INRet: A General Framework for Accurate Retrieval of INRs for Shapes

Supplementary Material

7. Architecture and Training Details
7.1. INR Architecture and Training Detail

INR Training Losses. We apply different loss functions for
different implicit functions. For the signed distance func-
tion, we follow the method in [42].

Ly(fo(®), ds(@)) = || fo(x) — ds(z)]” ©)

For the unsigned distance function, we follow the method
in[11]

Lu(fo(@), du(®)) = [fo(x) — du(@)| (©)

For the occupancy field, we also apply an L1 loss similar to
the unsigned distance function.

INR Architectures. We implement the INR architectures
in this work using the NVIDIA Kaolin Wisp library [44].
We follow the default configurations for the NGLOD, iNGP
and EG3D architectures. For NGLOD, we use an octree
with 6 levels, but do not store features in the first 2 levels
following the default configuration. We use a feature size
of 8 for each level. For iNGP, we utilize 4 levels for the
hash grid. The minimum and maximum grid resolutions are
set to 16 and 512, respectively, with a maximum hashtable
size of 21 for each level. The feature size is 2 for each
level. For EG3D, we use the default configuration with 1
level with a feature size of 8, but our solution could support
multiple levels. For all grids, we initialize the grid features
by sampling from a normal distribution with a mean of 0
and a standard deviation of 0.01. For the MLP-only INR,
we follow the configuration in [13], and train a SIREN INR
with 4 hidden layers and 512 hidden nodes [39]. The MLP
uses sine activation functions.

INR Training. We use the polygon meshes from the
ShapeNet10 and Pix3D datasets to generate SDF, UDF and
Occ values to train the INRs. We use the sampling method
from Kaolin Wisp. We sample 5 x 10° points for each shape
per epoch of training. We sample 10° points uniformly in
the domain Q = {||z||e < 1|z € R3}, 2 x 10° on the
surface of the shape, and 2 x 105 near the surface using nor-
mal distribution with a variance of 0.015. We use the same
input coordinates for the training of all INRs. We train the
grid-based INRs for 10 epochs and the MLP-only INRs for
100 epochs. We use Adam optimizer with a learning rate of
le —3 [21].

Compute Resources and Training Time All experiments
and speed measurements were conducted on an Ubuntu
22.04 LTS system equipped with an Intel i7-13700K CPU
and an NVIDIA RTX 4090 GPU. The retrieval and conver-
sion times reported in Tab. 1.2.9. 19. were all measured on

this system. We used Kaolin Wisp’s implementation un-
less otherwise specified. We identified a significant ineffi-
ciency in Kaolin Wisp’s point sampling algorithm, which
performs point batching in plain Python. We addressed
this issue by performing batching in PyTorch, resulting in
approximately a 10x speedup. Consequently, training an
INR and converting it to other data types takes about 1
minute in total. Evaluating our methods requires 12 INRs
per shape (across 4 architectures and 3 implicit functions),
leading to approximately 8.3 GPU days for INR training in
the ShapeNet10 experiments alone. We anticipate that fur-
ther improvements in INR modeling could reduce training
times for even larger-scale experiments.

INR Initialization. For the MLP component of INR, we
follow inr2vec’s method and initialize the MLPs (of differ-
ent INRs) with the same weights, as this has been proven es-
sential for ensuring that the embedding from the MLP com-
ponent is meaningful for shape retrieval [13]. However, we
observe no such restriction for the initialization of the fea-
ture grids for different INRs, which is initialized with very
small random values.

7.2. INR Encoder Details

INR MLP Encoder. We use an MLP encoder to con-
vert the weights of the INR MLP into an embedding. For
encoding MLP-only INRs, we use an encoder that is it-
self an MLP. This MLP encoder consists of 4 linear layers,
each followed by batch normalization and a ReLU activa-
tion [19]. The final layer is a max pooling layer that pro-
duces an embedding of length 1024. For encoding the MLP
component of a grid-based INR, we reduce the hidden size
of all layers by half, using hidden layers with sizes 256,
256, 512, and 512. This results in an INR MLP embedding
of length 512.

INR Conv3D Encoder. The Conv3D Encoder consists
of five 3D convolution operations. Each convolution uses a
kernel size of (2,2,2) and a stride of (2,2, 2) to gradually
reduce the spatial resolution. Each convolutional layer dou-
bles the channel size and is followed by group normaliza-
tion and a ReLU activation [50]. The final layer is a linear
layer that maps the convolution output to an INR Grid Em-
bedding of length 512. Combined with the INR MLP Em-
bedding, the total INR Embedding length for the grid-based
INR is 1024, which is the same as the embedding length for
the MLP-only INR in inr2vec.

INR Encoder Training. We use the same input sampling
process as in the INR training. Following the procedure
in [13], we use the AdamW optimizer with a learning rate
of 1 x 10~* and a weight decay of 1 x 10~2 [24]. Note that
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Figure 5. INR Embedding Creation for INRs with Different Architectures
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Figure 6. Implicit Function Visual Representation for Cross Section of Different Shapes

our decoder MLP f, has the same architecture as in [13].
Only the encoders are necessary for generating the INR em-
beddings. The decoder is used solely during the training of
the encoders, and is not needed when encoding INR Em-
bedding during inference.

7.3. INR Distillation

Changes such as modifications to the feature grid dimen-
sions or the number of hidden nodes in the MLP can cause
dimension mismatches, making encoders trained for spe-
cific architectures unusable. However, since one might need
different architecture configurations for trade-offs between
speed and representation quality, or use architectures that
may be developed in the future, we need a general solution
that does not have strict requirements on the INR architec-
ture.

To address this, we leverage the property of INRs de-
signed to output distance or occupancy values given an in-
put coordinate. For a source INR with an unknown archi-
tecture, we create an embedding for retrieval by using the
source INR f; as an oracle. This involves generating pairs
of input coordinates and output values from f; to train an
INR fp with an architecture compatible with our encoders.
We refer to this as the INR distillation technique, as illus-
trated in Fig. 5.

fo(z; z(x, 2)) = fs(x), Vo € Q. 7

In general, there are no limitations on the source or target
INR architectures or the type of output value (distance or

occupancy). In Sec. 5.3, we showed that distilling a source
MLP-only INR to an INR with a feature grid can actually
improve retrieval accuracy compared to using embeddings
created from the MLP-only INR.

7.4. Explicit Representation Training and Encoding

PointNeXt. For training PointNeXt [35], we use point
clouds containing 2048 points sampled from the surfaces
of the INRs representing shapes in the training set. We fol-
low the training procedure outlined in PointNeXt, using the
PointNeXt-S variant. The training is supervised based on
the shape class. After training, we remove the classification
head and use the output from the PointNeXt backbone to
create embeddings of length 512.

View-GCN. For training View-GCN [48], we use images
rendered from the INRs representing the training shapes.
We render 12 images at a resolution of 224 x 224 from
virtual cameras positioned 3 units away from the object’s
center with a 0.65 elevation along a circular trajectory. We
follow the training procedure specified in View-GCN, us-
ing shape class labels for supervision. After training, we
remove the classification head and use the output of length
1536 as the embedding for shape retrieval.

7.5. Relationship Between Different Implicit Func-
tions

At first glance, different implicit function fields may seem
entirely distinct, even for similar shapes. For instance, the
interior of a watertight shape is negative in an SDF repre-



Method Ours inr2vec PointNeXt View-GCN
Input Type | NGLOD | iNGP | MLP INR | Point Cloud | Multi-View Image
mAP @ 1 82.6 84.2 73.4 68.0 71.6
mAP @ 5 94.4 94.4 89.8 87.2 88.2
mAP @ 10 96.4 96.6 92.4 89.6 90.4
F1 @ 10 80.8 81.8 72.0 67.8 70.4
Table 5. Shape Retrieval Accuracy Metrics on ShapeNet10
Method Ours inr2vec PointNeXt View-GCN
Input Type | NGLOD | iNGP | MLP INR | Point Cloud | Multi-View Image
mAP @ 1 76.5 78.0 71.4 66.3 68.5
mAP @ 5 88.9 93.8 91.0 81.5 87.2
mAP @ 10 92.6 94.3 95.5 88.4 93.3
P@ 10 66.7 68.0 62.3 59.9 61.0
R @ 10 75.2 76.1 69.0 68.5 70.3
F1 @ 10 70.7 71.9 65.3 63.9 65.2
Table 6. Shape Retrieval Accuracy Metrics on Pix3d
Retrieval INR
UDF SDF Occ
> | UDF | 69.4/70.4/66.7/61.2/68.5 | 71.6/72.8/12.2/59.9/66.4 | 71.6/71.6/10.7/60.8/61.2
§ SDF | 67.9/72.8/12.4/61.4/67.4 | 74.1/79.0/71.5/62.3/67.2 | 67.9/69.1/11.9/54.4/59.7
O ["Occ | 69.1/67.9/13.1/57.6/60.4 | 72.3/74.1/11.8/56.8/60.9 | 68.9/69.1/65.4/58.2/61.3
Average 70.3/71.9/30.6/59.2/63.7
Legend NGLOD /iNGP / inr2vec / PointNeXt / View-GCN
Table 7. Shape Retrieval Accuracy for Different Implicit Function INRs on Pix3D
Retrieval INR
UDF SDF Occ
= UDF 80.2/83.0 91.2(+ 9.8)/88.4(+ 9.4) | 86.6(+ 7.8)/87.4(+ 7.0)
8 | SDF | 92.0(+ 9.8)/93.2(+11.4) 83.4/84.6 90.2(+11.0)/92.8(+10.4)
O | Occ | 85.6(+ 9.6)/89.4(+ 8.4) | 87.8(+10.8)/92.6(+10.0) 76.8/83.0
Legend NGLOD (+Improvement) / iNGP (+Improvement)

Table 8. Shape Retrieval Accuracy for Different Implicit Function INRs on ShapeNet10, allowing Retrieval of Same Shape. In (bracket),
we report the improvement in retrieval accuracy when retrieving the same shape is allowed.

sentation but positive in a UDF representation. This raises
the question of how shape encoders can map INRs with dif-

following these operations:

ferent implicit function fields to a shared embedding space. hi1 = ReLU(SDF)
We analyze whether standard neural networks can relate he = ReLU(—SDF) (10)
different implicit function values. For the same underlying hs = ReLU(h; — 1)
shape, the UDF, SDF, and Occ values are related by the fol- ha = ReLU(hs — 1)
lowing equations:
UDF = ReLU(SDF) + ReLU(—SDF) ) Oce = h = hy =g + hy (1n
Our INR Encoders do not learn these mappings directly,
as they operate with learned INR features at a global scale.
Occ = Sign(SDF) ©) However, Eq. (8) demonstrates that learning similar or even

Eq. (8) utilizes standard summation, multiplication, and
ReLU activations. Eq. (9) can also be calculated precisely
using summation, multiplication, and ReLU activations,

identical representations from UDF, SDF, and Occ is theo-
retically possible with standard neural network operations.

We visualize the differences between implicit functions
of a simplified shape in Fig. 6. Consider the cross-section



Point Cloud
Multi-View Images

UDF | SDF | Occ
1.26 | 0.98 | 1.82
4.13 | 3.05 | 3.67

Table 9. Conversion Speed (seconds) from INR with Different Implicit Functions to Different Representations

Retrieval INR
UDF SDF Occ
. | UDF | 83.0/68.8/68.6 | 79.0/10.4/66.2 80.4/8.8/66.6
§ SDF | 81.8/11.4/67.8 | 84.6/70.2/70.0 82.4/10.4/67 .4
O | Occ | 81.0/ 9.2/67.2 | 82.6/10.4/68.0 83.0/69.4/78.6
Average 82.0/29.9/67.8
Legend iNGP / MLP-only / MLP-only + INRet Regularization

Table 10. Shape Retrieval Accuracy for Different Implicit Function INRs on ShapeNet10

of a watertight ball in Fig. 6(a) and (b). Fig. 6(a) and (b)
show the SDF and UDF field respectively, and these fields
can be simply related by Eq. (8). Fig. 6(c) is the typical
learned Occ field of the same ball, where the values near
the surface is zero, but +1 or -1 elsewhere. Note that the
exact Occ field should be a solid fill both inside and outside
the surface, but INRs often have trouble learning these exact
values perfectly, and often learn near-zero values around a
small region of the surface, which we show here.

Lastly, we show the SDF field of the cross-section of
a double layer cylinder (open top and bottom) in Fig. 6(d).
Compare this with Fig. 6(a), which is the UDF cross-section
of a single layer cylinder, the UDF and SDF fields are al-
most the same everywhere except for the region in between
the two layers. Note that SDF can be not be calculated for
the single layer cylinder due to the lack of a watertight sur-
face. This similarities shows that for the same or very sim-
ilar shape, the underlying implicit function fields are also
very similar, making learning the same embedding for the
different fields easier.

8. Additional Results

In this section of the appendix, we provide additional re-
sults and ablation studies for INRet. App. 8.1 and 8.2 pro-
vides additional results for retrieval accuracy evaluation on
ShapeNet10 and Pix3D. App. 8.3 demonstrates the effec-
tiveness of INRet’s regularizations on the retrieval of MLP-
only INRs. App. 8.4 and 8.6 examines the impact of the
implicit function of the Unified Shape Decoder on the fi-
nal accuracy. App. 8.7 examines the impact of summation
vs. concatenation of features from the spatial grids on the
retrieval accuracy.

8.1. INR Retrieval with Feature Grids

In Tab. 5 and Tab. 6, we provide additional results and met-
rics for the experiment listed in Sec. 5.2. We show the mean
Average Precision (mnAP@Xk) at different numbers of k fol-
lowing the method in [13]. We also report the precision, re-

call, and F1 score following the definition in ShapeNet [37].
Note that for the ShapeNet10 dataset, since the number of
models in each category is the same, the precision, recall
and F1 score are the same, and thus we only report the F1
score. Our method achieves higher scores for almost all
metrics across both ShapeNetl0 and Pix3D datasets over
inr2vec, PointNeXt and View-GCN. This demonstrates that
our method is not only able to correctly retrieve the most
similar shape, but also retrieves more shapes that belongs to
the same category as the query shape as seen by the higher
F1 score.

8.2. INRs with Different Implicit Functions

We show additional results for INR retrieval across different
implicit functions on the Pix3D dataset in Tab. 7. Similar to
the results on the ShapeNet10 dataset, our method demon-
strates higher accuracy for retrieval across INRs with differ-
ent implicit functions than inr2vec, PointNeXt and View-
GCN.

Normally, we exclude the INR representing the same
shape from being retrieved when measuring the mAP, oth-
erwise, the query embedding always have the highest co-
sine similarity with itself. In Tab. 8, we show the accuracy
of INR retrieval across different implicit functions by al-
lowing retrieval of INR (with a different implicit function)
representing the same shape. As seen in the table, there is
around 10% improvement in retrieval accuracy. This shows
that in many cases, the retrieved shape is the same shape
as the query shape, but just represented with a different im-
plicit function.

In Tab. 9, we show the conversion speed of converting
different representations to point clouds and multi-view im-
ages. As required by View-GCN, 12 images are rendered,
and as a result, it is more expensive than sampling a single
point cloud. Conversion to point cloud or images is also
more expensive for UDF compared to SDF due to the use
of damped spherical tracing.



Retrieval INR

UDF

SDF Occ

> | UDF | 83.0/80.8/79.4
S | SDF | 81.8/81.2/80.0
O | Occ | 81.0/79.6/80.8

79.0/81.2/78.8 | 80.4/79.8/80.4
84.6/85.8/83.6 | 82.4/82.4/82.6
82.6/82.8/81.4 | 83.0/83.2/83.4

Average 82.0/81.9/81.2
Table 11. Shape Retrieval Accuracy for iNGP INRs on ShapeNetl0 with Different Unified Shape Decoder Implicit Functions
(UDF/SDF/Occ)
Retrieval INR
UDF SDF Occ
> UDF | 83.0/82.6/82.0/82.8 | 79.0/80.2/78.4/80.4 | 80.4/80.6/81.0/79.8
8 | SDF | 81.8/81.8/82.0/81.0 | 84.6/84.0/83.8/84.8 | 82.4/81.4/81.8/80.8
O | Occ | 81.0/81.2/80.8/80.6 | 82.6/82.0/83.0/82.6 | 83.0/82.6/83.2/82.8
Average 82.0/81.8/81.8/81.7

Table 12. Shape Retrieval Accuracy for iNGP INRs on ShapeNetl10 with Different Explicit L2 Regularization Weights for UDF-SDF,

UDF-Occ, SDF-Occ (111/211/121/112)

Retrieval INR

UDF

SDF Occ

>. | UDF | 83.0/825
S | SDF | 81.8/81.6
O | Occ | 81.0/814

79.0/81.0 | 80.4/80.6
84.6/84.6 | 82.4/81.8
82.6/79.0 | 83.0/79.6

Average

82.0/81.3

Table 13. Shape Retrieval Accuracy for iINGP INRs on ShapeNet10 with UDF Unified Common Decoder L2/L.1 Loss Choice

8.3. Applying INRet Regularization to MLP-only
INRs

In Tab. 10, we demonstrate the retrieval accuracy when we
apply INRet unified latent space regularizations (L2 + Uni-
fied Shape Decoder) to MLP-only INRs. We also include
the iNGP retrieval accuracy for comparison. As seen from
the table, the retrieval accuracy of MLP-only INRs signif-
icantly increases when the unified latent space regulariza-
tions are applied. This shows that our regularization tech-
niques apply to both INR with and without feature grids.
However, for the MLP-only INRs, the final accuracy is still
lower than if the iNGP INR with feature grid is used to cre-
ate the INR embeddings.

8.4. Choice of Unified Shape Decoder Implicit Func-
tion

In this section, we evaluate the performance of INRet
with different Unified Shape Decoder implicit functions.
In Sec. 5.4, we used the UDF as the implicit function for
the Unified Shape Decoder. In Tab. 11, we show the re-
trieval accuracy when the unified decoder outputs different
alternative implicit functions during training.

As seen in Tab. 11, the average retrieval accuracy for
different choices of common decoders is fairly close. The
UDF common decoder had the highest accuracy of 82.0%
while the lowest, the Occ common decoder, is only 0.8%

behind in accuracy. However, we observe that if the INR’s
implicit function is the same as the common decoder’s out-
put, the retrieval accuracy tends to be higher. For example,
for SDF to SDF retrieval, the highest retrieval accuracy of
85.8% is achieved when the common decoder’s output is
also an SDF. The trend also applies to UDF to UDF re-
trieval and Occ to Occ retrieval. In addition, for retrieval
across INRs with different implicit functions, the retrieval
accuracy tends to be higher if the query or retrieval INR’s
implicit function is the same as the common decoder’s out-
put type. Despite these tendencies, our method is generally
relatively robust to the choice of the common decoder’s out-
put.

8.5. L2 Regularization Weight

In this section, we evaluate the performance when different
weights are applied to the explicit L2 regularization. In IN-
Ret, the explicit L2 regularization is simultaneously applied
to 3 different pairs: UDF-SDF, UDF-Occ and SDF-Occ. In
the main results presented in the paper, the weighting is the
same for all pairs. In Tab. 12, we show the retrieval accu-
racy when the weights are different. For example, the 217
weight means the UDF-SDF loss is multiplied by 2 before
being added to the total loss, while the UDF-Occ and SDF-
Occ are multiplied by 1.

From Tab. 12, we observe that our method is robust with



respect to the specific choice of weight multipliers. For the
INR encoder training, we used the Adam optimizer which
has an adaptive learning rate on individual weights of the
network, eliminating the need for careful fine-tuning on the
weight multipliers [21].

8.6. Norm Choice for Unified Shape Decoder

For a specific implicit function, our choice of norm sim-
ply follows that used in existing works. As explained in
Appendix 7.1, we follow the method in [11] and use the
L1 normalization for both UDF INR training and when the
Unified Shape Decoder’s implicit function is UDF. In this
section, we test whether using L2 normalization for the Uni-
fied Shape Decoder (with UDF implicit function) instead of
L1 has an impact on the accuracy. We present the results
in Tab. 13. From the table, we show that using L2 normal-
ization decreases the retrieval accuracy slightly compared to
using the L1 loss on average. We note that the retrieval ac-
curacy of individual loss function to loss function pairs can
fluctuate quite significantly. For example, the Occ-SDF re-
trieval accuracy dropped 3.6% (from 82.6% to 79.0%). This
is different from the result in Tab. 12 where the weighting
of the explicit regularization had minimal impact on the re-
trieval accuracy.

8.7. Summation and Concatenation of Features

In the main results, the Conv3D encoder takes in the sum-
mation of features from NGLOD feature grid and the con-
catenation of features from iNGP feature grid. We do so
because summation and concatenation of features are used
in the original NGLOD INR and iNGP INR respectively.

Following Eq. (2), for NGLOD, the features from the
multi-level octree feature grid are summed before fed into
the MLP, i.e.

L

z(w, 2) =) (P(x;1, 2)) (12)
1
For iNGP, the features are concatenated instead, i.e.
z2(z, 2) = [Y(x;0, 2),¢(z; 1, 2), ..., ¢(z; L, Z)]
(13)

For NGLOD, features stored in different levels of the oc-
tree capture varying levels of geometry detail. Therefore,
using summation allows adding finer surface information
(deeper level) to the coarser overall shape (upper level) [42].
For iNGP, the features stored in the hash grid inevitably suf-
fer from hash collision. The authors argued that using fea-
tures from all levels would allow the MLP to mitigate the
effect of hash collision dynamically [29]. Using the octree
feature grid, NGLOD does not suffer from the hash colli-
sion issue.

Following the experiment setting listed in Sec. 5.2, we
test the retrieval accuracy when we use features in a way

different from how it was used in the original INR architec-
ture.

As shown in Tab. 14, both methods experienced a signif-
icant drop in retrieval accuracy if the features were not used
in a way consistent with the original INR. For NGLOD,
the concatenation of features leads to an accuracy drop
of 14.8%. We note that the concatenation of features in
this case actually means more features being passed to the
Conv3D encoder for INR embedding creation. However,
since the finer level features were never used alone in the
original NGLOD INR training, we hypothesize the Conv3D
encoder may be overfitting to these finer level features that
might be noisy when used standalone. For iNGP, the re-
trieval accuracy is dropped by 53.8% since the summation
of features leads to a significant loss of information.

8.8. Additional Retrieval Visualization

We show retrievals that failed to retrieve from the same cat-
egory in Fig. 7. As seen in the figure, given a query chair,
the retrieved examples can be from other categories albeit
resembling some semantic similarities with the query itself.

Ret 1 - Sofa Ret 2 - Chair

Ret 3 - Sofa

Query - Chair Ret 4 - Sofa

Figure 7. Chair Retrieval Incorrect Classes

9. the Impact of Reconstruction Quality on Re-
trieval Accuracy

9.1. Reconstruction Quality

In this section, we provide additional details on the qual-
ity of reconstruction of the trained INRs with respect to
the original mesh. For UDF INRs, we measure the Cham-
fer Distance (C.D.) at 130,172 points, following the same
sampling method used in [42]. However, instead of regular
spherical tracing, we apply damped spherical tracing simi-
lar to [11]. For SDF and Occ INRs, we use vanilla spherical
tracing without damping, and we also measure generalized
Intersection over Union (gloU) which calculates the inter-
section of the inside of two watertight surfaces with respect
to their union. We do not measure gloU for UDF INRs as
there is no notion of inside and outside.

As seen in Tab. 15, both the NGLOD and iNGP achieve
higher reconstruction quality than the MLP INRs. These
INRs with feature grids are not only superior at representing
shapes with higher fidelity but also lead to higher retrieval
accuracy.



INR Arch. NGLOD iNGP
Feature Comb. | Sum (Original) | Concat (Modified) | Concat (Original) | Sum (Modified)
mAP @ 1 82.6 67.8 84.2 30.4

Table 14. Shape Retrieval Accuracy on ShapeNet10 when Features are Summed or Concatenated from the Feature Grids

INR Arch. NGLOD iNGP MLP
Implicit Func. SDF UDF Occ SDF UDF | Occ SDF UDF | Occ
C.D. ShapeNet | 0.0168 | 0.0122 | 0.0210 | 0.0147 | 0.0119 | 0.0223 | 0.0354 | 0.0344 | 0.0389
C.D. Pix3D 0.0183 | 0.0125 | 0.0213 | 0.0146 | 0.0120 | 0.0241 | 0.0367 | 0.0351 | 0.0392
gloU ShapeNet | 84.2 NA 81.4 86.2 NA 82.1 77.3 NA 75.2
gloU Pix3D 85.5 NA 82.2 86.5 NA 823 71.5 NA 74.9

Table 15. Shape Reconstruction Quality of different INRs on ShapeNet and Pix3D

9.2. Reconstruction Quality and Retrieval Accuracy

Since INR with feature grids have both higher reconstruc-
tion quality and higher retrieval accuracy, one may won-
der if these are correlated. We perform another experiment,
where the iNGP is only trained for only 2 epochs, leading
to reconstruction quality lower than the MLP-only INR. As
seen in Tab. 16, the retrieval accuracy for iNGP significantly
drops when the INRs are undertrained. However, retrieval
with iNGP @ 2 epochs still has 5.4% higher accuracy com-
pared to retrieval with MLP-only INR. The MLP-only INR
lacks the features stored spatially in the feature grid, which
is very useful for improving retrieval accuracy.

10. Retrieval of INRs trained using Different
Source Data

In Section 5.4, we demonstrated the retrieval accuracy
across different INR implicit functions. These implicit
functions are trained using the same source information
(meshes). In Tab. 17, we show another case where the
UDF INRs are trained using point clouds sampled from the
meshes instead of using the meshes directly [11]. As seen
in Tab. 17, the retrieval accuracy is very similar regardless
of the type of the source training data, showing that INRet
can enable the retrieval of INRs when the INRs are trained
with different inputs.

11. Category-Chamfer Metric

11.1. Retrieval Accuracy by Category and Chamfer
Distance

Shape retrieval performance is traditionally evaluated based
on whether the retrieved shape has the same category as the
query shape [37]. While this metric can evaluate the qual-
ity of retrieval based on overall shape semantics, it largely
ignores similarities or differences between individual shape
instances. To mitigate the shortcomings of existing metrics,
we propose the Category-Chamfer metric, which evaluates
whether the retrieved shape shares the same category as the

query shape, and also has the least Chamfer Distance with
respect to the query shape for all shapes in the category.

We choose Chamfer Distance as it can measure the dis-
tance between almost all 3D representations. Chamfer Dis-
tance is a metric that calculates similarity between two point
clouds. Unlike certain metrics such as generalized Intersec-
tion over Union (gloU) that require watertight surfaces with
a clear definition of inside and outside, Chamfer Distance
only requires a point cloud which can be easily converted
from other 3D representations including meshes, voxels,
and INRs.

The accuracy A¢ based on category information only is

> 4eq 9(Cla), C(R(q)))
Q|

where () is the query set, C and R denote the category and
retrieval function respectively, the Kronecker delta J(-, -)
evaluates to 1 if C(q) and C'(R(q)) are the same and 0 oth-
erwise. The accuracy is normalized by the total length |Q)|
of the query set.

The accuracy Ac¢ based on category and Chamfer Dis-
tance is

Ac =

(14)

2_qeq [0(C(q), C(R(q))) x 4 (s', C(R(q)))]
Q)

where s’ = argmin dcp(q, s)
ses

Acc =

15)

where d¢p denotes the Chamfer Distance, S denotes the
set of all candidates for retrieval.

Category-Chamfer is a more challenging metric com-
pared to category-only metric, in our experiments, we find
that we can leverage the Chamfer Distance between the the
INR instances to achieve a high accuracy for this metric.

11.2. Category-Chamfer Retrieval Accuracy by
Embedding Cosine Similarity

Compared with the category-only accuracy, achieving high
accuracy as measured by the Category-Chamfer metric is
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Figure 8. Hierarchical Sampling Retrieval Method

Method Ours inr2vec
Input Type | iNGP | iNGP @ 2 Epoch | MLP INR
mAP @ 1 84.2 78.8 73.4

C.D. 0.0168 0.0371 0.0354

Table 16. Shape Retrieval Accuracy and Reconstruction Quality Comparison for Different INR Architectures (SDF) on ShapeNet10

Retrieval INR
UDF SDF Occ
>, | UDF | 80.2(-0.2) / 83.0(4+0.0) | 91.2(+0.2) / 88.4(—0.2) | 86.6(40.0) / 87.4(—0.4)
§ SDF | 92.0(+0.0)/93.2(—0.2) 83.4/84.6 90.2/92.8
O [ Occ | 85.6(40.0)/ 89.4(+0.0) 87.8/92.6 76.8 /83.0

Table 17. Shape Retrieval Accuracy for Different Implicit Function INRs on ShapeNet10 (Accuracy Change when UDF INRs are trained

using point clouds instead of meshes)

more challenging. By simply comparing the cosine similar-
ity between embeddings, neither INRet or existing methods
such as PointNeXt perform well for this new metric. We
exclude View-GCN from this evaluation since it may not
require an actual 3D model to perform the retrieval and thus
may not be able to calculate Chamfer Distance given its in-
put. Following the procedure in Sec. 5.3, we evaluate the
Category-Chamfer accuracy.

We calculate the ground truth Chamfer Distance at
131072 points following the same sampling method
from [42]. From Tab. 18, we observe that the Category-
Chamfer accuracy for all methods is very low. The high-
est accuracy is achieved by PointNext at 28.4%, far below
its category-only accuracy of 71.2%. In the next section,
we provide a solution for increasing the Category-Chamfer
retrieval accuracy while avoiding significant runtime over-
head.

11.3. Hierarchical Sampling

Deep learning-based shape retrieval methods usually in-
volve calculating an embedding for the input shape, and re-
trieval is done by comparing the cosine similarity between
the embeddings. However, as seen in Tab. 18, these meth-
ods do not perform well on the Category-Chamfer metric.
Unlike cosine similarity which can be easily computed in
a batched manner, Chamfer Distance requires comparison
between individual point clouds. A naive solution is to cal-
culate the Chamfer Distance with all other shapes within the
same category. However, such a naive method would re-
quire extensive computation, scaling linearly with the size
of the dataset for retrieval.

To this end, we propose a Hierarchical Sampling ap-
proach, visualized in Fig. 8. We found that the Chamfer
Distance at a small number of points (128) is an effective
proxy for the Chamfer Distance at a large number of points
(4096). Although we calculate the groundtruth Chamfer



Method Ours PointNeXt
Input Type | NGLOD | iNGP | Point Cloud
Ac 82.6 84.2 71.2
Acc 21.2 232 28.4

Table 18. Retrieval Accuracy (Category, Category-Chamfer) on ShapeNet10

Method Ours PointNeXt
Input Type NGLOD iNGP Point Cloud
Acc 81.8 82.4 72.6
Ret. Time (Naive) 65.06 65.06 65.06
Ret. Time (Hier. Samp.) Total 36.19 35.46 35.78
Ret. Time (Hier. Samp.) CD@128/4096 | 25.05 \ 11.14 | 25.05 \ 10.41 | 25.05 \ 10.73

Table 19. Category-Chamfer Retrieval Accuracy and Retrieval Time on ShapeNet10

Distance at 131072 points following typical values used
for evaluation of 3D shape reconstruction quality [42], we
found that in terms of ranking of shape by Chamfer Dis-
tance, 4096 points is sufficient. For INRet, we use the
frozen INR Embeddings to train an MLP for classification,
following the same settings as [13]. We use E-Stitchup to
augment the input with interpolations of INR embeddings
from the same class [49]. For PointNeXt, we use the trained
PointNeXt to do the classification.

We present the result of the retrieval in Tab. 19. For
naive retrieval, we directly sample points and calculate the
Chamfer Distance at 4096 points between the query INR
and all candidate INRs. For Hierarchical Sampling re-
trieval, we first sample points and calculate the Chamfer
Distance at 128 points between the query INR and all can-
didate INRs. We further calculate the Chamfer Distance at
4096 points for all INRs with a small Chamfer Distance at
128 points. We define small by the INR having Chamfer
Distance within 3 times of the smallest Chamfer Distance
between query INR and all candidate INRs. This is a very
generous bound and ensures a 100% recall on our dataset.
The accuracy is effectively only limited by the classification
accuracy.

As shown in Tab. 19, using Hierarchical Sampling sig-
nificantly reduces the time (on average 1.8X) required for
calculating the Chamfer Distance between different INRs.
The speed-up for all methods is very similar as the point
sampling and Chamfer Distance calculation time dominates
the runtime. This leaves the difference in time for classifi-
cation between the methods negligible. Using NGLOD as
an example, the naive retrieval method involves point sam-
pling and Chamfer Distance calculation (4096 points) for
49 INRs which costs 65.06 seconds, and an additional 0.04
seconds for classification. Using the hierarchical method,
the distance point sampling and Chamfer Distance calcula-
tion are first done for 128 points (25.05 seconds + 0.04 sec-
onds for classification), and around 17.1% of the INRs need
to be further evaluated at 4096 points, resulting in a runtime

of 11.14 seconds. We expect this speedup to scale further
as more data is presented as the retrieval candidate. Despite
the speed up, this process is still relatively slow compared
to the category-only retrieval which typically only requires
cosine similarity comparison. We leave potential methods
that would allow fast and accurate Category-Chamfer re-
trieval as future work.



