
Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 DPSGD

Given a training set {(xi, yi)}Ni=1, the update of the ordinary stochastic gradient descent (SGD) is
formulated as wt+1 = w(t) − ηt

1
B

∑
i∈Bt
∇L(w(t), xi, yi), where L(w, x, y) is the loss function

with the model parameter w, input sample x, and label y, and Bt is the set of samples at iteration t
with |Bt| = B. As the gradient has an unbounded sensitivity, one has to clip the gradient to ensure
a bounded DP noise magnitude. Formally, the update of DPSGD can be formulated below.

wt+1 = w(t) − ηt

{
1

B

∑
i∈Bt

clipu

(
∇L(w(t), xi, yi)

)
+

σu

B
ξ

}
, (3)

where ηt is the learning rate, ξ is sampled from the zero-mean Gaussian distribution, σ specifies the
standard deviation of the added noise, and clipu is defined as clipu(v) = min{1, u

||v||2 } · v with u as
a manually configurated clipping threshold. Usually, u is used as the ℓ2-sensitivity for SGD.

A.2 PSEUDOCODE OF DPAF

The pseudocode of DPAF is shown in Algorithm 1.

Algorithm 1: Training of DPAF
1 Notation: number of batches B, mean square error loss function LMSE, binary cross-entropy

loss functions LBCE, L′
BCE, L′′

BCE, asymmetry multiplier µ, number of critic iterations per
generator iteration ncritic
/* the for-loop below trains the classifier C */

2 for i = 1 to B do
3 compute LMSE over the i-th batch
4 perform SGD for updating conv2, conv3, and FC and then perform DPSGD(ε1) for

updating conv1 in one round of backpropagation
5 conv1*← conv1 // conv1* and conv1 share parameters
6 for i = 1 to B do

/* computing LBCE on D with DPAGG(ε3), L′
BCE on D that replaces

DPAGG(ε3) by AGG, and L′′
BCE on D without DPAGG(ε3), respectively */

7 compute LBCE over the i-th batch
/* the code below asymmetrically trains D */

8 if i%µ = 0 then
9 compute L′

BCE over the [i− µ+ 1, i]-th batches
10 SGD for updating conv3* and FC* by LBCE
11 DPSGD(ε2) for updating conv2* by L′

BCE

12 else
13 SGD for updating conv3* and FC* by LBCE

/* the code below trains G */
14 if i%ncritic = 0 then
15 compute L′′

BCE over each sample from the i-th batch
16 SGD for update of G

A.3 NOTATION TABLE

The notation table summarizing the frequently used notations can be found in Table 9.

A.4 DESIGN IDEA OF DPAF

Unlike previous DPGANs, DPAF has a fundamentally different design where DP feature aggre-
gation is performed in the forward phase. The aggregated feature makes the image features more

14

Under review as a conference paper at ICLR 2024

Symbol Description
D, D′ The neighboring data
C The classifier in DAF before transfer learning
G The generator in DAF after transfer learning
D The discriminator in DAF after transfer learning
µ Asymmetry multiplier
ncritic Number of critic iterations per generator iteration
ϵ The privacy loss
δ The probability of violating DP
σ2 The variance of Gaussian distribution
Mf The feature extractor (FE)
Mc The label predictor
θf The parameters of the FE
θc The parameters of the label predictor
u The clipping threshold (sensitivity of DPSGD)
clipu Gradient clipping function with threshold u
w The model parameter
p The size of feature map is p× p
m The number of feature maps
B The number of batches
IN The instance normalization
SIN The simplified instance normalization
µi1i2 The mean of feature map Xi1i2

σ2
i1i2 The variance of feature map Xi1i2

H The height of the feature map
W The width of the feature map
xi1i2i3i4 The element of feature map Xi1i2

̂xi1i2i3i4 The new value of xi1i2i3i4 after SIN
α The order in Rényi DP
Dα The Rényi divergence of order α
Gσ The Gaussian mechanism with variance σ2

γ The subsampling rate

Table 9: Notation Table

(a) w/o DP aggregation. (b) w/ DP aggregation.

Figure 4: The illustration of the impact of DP feature aggregation on the size of the gradient vector.

robust against the DP noise. On the other hand, the DP feature aggregation in the forward phase im-
plies a shortened gradient vector, resulting in a significant reduction of information loss in gradient
clipping. DPAF is also characterized by the use of a simplified instance normalization that pre-
serves fine-grained features and reduces ℓ2 sensitivity. Overall, the five advantages of performing
DP feature aggregation in the forward phase are summarized below.

15

Under review as a conference paper at ICLR 2024

(a) w/o DP aggregation. (b) w/ DP aggregation.

Figure 5: The impact of DP feature aggregation on the gradient structure preservation during the
backpropagation.

Figure 6: The illustration of the better robustness against the DP noise after the feature aggregation.

Reduction of Information Loss in Gradient Clipping. The first advantage is the dimensionality
reduction of the gradient vector, as illustrated in Figure 4. More specifically, gradient clipping in
DPSGD inevitably leads to information loss. However, gradient clipping has less impact on shorter
gradient vectors, resulting in less information loss. As shown in Figure 4(a), the gradient vector to be
clipped will be longer if DP feature aggregation is not used. On the contrary, as shown in Figure 4(b),
conv3 has been privatized after DP feature aggregation due to the postprocessing property of DP, and
can be updated by SGD. As a result, since only conv1 and conv2 need to be updated by DPSGD, the
information loss due to gradient clipping can be mitigated.

Better Preserving Gradient Structure. During backpropagation, DPSGD applies noise to the
weights in a layer-by-layer manner, as shown in Figure 5(a), which makes training more difficult
because such an updating process destroys the inherent structure of the gradient vector. Thus, the
second advantage is to better preserve the gradient structure. This is due to the fact that the ag-
gregated DP vector is a vector of aggregated noisy image features. As shown in Figure 5(b), since
the aggregated features still have the inherent semantics, the corresponding noisy version remains
meaningful. On the other hand, as also shown in Figure 5(b), conv3 can be updated by SGD in-
stead of DPSGD, which better preserves the inherent gradient structure. In this case, only layers
(e.g. conv2) need to be updated by DPSGD, and as a result, only a small fraction of the parameter
structure will be affected by DPSGD.

Better Robustness against DP Noise. The aggregation of the features from samples makes the
aggregated feature more robust to the DP noise, because the DP noise is added after the feature value
summation. This is illustrated in Figure 6, where each individual feature is relatively susceptible to
the DP noise, but the aggregated one has the larger values and, as a result, better robustness.

Better Preserving Image Features. From Figure 6, we know that the aggregated feature vector,
which is robust to the DP noise, helps in synthesizing realistic samples (because it is backpropagated
to update G), but such synthetic samples may be irrelevant for a particular label. In fact, the feature

16

Under review as a conference paper at ICLR 2024

values should have similar numerical ranges, otherwise, D will only pay attention to the features
with large values and ignore the features with small values. As a consequence, G cannot be updated
well. We propose to use a simplified instance normalization (SIN) to ensure that fine-grained fea-
tures can be learned. Specifically, SIN is applied to each feature map individually. Then, the feature
vector (concatenated normalized feature maps) undergoes aggregation. For example, this helps in
synthesizing faces with consistent gender in the conditional generation of faces. In other words, in
general, without SIN, due to the imbalance of feature values, some feature values will be devoured
by the others, resulting in the disappearance of certain important feature values that are related to
the specific class.

Low Global Sensitivity. The fifth advantage is the low ℓ2-sensitivity of the SIN-and-aggregation
operation. More specifically, as mentioned above, the feature maps need to be normalized and then
concatenated as the feature vector before the aggregation. We find that the ℓ2-sensitivity of such an
SIN-and-aggregation operation can be calculated as a relatively small and controllable value

√
mp,

where m is the number of feature maps and the size of the feature map is p × p. Properly setting√
mp effectively reduces the noise magnitude, thereby raising the utility (see Appendix A.5).

A.5 DETAILED CONFIGURATION OF DPAF

Here, we discuss the rationale behind the design of DPAF.

Why Not Eliminate conv2*. Consider the case where all of the layers before the DP feature
aggregation belong to conv1*. The number of learnable parameters in D will be much smaller (i.e.,
only conv3* and FC*); i.e., no conv2* exists. Such a setting hurts the training of GANs. This can
be attributed to the fact that one knows from the GAN literature that if G (D) is much stronger than
D (G), the training of GANs will likely fail to converge. In addition, conv3* and FC* might have
fewer parameters compared to conv2*, depending on different model structures. It is difficult to well
train D under this circumstance. Thus, keeping certain layers as conv2* is beneficial for adversarial
learning.

Why Not More Layers for conv2*. As more learnable parameters in D may help the training
of GANs, why conv2* does not have more layers? This can be explained as follows. If conv2*
has more layers (parameters), because conv2* is updated through DPSGD, gradient clipping will
lead to more information loss, flattening the feature values. In addition, if conv2* has more layers
(parameters), because conv1 and conv2* both are trained by DPSGD, the output of (conv1, conv2*)
will be too noisy, hindering the utility.

Why Not More Layers for conv3*. A question that may arise is why conv3* does not have more
layers. As the total number of layers is fixed given an input image, if conv3* has more layers, then
either conv1 or conv2* (or both) will be shrunk. Thus, DPAGG is closer to low-level features. In
such a case, D cannot have meaningful learning from the aggregation of level-level features.

Choice of cGAN. The DPAF is designed to support conditional generation. Thus, one needs to
consider a cGAN in DPAF. Compared to GANs, G and D of cGANs need to consider the class label
to ensure both the indistinguishability between the real and synthetic samples and the consistency
between the input label and the label of synthetic samples. In general, there are two straightforward
solutions for label injection. First, the class label is added as part of the input vector in such a
case. If we feed labels to the input layer, the labels will be diluted in the forward phase and have
a weak signal only. Second, D is designed with two loss functions; one for the ordinary GAN loss
and another for the class label. A representative of such a design choice is AC-GAN (Odena et al.,
2017), which outputs labels as part of the loss function. Nevertheless, due to access to the label,
such a design leads to a privacy budget splitting and therefore suffers from utility degradation.

In our design, DPAF follows the architecture of cDCGAN (Radford et al., 2016). Inspired by (Per-
arnau et al., 2016) stating that the class label is better added to the first layer, we decide to use
cDCGAN though there are no considerations of aggregation and DP in (Perarnau et al., 2016). In
essence, cDCGAN feeds labels to the second layer by first computing the embedding (from scalar
to vector) of labels, significantly strengthening the signal. A natural question that arises is why the
class label is not added to the latter layers of D, given the class label in the latter layers may preserve

17

Under review as a conference paper at ICLR 2024

an even stronger signal. The drawback of doing so is that all the layers before the layer to which
the class label is added can hardly learn anything, because the classifier can know the portion by
looking at the label only.

The Position of DPAGG. DPAF heavily relies on DPAGG to raise the utility of synthetic samples.
Thus, a natural question that arises is where the best position for DPAGG is. Without the loss of
generality, DPAGG is placed to minimize the ℓ2-sensitivity ∆2,AGG in Eq. (2). As ∆2,AGG =

√
mp,

∆2,AGG is dependent on the position of DPAGG. Given the design of a conventional CNN, where
the height/width of feature maps in the next convolutional layer is half of the ones in the current
convolutional layer, if the input is a ρ×ρ c-channel image, ∆2,AGG can be calculated as

√
c
∏a

i=1 ki ·
ρ
2a , where ki is the number of filters in the i-th convolutional layer and DPAGG is placed behind the

a-th convolutional layer. Define Rj as
(√

c
∏j

i=1 ki ·
ρ
2j

)/(√
c
∏j−1

i=1 ki · ρ
2j−1

)
. We can easily

derive Rj =
√
kj/2. Thus, if kj ≥ 4, then ∆2,AGG is monotone increasing from earlier to latter

layers. As a consequence, from the ℓ2-sensitivity point of view, we conclude that the best position for
DPAGG is between the first and second convolutional layers. Unfortunately, placing DPAGG in such
a position does not lead to a decent utility in practice, because it completely destroys the structure of
DPAF (e.g., the disappearance of conv1 and conv2*). Hence, we will empirically examine the other
configurations in Section 4.

A.6 PRIVACY ANALYSIS

At the beginning, we aim to prove that conv1 satisfies DP. We start from Theorem 1.

Theorem 1. Define a model M(D) = M2(θ2,M1(θ1,D)) : D → R2, whereD is the sensitive data,
θ1 and θ2 are model parameters, M1(θ1,D) : D → R1 is the first half of the model M , M2(θ2, R1) :
R1 → R2 is the second half of the model M , with R1 and R2 denoting the corresponding outputs
of the layers. M1(θ1,D) satisfies DP if it is trained by DPSGD.

Proof. Define G(θ1, θ2,D,L(θ1, θ2,D)) as the gradient of the model M , where L is the loss func-
tion. G(θ1, θ2,D,L(θ1, θ2,D)) can be rewritten as

G(θ1, θ2,D,L(θ1, θ2,D)) (4)
=[g(θ2,L(θ1, θ2,D)), g̃(θ1, g(θ2,L(θ1, θ2,D))], (5)

where g(θ2,L(θ1, θ2,D)) can be seen as the gradient of M2 and g̃(θ1,L(θ1, θ2,D)) can be seen as
the gradient of M1. The updating rule is shown below.

θ2 ← θ2 + g(θ2,L(θ1, θ2,D)) (6)
θ1 ← θ1 + g̃(θ1, g(θ2,L(θ1, θ2,D))) (7)

To simplify the notations, we use D to denote the dependency of the sensitive data. In this case, Eq.
(4) can be rewritten as

G(θ1, θ2,D,L(θ1, θ2,D))
=G(θ1, θ2,D) (8)
=[g(θ2,D), g̃(θ1, g(θ2,D))]. (9)

As g̃(θ1,D) is trained by DPSGD, one can ensures that g̃(θ1,D) satisfies DP. As M1(θ1,D) is
initialized randomly and is updated by g̃(θ1,D), one can ensures that M1(θ1,D) satisfies DP.

With Theorem 1, we can easily conclude that conv1 in DPAF satisfies DP via Corollary 1.

Corollary 1. The conv1 in DPAF satisfies DP.

Proof. The classifier C in DPAF before the transfer learning is an instantiation of the model M in
Theorem 1. In this case, conv1 can be seen as M1, and conv2, conv3, and FC are seen as M2 in
Theorem 1. As shown in Line 4 of Algorithm 1, we perform SGD for updating conv2, conv2, and
FC, and perform DPSGD(ε1) for updating conv1. Hence, conv1 satisfies DP.

18

Under review as a conference paper at ICLR 2024

Next, we are aimed to prove that DPAF satisfies DP. We rely on Rényi DP (RDP) (Mironov, 2017)
for our privacy analysis. Compared to the ordinary DP in Definition 1, RDP is a variant of DP with
a tighter bound of privacy loss.
Definition 2. A randomized algorithm M is (α, ϵ(α))-RDP with α > 1 if for any neighboring
datasets D and D′,

Dα(M(D)||M(D′
)) =

1

α − 1
log Ex∼M(D′)

[(
Pr[(D) = x]

Pr[(D′) = x]

)α−1
]

≤ ϵ(α), (10)

where Dα is the Rényi divergence of order α.

Before proving our main result, we describe some necessary properties of RDP in Theorems 2∼5.
Theorem 2 (Gaussian Mechanism on RDP (Mironov, 2017; Wang et al., 2021)). If a function f has
ℓ2-sensitivity u, then Gσ ◦f obeys (α, ε(α))-RDP, where ε(α) = αu2/(2σ2) and Gσ is the Gaussian
mechanism defined in Section 2.
Theorem 3 (Sequential Composition on RDP (Mironov, 2017)). If the mechanism M1 satisfies
(α, ϵ1)-RDP and the mechanism M2 satisfies (α, ϵ2)-RDP, then M2 ◦ M1 satisfies (α, ϵ1 + ϵ2)-
RDP.
Theorem 4 (Privacy Amplification by Subsampling (Wang et al., 2019)). LetM◦ subsample be
a randomized mechanism that first performs the subsampling without replacement with the subsam-
pling rate γ on the dataset X and then takes as an input from the subsampled dataset Xγ . For all
integers α ≥ 2, if M obeys (α, ϵ(α))-RDP through Gaussian mechanism, then M ◦ subsample
satisfies (α, ϵ′(α))-RDP, where

ϵ′(α) ≤ 1

(α− 1)
log(1 + γ2

(
α

2

)
min{4(eϵ(2) − 1), eϵ(2) min{2,

(eϵ(∞) − 1)2}}+
α∑

j=3

γj

(
α

j

)
e(j−1)ϵ(j) min{2, (eϵ(∞) − 1)j}),

(11)

and ε(α) = αu2/(2σ2) with u as the sensitivity.

In the following, we use ϵ′(α, γ, u) to indicate ϵ′(α) with the subsampling rate γ and sensitivity u.
Theorem 5 (From RDP to DP (Mironov, 2017)). If a mechanismM is (α, ϵ(α))-RDP,M is (ϵ(α)+
log 1/δ
α−1 , δ)-DP for any δ ∈ (0, 1).

From Corollary 1, we know that if conv1 in C is trained by DPSGD and conv2, conv3, and FC are
discarded, using conv1 in C as conv1 in D does not leak privacy. Hence, based on the above result,
Theorem 6 shows the DP of DPAF.

Theorem 6. DPAF guarantees (T1ϵ
′(α, γ1, u1)+T2ϵ

′(α, γ2, u2)+T3ϵ
′(α, γ3,

√
mp)+

log 1
δ

α−1 , δ)-DP
for all α ≥ 2 and δ ∈ (0, 1).

Proof. For C, our goal is to ensure that the update of conv1 is satisfied with (α, ϵ(α))-RDP for
each iteration. Note that because conv2, conv3, and FC will be discarded after the training, they
do not need a DP guarantee. Let the total number of iterations for training C be T1. Then, the
DPSGD (through the Gaussian mechanism in Theorem 2) on conv1 is (α, T1ϵ(α))-RDP according
to Theorem 3. However, it can be re-estimated as (α, T1ϵ

′(α, γ1, u1))-RDP with subsampling rate
γ1 according to Theorem 4.

For D, since conv1’s parameters are frozen during the training of D, the output of conv1 in D is
satisfied with (α, T1ϵ

′(α, γ1, u1))-RDP, because the update of conv1 in C has been proven to be
RDP. Let the total number of iterations for training conv2* be T2. Then, the DPSGD (through the
Gaussian mechanism in Theorem 2) on conv2* is (α, T2ϵ(α))-RDP according to and Theorem 3.
Similarly, the update of conv2* is satisfied with (α, T2ϵ

′(α, γ2, u2))-RDP with subsampling rate γ2
according to Theorem 4. So far, the joint consideration of conv1 and conv2*, (conv1, conv2*), is
satisfied with (α, T1ϵ

′(α, γ1, u1)+T2ϵ
′(α, γ2, u2))-RDP guarantee according to Theorem 3. Unlike

the cases of conv1 and conv2*, where noise is injected in the backward phase, the noise injection to
AGG occurs in the forward phase. More specifically, we set a DPAGG to aggregate input data and
add noise in the aggregated data. The sensitivity of AGG has been calculated as

√
mp in Eq. (2).

19

Under review as a conference paper at ICLR 2024

Let the number of iterations for the training of D be T3. The DPAGG with the noise sampled from
N(0,mp2σ2) is satisfied with (α, T3ϵ

′(α, γ3,
√
mp))-RDP with subsampling ratio γ3 according to

Theorem 2 and Theorem 3. Thus, the joint consideration of conv1, conv2*, and DPAGG, (conv1,
conv2*, DPAGG), will fulfill (α, T1ϵ

′(α, γ1, u1) + T2ϵ
′(α, γ2, u2) + T3ϵ

′(α, γ3,
√
mp))-RDP ac-

cording to Theorem 3. Because the DPAGG has DP guarantee, the update of conv3* and FC* is
satisfied with RDP by the postprocessing. Finally, the update of G does not access the sensitive
data and, as a result, is satisfied with RDP by the postprocessing. Overall, according to Theorem 5,
DPAF is satisfied with (T1ϵ

′(α, γ1, u1) + T2ϵ
′(α, γ2, u2) + T3ϵ

′(α, γ3,
√
mp) +

log 1
δ

α−1 , δ)-DP.

A.7 SOURCES OF OFFICIAL CODE FOR BASELINE METHODS

The official code of GS-WGAN, DP-MERF, DataLens, G-PATE, DP-Sinkhorn, DP-HP, and DPDC
can be found at https://github.com/DingfanChen/GS-WGAN,
https://github.com/ParkLabML/DP-MERF,
https://github.com/AI-secure/DataLens,
https://github.com/AI-secure/G-PATE, and
https://github.com/nv-tlabs/DP-Sinkhorn_code,
https://github.com/ParkLabML/DP-HP, and
https://openreview.net/attachment?id=H8XpqEkbua_&name=
supplementary_material respectively.

A.8 THE ARCHITECTURE OF THE EVALUATED CLASSIFIER

Figure 7 shows the architecture of the classifier used in our experiments for the downstream classi-
fication task.

Image Input Layer

3╳3 Conv. 32, ReLU

2╳2 Max Pooling

3╳3 Conv. 64, ReLU

Fully connected

Softmax Layer

2╳2 Max Pooling

3╳3 Conv. 128, ReLU

Figure 7: The architecture of the evaluated classifier.

A.9 EXTRA EXPERIMENTAL RESULTS FOR VISUAL QUALITY

Visual results for 128×128 FFHQ images are shown in Figure 8, where the left (right) three columns
are females (males).

A.10 NUMBER OF LAYERS FOR CONV1, CONV2*, AND CONV3*

Our DPAF is configured to be C2-C1-× for MNIST/FMNIST, C2-C2-C1 for CelebA, and C3-C1-×
for FFHQ, where the notation Cx1-Cx2-Cx3 means that the D uses x1 layers as conv1, x2 layers as
conv2*, and x3 layers as conv3*. The notation × means that the corresponding layer does not exist.
We always have two FC* layers.

Three datasets have different image sizes. Hence, the input layer for different datasets must have
different dimensions, leading to different layer architectures. For example, according to the con-
ventional CNN design (Section 3.1), a CNN for FFHQ may have up to five layers. However, the

20

https://github.com/DingfanChen/GS-WGAN
https://github.com/ParkLabML/DP-MERF
https://github.com/AI-secure/DataLens
https://github.com/AI-secure/G-PATE
https://github.com/nv-tlabs/DP-Sinkhorn_code
https://github.com/ParkLabML/DP-HP
https://openreview.net/attachment?id=H8XpqEkbua_&name=supplementary_material
https://openreview.net/attachment?id=H8XpqEkbua_&name=supplementary_material

Under review as a conference paper at ICLR 2024

PEARL

(ε=1)

DPAF

(ε=10)

DPAF

(ε=1)

PEARL

(ε=10)

FFHQ

Figure 8: Visual results for 128 × 128 FFHQ images. The left (right) three columns are females
(males).

arrangement of layers for conv1, conv2*, and conv3* is a hyperparameter. TABLE 11 shows the
accuracy of different arrangements.

Using CelebA-Gender and CelebA-Hair as examples, we aim to know which layer configuration will
result in better accuracy. As both CelebA-Gender and CelebA-Hair are 64× 64, we know that there
are at most five layers in total. Note that, in contrast to ordinary GANs, deliberately setting more
layers in DPGANs may, in turn, hurt the training result (Bassily et al., 2014) because the lengthier
gradient will lead to greater information loss, failing the convergence, according to our experience.
There are too many configurations to exhaustively examine. Table 10 shows the only results of
accuracy in the cases where conv1 and conv2* jointly occupy at most four layers. From Table 10,
we know that C2-C1-×, C2-C2-×, C3-C1-×, and C1-C3-× result in better accuracy. Thus, given
the above results, we include the consideration of conv3* in Table 11, because Table 10 does not
consider conv3*. The results in Table 11 support our design choice for the canonical implementation
of C2-C2-C1 in DPAF because it outperforms the other settings.

ε C1-C1-× C1-C2-× C2-C1-× C1-C3-× C2-C2-× C3-C1-×
CelebA-
Gender

1 0.629 ± 0.040 0.737 ± 0.025 0.824 ± 0.025 0.661 ± 0.144 0.805 ± 0.021 0.811 ± 0.020
10 0.720 ± 0.045 0.733 ± 0.038 0.762 ± 0.079 0.729 ± 0.032 0.786 ± 0.018 0.751 ± 0.036

CelebA-
Hair

1 0.423 ± 0.089 0.475 ± 0.120 0.643 ± 0.014 0.662 ± 0.019 0.519 ± 0.095 0.623 ± 0.038
10 0.565 ± 0.019 0.644 ± 0.024 0.639 ± 0.039 0.657 ± 0.023 0.683 ± 0.022 0.659 ± 0.019

Table 10: The classification accuracy of different layer architecture for conv1 and conv2*.

ε DPAF (C2-C2-C1) C1-C3-C1 C2-C1-C1 C2-C1-C2 C3-C1-C1
CelebA-
Gender

1 0.802 ± 0.018 0.448 ± 0.164 0.673 ± 0.099 0.505 ± 0.067 0.800 ± 0.017
10 0.826 ± 0.010 0.727 ± 0.039 0.803 ± 0.022 0.514 ± 0.091 0.820 ± 0.015

CelebA-
Hair

1 0.675 ± 0.013 0.356 ± 0.077 0.540 ± 0.036 0.354 ± 0.038 0.669 ± 0.018
10 0.671 ± 0.014 0.368 ± 0.074 0.664 ± 0.035 0.352 ± 0.055 0.670 ± 0.016

Table 11: The classification accuracy of different layer architecture for conv1, conv2*, and conv3*.

A.11 THE OTHER TECHNIQUES IN ENHANCING ACCURACY

Many techniques have been proposed to reduce the negative impact of DPSGD on model training.
We examine three of them to see whether they provide similar benefits to DPAF.

Pre-Training the Model with Public Data The recent development of DP classifiers and DP-
GANs has witnessed that extra data may help improve the performance of DP models (De et al.,
2022; Zhang et al., 2018; Tramèr & Boneh, 2021). Here, we want to examine whether pre-training
the model with public data helps DPAF raise its utility. Here, the common setting in Table 12 is that
we follow DPAF to train C, perform transfer learning, and then train G and D on the CIFAR-10
dataset without considering DP. After that, DPAF is used to train DPGAN with the pre-trained D as
D and the randomly initialized parameters as G. We additionally train DPGAN completely based

21

Under review as a conference paper at ICLR 2024

on the pre-trained parameters for both G and D. One can see from Table 12 that the extra data still
helps the utility of DPAF.

The Impact of Gradient Compression. Gradient compression (GC) (Lin et al., 2018) is origi-
nally proposed to reduce the communication cost in federated learning. The rationale behind gra-
dient compression is that most of the values in the gradient contribute nearly no information on the
update. Different from the original case, where GC works on the gradient averaged over the samples
in a batch, the canonical implementation of DPAF adopts GC to keep only the top 90% values of
per-sample gradients and then performs the averaging. However, we still want to examine whether
GC can help DPSGD. The comparison between the DPAF column and “w/o GC” column in Table 13
still shows that DPSGD can benefit from GC because the information loss from gradient clipping
can be mitigated. TOPAGG (Wang et al., 2021) is a modified DPSGD that works on compressed and
quantized gradients. The GC in TOPAGG is configurated to keep the top-k values only3. Neverthe-
less, TOPAGG gains lower accuracy. This can be explained by considering the design of TOPAGG.
In particular, the success of TOPAGG, in essence, relies on training a large number of teacher clas-
sifiers(Wang et al., 2021; Cao et al., 2021). As DPAF does not fit such a requirement, TOPAGG on
DPAF does not perform well.

Tempered Sigmoid Activation Function Papernot et al. (2021) find that exploding activations
cause the unclipped gradient magnitude to increase and therefore gradient clipping leads to more
information loss. Thus, tempered sigmoid (TS) (Papernot et al., 2021), a family of activation func-
tions, is proposed to replace the conventional activation functions in DPSGD. Table 14 shows the
results, where hyperbolic tangent (tanh), as a representative of TS, is used to replace the leaky ReLU
in our canonical DPAF. In our test, tanh is used in DPAF, and we can see from Table 14 that it, in
turn, leads to worse accuracy. This can be explained as follows. First, Papernot et al. (2021) con-
duct the experiments on DP classifiers only. Whether TS can raise the utility of DPGANs remains
unknown. Second, a bounded activation (e.g., sigmoid and tanh) easily causes gradient vanishing
and therefore is rarely used in practice. On the contrary, the unbounded ones (e.g., ReLU and leaky
ReLU) are more capable of avoiding gradient vanishing (Radford et al., 2016). conv1 and conv2* in
DPAF are updated by DPSGD, but conv3* and FC* are updated by SGD. While TS is beneficial to
DPSGD (for conv1 and conv2*) but harmful to SGD (conv2* and FC*). Overall, adopting tanh in
DPAF slightly degrades utility.

ε DPAF Trans(D) Trans(G+D)

CelebA-Gender 1 0.802 ± 0.018 0.819 ± 0.020 0.820 ± 0.027
10 0.826 ± 0.010 0.830 ± 0.018 0.831 ± 0.023

CelebA-Hair 1 0.675 ± 0.013 0.663 ± 0.038 0.695 ± 0.015
10 0.671 ± 0.014 0.695 ± 0.036 0.703 ± 0.015

Table 12: The classification accuracy of DPAF with public data pre-training.

ε DPAF w/o GC TOPAGG

CelebA-Gender 1 0.802 ± 0.018 0.725 ± 0.150 0.549 ± 0.075
10 0.826 ± 0.010 0.818 ± 0.022 0.530 ± 0.097

CelebA-Hair 1 0.675 ± 0.013 0.673 ± 0.016 0.359 ± 0.079
10 0.671 ± 0.014 0.678 ± 0.017 0.375 ± 0.056

Table 13: The classification accuracy of DPAF with different compression strategies.

A.12 COMPARISON TO PRIVATE-GANS

A concurrent work, Private-GANs (Bie et al., 2023), is conceptually similar to but can be seen
as an oversimplified version of DPAF. Tables 15, 16, and 17 show the comparison between
DPAF and Private-GANs. In particular, the results of DPAF in Table 15 are derived by opti-
mizing both µ and ncritic (called nD in their paper). As Private-GANs reported the results with

3For CelebA-Gender, k = 200 with ε = 1 and k = 3000 with ε = 10. For CelebA-Hair, k = 150 with
ε = 1 and k = 200 with ε = 10.

22

Under review as a conference paper at ICLR 2024

ε DPAF w/ TS

CelebA-Gender 1 0.802 ± 0.018 0.802 ± 0.015
10 0.826 ± 0.010 0.806 ± 0.025

CelebA-Hair 1 0.675 ± 0.013 0.594 ± 0.031
10 0.671 ± 0.014 0.620 ± 0.043

Table 14: The classification accuracy of DPAF with tempered sigmoid (TS) functions.

ncritic = 1, 10, 50, 100, 200, to be aligned with their results, Table 16 and 17 show the results of
DPAF and Private-GANs for ncritic = 1, 10, 50, 100, 200. One can see from Tables 15, 16, and 17
that DPAF outperforms Private-GANs. This can be attributed to the fact that introducing µ in the
design of DPAF as asymmetric training significantly reduces the downside from raising ncritic.

ε NDPDC PEARL Private-GANs DPAF

CelebA-Gender

0.5 0.518 0.655 0.620 0.768
1 0.540 0.634 0.663 0.802
5 0.535 0.639 0.679 0.789
10 0.600 0.646 0.714 0.826

CelebA-Hair

0.5 0.497 0.592 0.513 0.663
1 0.498 0.606 0.474 0.675
5 0.469 0.609 0.508 0.680
10 0.462 0.626 0.540 0.671

Table 15: More classification results. Each value is derived by averaging the results from 50 inde-
pendent trials.

ε ncritic = 1 ncritic = 10 ncritic = 50 ncritic = 100 ncritic = 200

Private-GANs

0.5 0.468 0.448 0.612 0.620 0.598
1 0.570 0.541 0.629 0.663 0.498
5 0.584 0.572 0.652 0.680 0.634
10 0.607 0.673 0.677 0.714 0.623

DPAF
(µ = 1)

0.5 0.490 0.650 0.511 0.463 0.515
1 0.507 0.666 0.491 0.466 0.549
5 0.535 0.690 0.500 0.524 0.496
10 0.503 0.666 0.552 0.452 0.546

DPAF
(µ = 8)

0.5 0.501 0.668 0.579 0.500 0.517
1 0.567 0.725 0.573 0.537 0.510
5 0.687 0.715 0.524 0.511 0.503
10 0.789 0.690 0.556 0.519 0.472

Table 16: The classification accuracy of different ncritic’s on CelebA-Gender.

ε ncritic = 1 ncritic = 10 ncritic = 50 ncritic = 100 ncritic = 200

Private-GANs

0.5 0.513 0.441 0.488 0.411 0.356
1 0.474 0.437 0.366 0.355 0.357
5 0.508 0.498 0.416 0.408 0.405
10 0.540 0.491 0.466 0.454 0.373

DPAF
(µ = 1)

0.5 0.367 0.533 0.368 0.356 0.331
1 0.301 0.467 0.358 0.372 0.333
5 0.353 0.518 0.357 0.332 0.345
10 0.379 0.523 0.351 0.375 0.324

DPAF
(µ = 8)

0.5 0.616 0.540 0.366 0.343 0.306
1 0.345 0.514 0.361 0.345 0.319
5 0.468 0.524 0.329 0.367 0.319
10 0.556 0.513 0.357 0.347 0.308

Table 17: The classification accuracy of different ncritic’s on CelebA-Hair.

23

Under review as a conference paper at ICLR 2024

A.13 EMPIRICAL EVIDENCE FOR DATA PRIVACY OF DPAF AGAINST MIA

GAN-Leaks Chen et al. (2020b) offers a tool to evaluate whether a candidate GAN-synthesized
dataset can resist MIA. Here, in addition to a formal privacy proof in Appendix A.6, we provide
additional empirical evidence in Table 18 that the DPAF-synthesized dataset can resist MIA. In
particular, each value in Table 18 refers to the AUC-ROC (area under the curve of ROC) of MIA in
identifying members and non-members. One can see from Table 18 that if the synthetic dataset is
generated by a model trained by ordinary SGD, then the AUC-ROC is 1, which means that MIA is
always successful. On the other hand, in the case of the synthetic dataset from DPAF, the AUC-ROC
is nearly 0.5, failing MIA.

64 Images 128 Images
SGD 1.0 1.0

DPAF

ϵ = 10 0.466 0.502
ϵ = 5 0.469 0.499
ϵ = 1 0.473 0.499
ϵ = 0.5 0.479 0.500

Table 18: AUC-ROC of MIA on CelebA-Gender with DPAF. The sizes of the training set is 64 and
128 (aligned with the setting used in Chen et al. (2020b)).

24

	DPAF__ICLR_2024_

