 80.45 66.28 76.18 76.30 74.70 81.49

Fine-tuning w. vision-language self-supervised pre-trained model:
CLIP-VG [63] TMM’23 CLIP-B CLIP-B % 84.29 87.76 78.43 69.55 77.33 57.62 73.18 72.54 70.89 81.99
JMRI [79] TIM’23 CLIP-B CLIP-B % 82.97 87.30 74.62 71.17 79.82 57.01 71.96 72.04 68.23 79.90

Dynamic-MDETR TPAMI’23 CLIP-B CLIP-B % 85.97 88.82 80.12 74.83 81.70 63.44 74.14 74.49 70.37 81.89

HiVG (ours) ACM MM’24 CLIP-B CLIP-B % 87.32 89.86 83.27 78.06 83.81 68.11 78.29 78.79 75.22 82.11
HiVG-L (ours) ACM MM’24 CLIP-L CLIP-L % 88.14 91.09 83.71 80.10 86.77 70.53 80.78 80.25 76.23 82.16

Fine-tuning w. box-level dataset-mixed open-set detection pre-trained model / multi-task mix-supervised pre-trained model:
MDETR † [20] ICCV’21 RN101+DETR RoBERT-B % 86.75 89.58 81.41 79.52 84.09 70.62 81.64 80.89 – 83.80
YORO† [16] ECCV’22 ViLT [24] BERT-B % 82.90 85.60 77.40 73.50 78.60 64.90 73.40 74.30 71.90 –

DQ-DETR † [32] AAAI’23 RN101+DETR BERT-B % 88.63 91.04 83.51 81.66 86.15 73.21 82.76 83.44 – –
Grounding-DINO† Arxiv’23 Swin-T BERT-B % 89.19 91.86 85.99 81.09 87.40 74.71 84.15 84.94 – –
UniTAB † [69] ECCV’22 RN101+DETR RoBERT-B ! 86.32 88.84 80.61 78.70 83.22 69.48 79.96 79.97 – 79.38
OFA-B † [60] ICML’22 OFA-B OFA-B ! 88.48 90.67 83.30 81.39 87.15 74.29 82.29 82.31 – –
OFA-L † [60] ICML’22 OFA-L OFA-L ! 90.05 92.93 85.26 85.80 89.87 79.22 85.89 86.55 – –

HiVG† (ours) ACM MM’24 CLIP-B CLIP-B % 90.56 92.55 87.23 83.08 89.21 76.68 84.52 85.62 77.75 82.08
HiVG-L† (ours) ACM MM’24 CLIP-L CLIP-L % 90.77 92.94 88.03 86.78 89.91 78.02 86.61 86.60 78.16 82.63

L𝑡2𝑖 = − 1
𝑁

𝑁∑︁
𝑖

log
exp(< 𝒕⊤

𝑖
, 𝒗𝑖 > /𝜏)∑𝑁

𝑗=1 exp(< 𝒕⊤
𝑖
, 𝒗 𝑗 > /𝜏)

, (9)

and the other for image-to-text matching:

L𝑖2𝑡 = − 1
𝑁

𝑁∑︁
𝑖

log
exp(< 𝒗⊤

𝑖
, 𝒕𝑖 > /𝜏)∑𝑁

𝑗=1 exp(< 𝒗⊤
𝑖
, 𝒕 𝑗 > /𝜏)

, (10)

where 𝑁 is the batch size, 𝒗𝑖 and 𝒕 𝑗 are the normalized embeddings
of image in 𝑖𝑡ℎ pair and that of text in 𝑗𝑡ℎ pair, respectively. 𝜏 is the
temperature to scale the logits, and < ·, · > denotes cosine similarity
operation. Therefore, the constraint can be formulated as:

L𝐶𝐿𝐶 = (L𝑡2𝑖 + L𝑖2𝑡 )/2. (11)
Region-Text Contrastive Constraint. Inspired by the image-level
contrastive learning, we attempt to construct token-wise region-
text contrastive constraint using ground truth bounding box as a
mask to simulate text-to-image matching. Specifically, we extract
text aggregation features, i.e., the [𝐸𝑂𝑆] token 𝒕𝑒𝑜𝑠 , from grounding
encoder and compute the similarity 𝒔𝑖 with each visual token 𝒗𝑖
after applying normalization and an MLP projection:

𝒔𝑖 = 𝜎 (< 𝒕𝑒𝑜𝑠
⊤, MLP(𝒗𝑖 ) >), 𝑖 = 1, 2, ..., 𝐿𝑣, (12)

where 𝜎 denotes the sigmoid function. Tokens within the bounding
box are considered as positive, while those outside are regarded as
negative. Subsequently, we employed Focal loss [30] and Dice/F-1
loss [43] to constrain the aggregated similarity 𝒔 = (𝒔1, 𝒔2, ..., 𝒔𝐿𝑣 )
and the nearest downsampling box mask 𝒎𝑑 ∈ R1×𝐻/𝑃×𝑊 /𝑃 :

L𝑅𝑇𝐶𝐶 = 𝜆𝑓 𝑜𝑐𝑎𝑙 L𝑓 𝑜𝑐𝑎𝑙 (𝒔,𝒎𝑑 ) + 𝜆𝑑𝑖𝑐𝑒L𝑑𝑖𝑐𝑒 (𝒔,𝒎𝑑 ), (13)

where 𝜆𝑓 𝑜𝑐𝑎𝑙 and 𝜆𝑑𝑖𝑐𝑒 are the coefficients to control the two loss
functions, and 𝑃 is the patch size.
Training Loss. The box regression loss is formulated by leveraging
smooth L1 loss [13] and Giou loss [50] with coefficient 𝜆𝑙1 and 𝜆𝑔𝑖𝑜𝑢 :

L𝐵𝑂𝑋 = 𝜆𝑙1Lsmooth-l1
(
B̂,B

)
+ 𝜆𝑔𝑖𝑜𝑢Lgiou

(
B̂,B

)
, (14)

where B donates the ground truth box. Finally, the overall training
loss of the model is determined by the sum of the regression loss
and the two framework constraints:

L𝑡𝑜𝑡𝑎𝑙 = L𝐵𝑂𝑋 + L𝐶𝐿𝐶 + L𝑅𝑇𝐶𝐶 . (15)

4 EXPERIMENTS
4.1 Implementation Details
Datasets andEvaluationMetrics.The effectiveness of ourmethod
is validated on five widely utilized datasets, namely the three REC
datasets (RefCOCO/+/g [41, 75]), as well as two PG datasets (Refer-
ItGame [21] and Flickr30k Entities [46]). In PG, the query pertains
to a specific phrase, while in REC, the query refers to a referring
expression. The text of RefCOCO+/g exhibits greater length and
complexity in comparison to that of RefCOCO. We follow the pre-
vious researches that employs Intersection-over-Union (IoU) as
the evaluation metric. Specifically, a prediction is deemed accurate
only when its IoU exceeds or equals 0.5. Finally, we compute the
prediction accuracy for each dataset as a performance indicator.
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Figure 4: Comparison between HiVG (base) and SOTA models, as well as the ablation study of HiVG on the main modules. (a)
HiVG achieves significant energy efficiency advantages, 8.2× faster than TransVG++[10] while outperforming it on RefCOCO-
val. (b) The computational complexity of HiVG is only 13.0% compared with TransVG++. (c) HiVG outperforms SOTA models in
different expression lengths on RefCOCOg-test. (d) HiLoRA method brings significant performance gains to HiVG model.

Table 2: Training/inference cost comparison. The results are
obtained on RefCOCO dataset. † indicates that the model’s
code is not publicly available, and the replicated estimation
results are shown. (FPS: images / (GPU · second))

Model update/all update Flops train test testA testA
param. ratio (G)↓ FPS↑ FPS↑ time↓ Acc.↑

TransVG 168/170M 98.8% 214.7 22.85 59.55 95 s 82.7
QRNet 273/273M 100% 250.8 9.41 50.96 111 s 85.9

VG-LAW† 150/150M 100% 172.8 – 83.9 – 88.6
CLIP-VG 21/181M 12.2% 33.9 252.6 377.8 15 s 87.8

TransVG++† 171/171M 100% 296.8 – 43.1 – 88.4

HiVG(ours) 41/206M 20.1% 38.7 239.6 354.6 16 s 89.9

Network Architecture. We employed CLIP ViT-B/16 and CLIP
ViT-L/14 as the backbone of our HiVG-B (default) and HiVG-L
versions. In the base version, the HiLoRA module utilizes a rank of
32 and an 𝛼 coefficient of 16. The encoder layers are evenly divided
into 3 groups, and HiLoRA is applied with 3 stages accordingly.
HiVG extracted 1𝑡ℎ , 4𝑡ℎ , 8𝑡ℎ , and 12𝑡ℎ layer features of the visual
encoder, the cross-modal bridge injected 4𝑡ℎ , 8𝑡ℎ , and 12𝑡ℎ layer, and
text aggregated from 1𝑡ℎ to 12𝑡ℎ layer features of the text encoder.
In the grounding encoder, we adopted the pre-norm instead of the
post-norm structure and set the hidden dimensions as the same
with text encoder.
Training Details. To prevent catastrophic forgetting, we freeze the
original parameters of CLIP’s two encoders. Since the parameters
of the low-stage HiLoRA are included in the high-stage HiLoRA,
our updated parameters do not show any increase compared to
the vanilla LoRA. Besides, HiLoRA represents a PEFT approach
for the pre-trained model, and the grounding encoder employs
random Xavier initialization. Thus, to enhance training stability,
we perform training in two stages. In the first stage, we trained the
grounding encoder, regression head at a high learning rate without
activating HiLoRA. It is imperative to employ HiLoRA for the text
encoder with only one layer group as well, in order to mitigate
the risk of catastrophic forgetting. The batch size is set to 60. Our
model is optimized end-to-end by using the AdamW optimizer and
a cosine learning scheduler with an initial learning rate of 2.5×10−4
for 50 epochs during the first stage. During HiLoRA adaptation,
the learning rates in three stages are 1.0 × 10−4, 0.5 × 10−4, and
0.25 × 10−4 with 20 epochs, respectively. Besides, to ensure a fair

comparison, like the existing works [10, 55], we pre-perform a
vanilla LoRA adapting of CLIP’s image encoder under ViT-Det
[28] detection framework on MSCOCO dataset, with excluding the
validation and test images of RefCOCO/+/g. Our framework and
experiments are based on PyTorch by using 8 NVIDIA A100 GPUs.

4.2 Comparison with State-of-the-Art Methods
Experimental Setting. It is worth emphasizing that, as described
in Sec. 2.1, our focus is on the transfer learning of self-supervised
pre-trained models for grounding tasks. (1)We follow the basic fine-
tuning setting with the same as CLIP-VG [63] and Dynamic-MDETR
[53], etc.. (2) In particular, we also compare with the traditional set-
ting of fine-tuning with pre-trained detection models (e.g., TransVG
[9], TransVG++[10], etc.). (3) Additionally, we also follow the pre-
vious works that utilized a dataset-mixed pre-training setting (e.g.,
MDETR [20], OFA[60]) and mix the training data (only includes
the RefCOCO/+/g, ReferIt, Flickr30k datasets) for intermediate pre-
training. This allows us to compare our results with these works in
a relatively fair manner. The details are presented in Tab. 1.
RefCOCO/RefCOCO+/RefCOCOg/ReferIt/Flickr.As presented
in Tab. 1, we compare our results on five widely used datasets with
the latest SOTA works, including CLIP-VG [63], Dynamic-MDETR
[53], TransVG++[10], grounding-DINO [33] and OFA [60] etc.. (1)
When compared to the CLIP-based fine-tuning SOTA work,
i.e., Dynamic-MDETR, our approach consistently outperforms it
by achieving an increase of 3.15%(testB), 2.11%(testA), 4.30%(test),
4.85%(test), 0.22%(test) on all five datasets. (2) When compared
to the detector-based fine-tuning SOTA work, i.e., TransVG++,
our approach demonstrates superior performance (improved by
2.30%(testB), 3.36%(testA), 2.49%(test), 0.52%(test), 0.62%(test)) across
all five datasets. The improvement of our results on the RefCOCO+/g
datasets is considerably more significant, indicating our model
exhibits a stronger capacity for semantic comprehension in com-
plex sentences. (3) When compared with the dataset-mixed
pre-training works, the base model of our work outperforms
Grounding-DINO [33] by 1.24%(testB), 1.81%(testA), and 0.68%(test)
on the RefCOCO/+/g datasets, and it also outperforms OFA [60]
by 3.93%(testB), 2.06%(testA), and 3.31%(test). After dataset-mixed
pre-training, our performance has significantly improved, further
demonstrating the effectiveness of our method.



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Linhui Xiao, Xiaoshan Yang, Fang Peng, Yaowei Wang, and Changsheng Xu

Table 3: Ablation study of the main modules, includes Multi-
layer Adaptive Cross-modal Bridge (MACB) and HiLoRA.

MACB HiLoRA Accu@0.5(%)
val test

% % 73.48 73.01
! 76.53 75.77

! 76.41 76.12
! ! 78.29 78.79

Table 4: Ablation study on the implementation ofmulti-layer
adaptive cross-modal bridge (MACB) on RefCOCOg dataset.
w/o denotes without, and w. denotes with. (Accu@0.5(%))

Architecture val test

MACB w/o. sample-agnostic weights 75.43 74.87
MACB w/o. cross-attention module 74.29 74.18
MACB w. weights’ shape 1 × 1 × 𝐻𝑙 74.81 74.38
MACB w. weights’ shape 𝑛 × 1 × 𝐻𝑙 77.08 77.42
MACB w. weights’ shape 𝑛 × 𝐿𝑙 × 1 77.42 78.49
MACB w. weights’ shape 𝑛 × 𝐿𝑙 × 𝐻𝑙 78.29 78.79
MACB w. layer-to-layer linear connect 76.51 76.30
MACB w. only last layer of text features 77.07 76.82

Table 5: Ablation study of different components in HiLoRA
on RefCOCOg-test. 𝑟 represents the value of low rank.

Architecture Accu@0.5(%)

HiLoRA three-stage-1𝑡ℎ (𝑟=32) 76.39
HiLoRA three-stage-2𝑡ℎ (𝑟=32) 77.87
HiLoRA three-stage-3𝑡ℎ (𝑟=32) 78.79

HiLoRA two-stage (𝑟=32) 77.97
HiLoRA four-stage (𝑟=32) 78.16

HiLoRA three-stage (𝑟=16) 77.57
HiLoRA three-stage (𝑟=64) 76.90

HiLoRA deep-to-shallow layer 73.93

Parameter, Training/Inference Costs and Efficiency.As shown
in Tab. 2, Fig. 4-(a) and (b), HiVG achieves significant energy effi-
ciency advantages, 8.2× faster than TransVG++ while outperform-
ing it on RefCOCO. The computational complexity of HiVG model
is only 13.0% compared with TransVG++.
Analysis of Referring Expression Length.As shown in Fig. 4-(c),
we conducted a comparison of different expression lengths on the
RefCOCOg dataset. It shows that HiVG exhibits superior compre-
hension for longer and more complex texts, while its performance
remains stable as text length increases. Furthermore, compared to
CLIP-VG, our method demonstrates significantly better results.

4.3 Ablation Study
Ablation Study of theMainModules.We conducted the ablation
study on RefCOCOg datasets. As presented in Tab. 3 and Fig. 4-
(d), our MACB and HiLoRA modules enhances performance by
3.05% and 2.93%. Our hierarchical adaptation structure facilitates
fine-grained alignment and interaction between visual and textual
modal features, significantly boosting the grounding performance.
Ablation Study of MACB. As shown in Tab. 4, we conducted an
ablation study on the implementation of the multi-layer adaptive

"the large 
couch 

between the
lights"

"a woman in 
a white hat 

and red jacket
cross country 

skiing"

"a giraffe 
looking at a 

herd of horned 
animals"

"a clock on a 
wall calling 

the time in bac
kinh as 8 : 30"

"a small white 
cup with black

food with a 
face on it"

CLIP-VG HiVG (Ours)image-expression pairs

Figure 5: Qualitative results of ourHiVG andCLIP-VGmodels
on RefCOCOg-val datasets. We present the prediction box
with IoU (in cyan) and the ground truth box (in green) in a
unified image to visually display the grounding accuracy.

cross-modal bridge (MACB, default using 12 layers of text features).
The weights in the table denotes the sample-agnostic weights. The
table shows that our designed structure can effectively utilize multi-
level text features and achieve hierarchical adaptation.
Ablation Study of HiLoRA. As presented in Tab. 5 and Fig. 4-(d),
we conducted an ablation study on HiLoRA with different LoRA
stages and various low ranks. It is observed that employing 3-stage
HiLoRA with low rank as 32 achieves the best performance.

4.4 Qualitative Results
We visually present the results of several relatively challenging
examples in Fig. 5. The attentions show the [REG] token over vi-
sion tokens from the last grounding block of each model. HiVG
demonstrates exceptional semantic understanding capabilities in
the complex sentences.

5 CONCLUSION
In this paper, we introduce a hierarchical multimodal fine-grained
modulation framework, namely HiVG, which effectively imple-
ments fine-grained adaptation of the pre-trained model in the com-
plex grounding task. It is a concise and efficient end-to-end frame-
work that can simultaneously alleviate two kinds of task gaps, i.e.,
data bias and learning objectives, through a multi-layer adaptive
cross-modal bridge and a hierarchical low-rank adaptation para-
digm. Our exploration in hierarchical cross-modal features offer
new insights for the future grounding research, which has been
neglected in past works.
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