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1 ANALYSIS OF THE DATASETS
We present the statistical analysis of the five datasets employed in
our experimental study. Tab. 1 presents the detailed statistics.

RefCOCO/RefCOCO+/RefCOCOg. These three datasets belong
to the Referring Expression Comprehension (REC), and the images
of these three datasets derived from MSCOCO [8]. Expressions
in RefCOCO [19] and RefCOCO+ [19] are also collected by the
two-player game proposed in ReferitGame [5]. There are two test
splits called “testA” and “testB”. Images in “testA” only contain
multiple people annotation. In contrast, images in “testB” contain
all other objects. Expressions in RefCOCOg [9] are collected on
Amazon Mechanical Turk in a non-interactive setting. Thus, the
expressions in RefCOCOg are longer andmore complex. RefCOCOg
has “google” and “umd” splits. The “google” split does not have a
public test set, and there is an overlap between the training and
validation image sets. The “umd” split does not have this overlap.
Therefore, we followed the previous studies [12, 18] and tested the
RefCOCOg dataset only on the “umd” split.

ReferItGame.ReferItGame [5] contains images from SAIAPR12 [3]
and collects expressions through a two-player game. In this game,
the first player is shown an image with an object annotation and is
asked to write a natural language expression referring to the object.
The second player is then shown the same image along with the
written expression and is asked to click on the corresponding area
of the object. If the clicking is correct, both players receive points
and swap roles. If not, a new image will be presented.

Flickr30k Entities. Flickr30k Entities (Flickr30k for short) [10]
contains images in Flickr30k dataset. The query sentences are short
noun phrases in the captions of the image. The queries are simpler
and easier to understand compared to RefCOCO/+/g. Therefore, the
ambiguity of the expression is heightened simultaneously, resulting
in a relative increase in noise.

“ heatherwick welcomes new 
london bus inspired by his 

design as back-to-front 
compliment ”

“ living room : very large of 
furniture wall units small media with 
very large sofas (image 12 of 30) ”

“ a two-decker red bus is 
parked between two 

other buses ”

“ the large couch 
between the lights”

(a) vision and language pre-training  task (b) visual language grounding task 

Figure 1: An illustration of dataset granularity gaps between
pre-training task and downstream grounding task. The sam-
ples are derived from LAION-400M [11] and RefCOCOg [9]
datasets, respectively.

Table 1: The detailed statistics of RefCOCO [19], RefCOCO+
[19], RefCOCOg [9], ReferItGame [5] and Flickr30k[10]
datasets. We represent test and testA split in same column.

Dataset Images Instances total train val test(A) testB
queries queries queries queries queries

RefCOCO [19] 19,994 50,000 142,210 120,624 10,834 5,657 5,095
RefCOCO+[19] 19,992 49,856 141,564 120,191 10,768 5,726 4,889
RefCOCOg [9] 25,799 49,822 95,010 80,512 4,896 9,602 –
ReferItGame[5] 20,000 19,987 120,072 54,127 5,842 60,103 –
Flickr30k [10] 31,783 427,000 456,107 427,193 14,433 14,481 –

Dataset Granularity Gaps between Pre-training and Down-
stream Grounding. CLIP utilizes the LAION-400M dataset [11]
for self-supervised pre-training, which is a noisy web dataset con-
taining 400 million image-text pairs. As shown in Fig. 1, we present
an illustration of task granularity gaps between pre-training task
and downstream grounding task. It can be observed that the self-
supervised pre-training typically learns coarse-grained visual and
linguistic concepts from noisy web data (Fig. 1-(a)), while visual
grounding requires more refined and complex interaction and align-
ment between linguistic and visual information (Fig. 1-(b)). The
samples are derived from LAION-400M [11] and RefCOCOg [9]
datasets, respectively.
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Table 2: Network structure of the proposed HiVG. params. denote the number of parameters.

Model Backbone Hidden Input Visual encoder Text encoder Grounding encoder All Update
dimension resolution layers width heads layers width heads layers width heads params. params.

HiVG-B (default) CLIP ViT-B/16 512 224 12 768 12 12 512 8 6 512 8 206M 41M
HiVG-L CLIP ViT-L/14 768 224 24 1024 16 12 768 12 6 768 8 468M 52M
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Figure 2: The detailed illustration of the multi-layer adaptive
cross-modal bridge (MACB).

2 IMPLEMENTATION DETAILS

Network Architecture. The detailed network structure of HiVG is
shown in Tab. 2.We employ CLIP ViT-B/16 and CLIP ViT-L/14 as the
backbone of our HiVG-B (default version) and HiVG-L, respectively.
In the structure of HiVG-B, the image encoder and text encoder are
12-layer Transformers, while the cross-modal grounding encoder is
6-layer Transformers with the hidden embedding dimension of 512.
In the structure of HiVG-L, the image encoder and text encoder
are 24- and 12-layer Transformers, respectively, while the cross-
modal grounding encoder is 6-layer Transformers with the hidden
embedding dimension of 768. Besides, in the large version, the
encoder layers are evenly divided into 4 groups, and HiLoRA is
applied with 4 stages accordingly. HiVG extracts the 6𝑡ℎ , 12𝑡ℎ , 18𝑡ℎ ,
and 24𝑡ℎ layer features of the visual encoder, and the cross-modal
bridge is injected to the 6𝑡ℎ , 12𝑡ℎ , 18𝑡ℎ , and 24𝑡ℎ layer. We show a
detailed illustration of the multi-layer adaptive cross-modal bridge
(MACB) in Fig. 2.

More Training Details. We apply the low-rank matrix on the
projection calculation of the self-attention Q, K, and V matrix and
the fully connected matrix in the update layer. In each stage of
HiLoRA, we employ consistent low rank and 𝛼 coefficients. In the
base version, the updated parameters of HiLoRA in the three stages
account for only 0.86%, 1.72%, and 2.58% of the entire CLIP model.
While in the large version, the updated parameters of HiLoRA in
the four stages account for only 0.49%, 0.99%, 1.49%, and 1.98% of the
entire CLIP model. Since the parameters of the low-stage HiLoRA
are included in the high-stage HiLoRA, our updated parameters do
not show any increase compared to the vanilla LoRA. To mitigate
potential inference latency or parameter increase, we incorporate
the low-rank matrix into the original pre-trained weights after
every training stage.

Table 3: Hyperparameters of the HiVG framework during
training. lr denotes the learning rate.

Item Value
Base model Large model

optimizer AdamW
Epoch for grounding encoder etc. 50
lr for grounding encoder etc. 2.5×10−4
weight decay 1.0×10−4
𝜆𝑙1 , 𝜆𝑔𝑖𝑜𝑢 2, 2
𝜆𝑓 𝑜𝑐𝑎𝑙 , 𝜆𝑑𝑖𝑐𝑒 20, 2
batch size 80 32
patch size 16×16 14×14
low rank in HiLoRA 32
𝛼 in HiLoRA 16
Epoch for HiLoRA 20/stage 15/stage
lr for HiLoRA stage 1 1.0×10−4 1.0×10−4
lr for HiLoRA stage 2 0.5×10−4 0.75×10−4
lr for HiLoRA stage 3 0.25×10−4 0.5×10−4
lr for HiLoRA stage 4 – 0.25×10−4

To ensure the efficacy of contrastive learning and enhance sam-
ple diversity within a batch, we employ data shuffling to randomize
the order of samples across the five datasets. The temperature coef-
ficient 𝜏 in the contrastive learning constraint is obtained from the
vanilla CLIP model. We do not use horizontal flip augmentation as
it has been observed to have a detrimental impact on grounding
task. Besides, other data augmentation techniques [1, 6, 7, 15, 16]
remain consistent with previous approaches.

Inference Details. Unlike previous methods, such as TransVG++,
QRNet, etc., which heavily rely on high-resolution images like
640×640, we adopt smaller resolution of 224×224 as in the original
CLIP model. To ensure compatibility, we employ a long edge align-
ment and short edge pad filling scheme to the image. The patch size
utilized in HiVG-B and HiVG-L are 16×16 and 14×14. We include
[𝑆𝑂𝑆] and [𝐸𝑂𝑆] token at the beginning and the end of the input
text, and align it to a fixed length of 77 by padding empty tokens.
Model Hyperparameters.We summarize and report the hyper-
parameter settings of the HiVG framework in Tab. 3.

3 EXTRA RESULT ANALYSIS

Details of Figure 4-(a) of the Main Text. Inference speed (FPS)
in Figure 4-(a) of the main text is measured by forwarding 5657
image-text pairs (batch size 1) from the RefCOCO testA data split
through the grounding model. As many of the algorithms are no
longer reproducible due to changes in the running environment,
the figure is plotted based on the result in the YORO framework [4].
More specifically, the FPS measurement results except for our HiVG,
CLIP-VG [13], TransVG++ [2], VG-LAW [12], RCCF [7], MattNet
[18] and DGA [14], are derived from YORO [4], which by using a
single Titan Xp GPU and Intel Xeon E5-2630 v4 CPU@2.20GHZ.
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Table 4: Ablation study of the training loss, includes Con-
trastive Learning Constraint (CLC) and Region-Text Con-
trastive Constraint (RTCC).

RTCC CLC Accu@0.5(%)
val test

% % training unstable
! training unstable

! 77.21 77.48
! ! 78.29 78.79

Table 5: More ablation study on the implementation of the
multi-layer adaptive cross-modal bridge (MACB) on Ref-
COCOg dataset. w. denotes with. (Accu@0.5(%))

Architecture Accu@0.5(%)
val test

MACB w. sample-aware weights (with 12 layers) 77.07 77.98

MACB w. only last layer of text features 76.84 77.02
MACB w. (6𝑡ℎ , 12𝑡ℎ ) layer of text features 77.08 77.82
MACB w. (1𝑡ℎ , 4𝑡ℎ , 8𝑡ℎ , 12𝑡ℎ ) layer of text features 77.65 78.45
MACB w. (1𝑡ℎ - 12𝑡ℎ) layer of text features 78.29 78.79

Table 6: Ablation study ofHiVGbyutilizingmulti-level visual
features of CLIP on RefCOCOg dataset. (Accu@0.5(%))

Architecture Accu@0.5(%)
val test

HiVG w. (12𝑡ℎ ) layer 68.69 67.43
HiVG w. (2𝑡ℎ , 5𝑡ℎ , 9𝑡ℎ ) layer 71.02 71.98
HiVG w. (2𝑡ℎ , 5𝑡ℎ , 9𝑡ℎ , 12𝑡ℎ ) layer 71.63 72.01
HiVG w. (1𝑡ℎ , 4𝑡ℎ , 8𝑡ℎ , 12𝑡ℎ) layer 72.37 72.15
HiVG w. (3𝑡ℎ , 6𝑡ℎ , 9𝑡ℎ , 12𝑡ℎ ) layer 72.08 72.04
HiVG w. (6𝑡ℎ - 12𝑡ℎ ) layer 71.49 71.75
HiVG w. (1𝑡ℎ - 12𝑡ℎ ) layer 71.25 71.15

Following YORO, the FPS of RCCF [7], MattNet [18] and DGA
[14] are copied from RCCF work [7], which measures the speed
on a Titan Xp GPU (identical to YORO) and Intel Xeon E5-2680v4
CPU@2.4GHZ. For a fair comparison, we normalize the results
of TransVG++ [2], VG-LAW [12], CLIP-VG [13], and our HiVG
by dividing them with a factor of 3.4 to account for the higher
computational capabilities of our NVIDIA A100 GPU and Intel
Xeon Gold 6240R CPU@2.4GHZ setup. This normalization factor is
derived from comparing the FPS achieved by TransVG on our device
(i.e., 59.55, as in Table 2 of the main text) with the reported FPS
in YORO (i.e., 17.51). As can be seen in the figure, both our HiVG
and CLIP-VG are based on small-resolution images and achieve
significantly faster inference speed. Meanwhile, our HiVG achieves
the best trade-off between performance and speed.

Analysis of the Computational Complexity in Figure 4-(b) of
the Main Text. According to Table 2 of the main text, the num-
ber of parameters in existing models (except for QRNet [17]) is
not significantly different, roughly ranging from 150M to 210M.

However, the computational complexity of the Transformer archi-
tecture heavily depends on the length of input token sequences, i.e.,
there is an O(𝑛2) complexity. For example, TransVG++ [2] utilizes
a 640×640 resolution image as input with a patch size of 16×16,
resulting in a sequence length of (640/16)2 = 402 = 1600 in the
vision backbone. In contrast, our HiVG employs a smaller resolu-
tion image of 224×224 with a patch size of 16×16; thus, our visual
sequence length is only (224/16)2 = 142 = 196. Taking [CLS] and
[REG] tokens into account, HiVG’s vision sequence length is merely
(196 + 1)/(1600 + 2) = 12.29% compared to that of TransVG++ (i.e.,
TransVG++ is 8.13× larger than HiVG), demonstrating a dominant
difference. Unlike the other works [2, 12], our framework can obtain
state-of-the-art results without relying on high-resolution images.
This significantly reduces the calculation complexity and greatly
accelerates the training and reasoning computation of our HiVG
framework.

Details of Figure 4-(d) of the Main Text. In the Figure 4-(d)
of the main text, the legend for “original CLIP” represents that
we only utilize the image and text encoder from vanilla CLIP as
the backbone of our grounding framework while without using
HiLoRA, cross-modal bridge, and RTCC constraint etc.. Besides, it
only uses the final layer of visual and text features for the grounding
encoder. The legend for “CLIP w. vanilla LoRA” represents that we
additionally utilize the vanilla LoRA when compare to the legend
for “original CLIP”. The legend for “HiVG w/o HiLoRA & MACB”
represents that our HiVG framework does not utilize the main
module of HiLoRA and MACB but utilize the RTCC constraint
and multi-level visual features. The legend for “HiVG w/o HiLoRA”
represents that our HiVG framework without utilizing HiLoRA but
utilizing MACB, RTCC constraint and multi-level visual features.
The legend for “HiVG w. vanilla LoRA” represents that our HiVG
framework uses vanilla LoRA along with MACB, RTCC constraint
and multi-level visual features. The legend for “HiVG w. HiLoRA
stage 1, 2, 3” represents our full model under the three stages of
HiLoRA.

4 EXTRA ABLATION STUDY

Ablation Study of Training Loss. As presented in Tab. 4, we ex-
tend the Table 3 of the main text, which serves as our ablation study
for the two framework constraints. After the training of HiLoRA,
we observed that without the contrastive learning constraint, the
performance sometimes starts to degrade or even catastrophically
forgets after reaching a certain level of training accuracy. It can
be seen from the table that CLC enhances stability during HiLoRA
training. Additionally, since RTCC is a token-wise constraint on
the aggregated multi-level visual features, it enables a more fine-
grained perception of these features.

More Detailed Ablation Results on MACB. In Table 4 of the
main text, the weights in the table denotes the sample-agnostic
weights. In the line 7 of Table 4 of the main text, “layer-to-layer
linear connect” represents direct connect the corresponding layer of
the image and text encoder by a MLP and a cross-attention module.
In the line 8 of Table 4 of the main text, “only last layer of text
features” represents only utilizing the last layer of text features
with our multi-layer adaptive cross-modal bridge, and the shape of
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"the smallest girl 
in blue smock 

across the table."

"a two-decker 
red bus is parked 

between two 
other buses."

“the german short 
hair dog, has lots 

of spots."

"a child sitting 
on a chair with a 
blue shirt on."

"the apple slices 
closest to the 

green grapes."

CLIP-VG HiVG (Ours)

"a little girl with 
brown hair, green 
shorts and a white 
shirt leaning in to 

give a kiss."

"a group of six 
oranges on a 
wooden table 
surrounded by 

several other fruits 
and vegetables."

"the guy in light 
blue dress."

"a zebra eating 
grass in front of 

several other 
eating animals."

"the first carrot 
nearer to ginger 

& garlic."

"white plane in 
the front."

image-expression pairs

"the woman who 
is not standing at 

the lap top 
computer."

Figure 3: Additional qualitative results of our HiVG framework on the RefCOCOg-val split. The CLIP-VG model is compared.
We present the prediction box with IoU (in cyan) and the ground truth box (in green) in a unified image to visually display the
grounding accuracy. We show the [REG] token’s attention over vision tokens from the last grounding block of each framework.
The examples exhibit the relatively more challenging instances for grounding, thereby showcasing HiVG’s robust semantic
comprehension capabilities.
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the sample-agnostic weights are 1×𝐿𝑙 ×𝐻𝑙 . As shown in Tab. 5, we
provide more ablation study on the implementation of the multi-
layer adaptive cross-modal bridge. In the line 1 of Tab. 5, “sample-
aware weights” represents that we replace the sample-agnostic
weights with a MLP structure, while also utilizing the 1𝑡ℎ-12𝑡ℎ
layer of text features. The table shows that our designed structure
can effectively select the multi-level text features and can achieve
the best performance when utilizing all the 12 layer of text feature.

Ablation Study of Multi-level Visual Features. We perform an
ablation study on the utilization of multi-level visual features. We
conduct the ablation study on the HiVG model without utilizing all
the MACB, HiLoRA, and RTCC methods. As observed from Tab. 6,
any approach that incorporates the intermediate layer of visual
features outperforms solely relying on the final layer features. This
confirms that some lower-level useful visual information may be
discarded in the final layer, which is crucial for grounding tasks. It
demonstrates that employing features from layers 1, 4, 8, and 12
yields the most favorable results.

5 ADDITIONAL QUALITATIVE RESULTS
As shown in Fig. 3, we present the grounding qualitative results with
several additional challenging examples. All these results demon-
strate the strong capability of our HiVG model in complex text
understanding and cross-modal grounding.

6 FUTUREWORK
In the future, as a task-agnostic hierarchical adaptation paradigm,
Hi LoRA can be further investigated across diverse downstream
transfer scenarios. In this paper, we only explore the implementa-
tion of a simple progressive version. Additionally, there should be
further research on the settings of layer groups and LoRA stages,
such as exploring the adaptive selection of the both. Finally, it is also
important to explore the broader application of hierarchical LoRA
for visual, linguistic, and cross-modal tasks beyond grounding and
detection tasks.
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