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Abstract

Personalizing treatments for patients often involves a period of trial-and-error search until
an optimal choice is found. To minimize suffering and other costs, it is critical to make this
process as short as possible. When treatments have primarily short-term effects, search can
be performed with multi-armed bandits (MAB), but these typically require long exploration
periods to guarantee optimality. In this work, we design MAB algorithms which provably
identify optimal treatments quickly by leveraging prior knowledge of the types of decision
processes (patients) we can encounter, in the form of a latent variable model. We present
two algorithms, the Latent LP-based Track and Stop (LLPT) explorer and the Divergence
Explorer for this setting: fixed-confidence pure-exploration latent bandits. We give a lower
bound on the stopping time of any algorithm which is correct at a given certainty level, and
prove that the expected stopping time of the LLPT Explorer matches the lower bound in
the high-certainty limit. Finally, we present results from an experimental study based on
realistic simulation data for Alzheimer’s disease, demonstrating that our formulation and
algorithms lead to a significantly reduced stopping time.

1 Introduction

There is growing interest in using machine learning for personalizing medical treatments to account for
heterogeneity in patients’ responses. Finding a suitable choice for an individual often involves a phase of
trial and error before settling on a therapy that works for them, especially in the treatment of chronic
diseases (Fraenkel et al., 2021; Stern, 2009). In rheumatoid arthritis, for example, when first and second-line
treatment fails, there is large variability in the choice of next therapy, and several drugs may be considered
equally good choices a priori (Zink et al., 2001). Further, switching therapies has associated costs: every
time a therapy is changed, the patient has to get used to the new therapy and its potential side effects. It is
therefore desirable to minimize such switches, even if changes are to other equally good treatments after a
treatment has been identified in the search phase. Learning algorithms could improve the efficiency of this
search, reducing the number of avoidable trials (Chakraborty and Moodie, 2013).

A classical framework for exploring alternative treatments is Multi-armed Bandits (MAB) (Gittens and
Dempster, 1979; Lai and Robbins, 1985), originally motivated by reducing suffering in drug testing (Thompson,
1933). However, MABs tend to be sample-hungry to the point of being unsuitable for finding personalized
treatments in real-world clinical settings. Because a long search phase can prolong unnecessary suffering, it
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Figure 1: Illustration of the pure-exploration latent bandit problem and the example of treatment personal-
ization. A population of patients have been observed in historical data to learn the distribution of latent
states P (S), P (X|S) and the conditional reward the distribution P (R|X, S, A). A new patient, represented
by the instance ν = (x, s) is treated with actions at, observing rewards rt until the stopping time τ .

must be avoided and minimized whenever possible. Existing methods for the fixed-confidence pure exploration
setting in MABs, which aim to minimize the time it takes to find an optimal treatment at a given certainty
level (Even-Dar et al., 2006; Garivier and Kaufmann, 2016; Russo, 2016; Shang et al., 2020) also yield long
exploration phases.

One reason for the long exploration of bandit algorithms is that each instance—each patient, in our example—is
treated as independent, learning parameters from scratch each time. This allows for complete personalization,
often incorporating contextual or side information (Li et al., 2010; Chu et al., 2011), but disregards any
similarities between instances. For many conditions, differences in responses (rewards) to treatment between
patients are believed to be explained by a small number of disease subtypes (Devi and Scheltens, 2018; Borish
and Culp, 2008). Thus, for a patient with a known subtype, an optimal treatment could be identified from
the treatment responses of previous patients with the same subtype.

The subtype of a patient may be viewed as a latent state, as it is unobserved at the start of treatment, but
manifests in a patient’s responses to different therapies. With access to data on the treatment of previous
patients, it is possible to fit a model of the distribution of latent states and their association with actions
and rewards, for instance with variational inference methods (Kingma and Welling, 2013; Jang et al., 2016).
Given such a model, for a new patient (bandit instance), our task becomes to identify which latent state
they belong to, see Figure 1. Latent Bandits and recent iterations formalize this idea but are limited to
regret minimization, aiming to minimize the regret compared to optimal actions over a possibly infinite
period (Maillard and Mannor, 2014; Zhou and Brunskill, 2016; Hong et al., 2020a;b; Kwon et al., 2021). This
differs from our goal of finding the optimal treatments within a desirably short exploration period, while also
ensuring that the algorithm commits to a good treatment after exploration, without treatment switches.

In this work, we derive fixed-confidence pure-exploration bandit algorithms which aim to minimize the
number of trials required to find an individual-optimal treatment by incorporating existing knowledge of
latent structure.

Main contributions. 1) We propose a formulation of the personalized treatment search problem with
known latent structure in the fixed-confidence pure-exploration setting (Section 2). 2) We prove a lower
bound for the search time of any algorithm in our latent bandit setting and prove a matching upper bound
for the Latent LP-based Track and Stop (LLPT) Explorer (Section 3, 5). 3) We present two algorithms, the
LLPT Explorer and the Divergence Explorer (Section 4). 4) We perform an extensive empirical evaluation on
a simulator of Alzheimer’s disease and illustrate that our formulation and algorithms lead to a significantly
reduced stopping time compared to classical pure-exploration algorithms in the MAB framework (Section 6).
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2 Problem formulation

We think of a treatment personalization strategy as an agent which interacts with a patient over t ∈ N rounds,
aiming to try as few treatments as possible before the best possible treatment has been identified with a
confidence level of at least 1− δ, for a pre-specified δ > 0. At the start of the sequence, the agent observes
a patient’s context covariates (e.g., lab measurements) as a draw of a random variable X1 ∈ Rd. Then, at
each step t = 1, 2, ..., the agent takes an action At ∈ A = {1, ..., K} (trial treatment) and gets a reward
Rt ∈ R (treatment outcomes). When an optimal treatment has been found, exploration stops and the agent
recommends this treatment. The setting is illustrated in Figure 1. In the multi-armed bandit literature this
setting is called fixed-confidence pure exploration (Garivier and Kaufmann, 2016; Shang et al., 2020).

A fixed-confidence pure-exploration strategy ϕ comprises a sampling rule for exploring actions At at each
step t, a stopping rule to decide the time τ at which the exploration is over, and a recommendation rule
which returns the best action âτ at the stopping time τ . Our goal is to design a strategy ϕ to minimize
the expected stopping time E[τ ]. In our healthcare example, this serves to minimize the search for optimal
treatments, and thus minimize patient suffering in the treatment search phase while also ensuring that the
algorithm commits to a good treatment after exploration, without treatment switches.

Even for state-of-the-art pure exploration algorithms, the necessary exploration tends to be long in realistic
settings (see Figure 2). To overcome this, we will make structural assumptions about contexts, actions and
rewards regarding patient similarity. In our healthcare example, it is plausible that a new patient (bandit
problem instance) shares significant similarity with historical patients (logged bandit data), and that the
optimal treatment for them is the same as for similar patients. However, in many domains, the context X is
not sufficient to identify optimal treatment since it does not account for all individual variation (Håkansson
et al., 2020). To account for remaining individual variation between patients with the same X, we will assume
that there is a finite number of latent states S ∈ S = {1, ..., M}, e.g., patient types, which cannot be directly
observed. Thus, the optimal treatment is determined by the context X and the latent state S: two instances
(e.g., two patients) are similar if they have the same context and latent state (e.g., disease subtype).

Identifying the true latent state S is sufficient but not strictly necessary to solve our problem. For successful
treatment, we are only interested to identify the optimal treatment at exploration stop, âτ . Therefore, it is
not necessary to estimate the correct latent state, but the set of latent states that have the same optimal arm.
Having context X is desirable as it helps reduce the number of trials if it is informative of the underlying
latent state S, with unexplained variation further discoverable by trying different treatments.

A latent variable model (LVM) of the distribution of latent states S, contexts X, actions A and rewards R
can be estimated from historical data and used to speed up exploration for a new subject. Maillard and
Mannor (2014) and Hong et al. (2020a) made use of LVMs for “Latent Bandits” in the related setting of
regret minimization. As these algorithms do not come with stopping and/or recommendation rules, they are
not applicable to the fixed-confidence setting where the goal is to terminate search as quickly as possible.

In the MAB formalism, our problem can be defined as fixed-confidence pure-exploration latent bandits with
a single initial context. In doing so, we assume that the latent subtype and the distributions of rewards is
unaffected by time and previous actions. This is plausible for conditions treated with symptomatic therapies,
such as for chronic degenerative disease like AD or Rheumatoid Arthritis (RA), where treatments typically
target the symptoms and not the underlying disease pathology (Fish et al., 2019). Under these assumptions,
the optimal choice of treatment remains fixed through exploration.

2.1 Fixed-confidence pure-exploration latent bandits

Given a state s, a context x, and an action a, let

µa,x,s := E[R | A = a, X = x, S = s]

1By convention, we use capital letters for random variables and lowercase for observed variables
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denote the expected reward for that action, and let

µ∗
x,s = max

a
µa,x,s and a∗

x,s = arg max
a

µa,x,s

denote, respectively, the optimal expected reward and arm in latent state s and observed context x. We
assume that the maximizer a∗

x,s is a single action for each state-context pair (x, s), but our arguments can be
generalized to the case with multiple optimal actions. Further, let Ht = (X, A1, R1, ..., At, Rt) denote the
history of context, actions and rewards, up to time t, letting H0 = (X). The utility of the context X is in
computation of the likelihood P (s|Ht) and this is agnostic of either finite or infinite context assuming that a
good model of the likelihood is known.

Our goal is to design a search strategy ϕ to minimize the expected number of trials τ required to identify an
optimal action, with confidence at least 1− δ, for new subjects with context X and unknown latent state S.

minimize
ϕ

Eϕ,S,Hτ
[τ ] (1)

subject to P (µâτ ,x,s< µ∗
x,s | X = x, S = s) ≤ δ, ∀x, s

We say that a search strategy ϕ is δ-PAC if the error probability is bounded by δ. Here, this is captured by
our constraint, ∀x, s : P (µâτ ,x,s< µ∗

x,s | X = x, S = s) ≤ δ, as long as the probability model is correct.

In equation 1, we minimize the expected stopping time (e.g., over a population of patients) while satisfying
instance-dependent constraints (per patient). We justify this formalization by noting that, in our running
example, any single patient will have a single random stopping time, which we can estimate and analyze only
in expectation. However, it is desirable and possible to guarantee, per patient, that our confidence exceeds
1− δ whenever we stop.

We assume that a model Mθ = {pθ(S), pθ(X | S), pθ(R | A, X, S)} of the marginal state probability p(S)
and the likelihood of observed variables under S, including the set of reward means µa,x,s, is available when
search begins, akin to Hong et al. (2020a). This means that once s is known, so is the optimal arm in s, and
no further exploration is necessary. Such a model can be learned from logged bandit instances, for example,
using a variational autoencoder (Kingma and Welling, 2013), but this is outside the scope of this work.

For simplicity, we will assume that all reward distributions are stationary in time and Gaussian with equal
variance σ2, that is, given At = a, X = x, S = s, for all t

Rt ∼ N (µa,x,s, σ2) .

The algorithms presented in Section 4 are applicable in the non-Gaussian case as well, assuming that the
reward distribution is known through Mθ, but our analysis in Section 5 is limited to Gaussian rewards for
now. Our analysis makes heavy use of the Kullback-Leibler (KL) divergence, and we will adopt the notation
KL(µa,x,s ∥µa,x,s′) = KL(p(R | a, x, s) ∥ p(R | a, x, s′)) for the KL-divergence between the two Gaussian
rewards for arm a under states s, s′ with equal variance σ2 and means as indicated.

3 Lower bound on stopping time

To serve as benchmark for our algorithms, we derive a lower bound on the worst-case solution to objec-
tive equation 1 for any algorithm which satisfies its constraints.

The seminal work of Kaufmann et al. (2016) presented a general inequality from which one can derive lower
bounds for δ-PAC algorithms in the best-arm identification framework. In lemma 1, we present a variant of
their key result, adapted to our latent bandit setting. For brevity, we let

ρ(x; s, s′) = log[p(x | s)/p(x | s′)]

denote the log-likelihood ratio of the observed context x under latent states s and s′, and use the shorthand

KLR,a,x
s,s′ = KL(µa,x,s ∥µa,x,s′) ,
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for the KL-divergence between rewards under states s, s′. Our bounds and algorithms use a state s as
reference point for the set of alternative states s′ with different optimal arms,

Altx(s) := {s′ : a∗
x,s′ ̸= a∗

x,s} .

We can now derive the following result.
Lemma 1. Given a problem instance with latent state s and observed context x, any δ-PAC algorithm ϕ
must satisfy for any alternative state s′ ∈ Altx(s),∑

a

Eϕ[Na | x, s]KLR,a,x
s,s′ + ρ(x; s, s′) ≥ kl(δ||1− δ), (2)

where Na is the number of plays of arm a drawn under ϕ and kl(δ||1− δ) is the KL-divergence between two
Bernoulli random variables with parameters δ and 1− δ.
Proof summary. The proof follows the argument of the original Lemma in Kaufmann et al. (2016). We
start from the KL-divergence between the distribution of histories H, under s and s′ and expand this using
the chain-rule of the KL-divergence. We then apply the information-processing inequality to lower bound this
by kl(δ||1− δ). The difference from Kaufmann et al. (2016) is that we get an additive term which depends on
the context distribution under different latent models. For a full proof, see Appendix A.1.

From lemma 1, we can derive a lower bound on the expected stopping time. Here, we assume that the optimal
arm is unique for each state-context pair (s, x), that is, Altx(s) = S \ {s}. This assumption is not necessary
to run our proposed algorithms.
Proposition 1. For any δ-PAC learner ϕ with δ ∈ (0, 1/2) and any latent state s and context x, the expected
stopping time satisfies

Eϕ[τ | s, x] ≥ 1
C∗

δ (s, x)kl(δ||1− δ)

where 1/C∗
δ (s, x) =

∑
a γ∗

x,a(s) with γ∗
x,a(s) the minimizers of the following linear program x,

minimize
γx,a≥0

∑
a

γx,a (3)

subject to
∑

a

γx,aKLR,a,x
s,s′ + ρ(x; s, s′)

kl(δ||1− δ) ≥ 1, ∀s′ ∈ Altx(s)

Proof summary. By lemma 1, we have a constraint on the sum of the expected number of times each arm
is played by any δ-PAC algorithm ϕ. By dividing each side of equation 2 by kl(δ||1− δ) and minimizing the
the stopping time under the resulting constraint, we obtain the linear program (LP) in equation 3. For a new
bandit instance, x is observed before search begins. Thus, given a model Mθ, the only unknowns in equation 3
are γx,a. As we have a finite set of latent states s , we can construct a finite set of linear constraints and
solve for the minimal stopping time. A full proof is given in appendix A.1.
Remark 1. As a sanity check, we verify that the contextual information makes the pure-exploration problem
fundamentally easier. Indeed, when an observation x clearly separates the true latent state s from s′, ρ
increases, the constraint in equation 3 is satisfied by a larger set of parameters γx,a, and the lower bound
attains a smaller value. However, as we require increasing certainty and δ → 0, the influence from contextual
information X on C∗

δ (s, x) vanishes. This is expected since we don’t collect more information through x as
our requirement on certainty increases—it remains constant.

As a consequence of proposition 1, we can obtain a bound for the population (marginal) search time. If we
assume that 1

C∗
δ

= EX,S [
∑

a γ∗
x,a(s)] exists, with γ∗

x,a the minimizers as in proposition 1, we have

Eϕ,X,S [τ ] ≥ 1
C∗

δ

kl(δ||1− δ)

The lower bound indicates that the optimal worst-case solution to equation 1 is limited by the hardest-to-
separate states s, s′. We make use of this insight next to develop algorithms.
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Algorithm 1 LLPT Explorer and Divergence Explorer
Input δ, T,S, K,Mθ

Output τ, îτ

1: Observe h1 = (x)
2: if LLPT Explorer then
3: Compute w∗

x,a(s) for all a, s ▷ See equation 4, equation 3
4: end if
5:
6: while Zt < 1− δ and t < T do
7: if LLPT Explorer then
8: st = arg maxs∈S p(s|ht)
9: at+1 = arg maxa∈[K] t · w∗

x,a(st)−Nat
(t)

10: else if Divergence Explorer then
11: st ∼ p(s|ht)
12: ft(a) =

∑
s′ pθ(s′|ht)KL(µa,x,st ∥µa,x,s′)

13: at+1 = arg maxa∈[K] ft(a)
14: end if
15: Choose at+1, and Observe rt+1
16: Update ht = ht−1 ∪ (at+1, rt+1)
17: Update Nat+1(t)← Nat+1(t) + 1
18:
19: Update ŝt = arg maxs∈S pθ(s | ht)
20: Update ât = arg maxa∈[K] µa,x,ŝt

21: Update Zt =
∑

s pθ(s|ht)1[ât = a∗
x,s]

22: end while
23:
24: Return ât

4 Algorithms

We present two best-arm identification strategies, each comprising a sampling rule for selecting arms At,
a stopping rule for determining τ , and a recommendation rule for selecting âτ . Both algorithms, defined
in Algorithm 1, are given access to an already estimated latent variable model Mθ including all reward
means µa,x,s ∀ s ∈ S, a ∈ A given a context x and differ only in their sampling rules; the stopping and
recommendation rules are equivalent. Either algorithm starts by observing the random context X, and
proceeds from there.

4.1 Sampling rule 1: Latent LP-based Track and Stop (LLPT) explorer

Our first sampling rule is based on the Track-and-Stop method (Garivier and Kaufmann, 2016), where arm
allocations are determined by tracking proportions w∗, obtained by solving the lower bound optimization
problem in equation 3. Since we have finite sets of states and actions, and x is observed at the start of the
search, we can compute γ∗

x,a(s) for all s ∈ S, a ∈ A directly. Then, we define playing proportions w∗
x(s), for

each possible state s ∈ S, as
w∗

x,a(s) = γ∗
x,a(s)/(

∑
a

γ∗
x,a(s)) . (4)

At each time step t, the algorithm picks a latent state st = arg maxs p(s|ht) from the (known) posterior given
the current history ht, and plays the arm which most closely tracks w∗

x,a(st). Let Na(t) be the number of
times arm a has been played up until and including t. Then, the LLPT Explorer sampling rule is defined by

At+1 = arg max
a∈[k]

t · w∗
x,a(st)−Na(t) .
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The LLPT Explorer aims to play the minimum total number of trials using arms which distinguish latent
states the most, as given by the KL term in the constraint of equation 3. It aims only to distinguish latent
states with different optimal arms, as the goal is to identify the best action, not the state.

4.2 Sampling rule 2: Divergence explorer

The LLPT Explorer plays according to the optimal proportions for the worst-case alternative state given
the current estimate. This is because the constraint in equation 3 will be hardest to satisfy (require largest
γx,a) for states s′ which are the most similar to s. A drawback of this idea is that it ignores the likelihood of
said alternative state under the posterior. If there is strong evidence that s′ is unlikely to be the true state,
collecting more evidence to rule it out may be suboptimal. In the extreme case, a state s′ with posterior
probability p(S = s′ | ht) ≈ 0 may still (unnecessarily) inform the sampling rule for the LLPT Explorer.

As an alternative, we define the Divergence Explorer sampling rule. This algorithm aims to play arms
according to how much information is gained by playing an arm in expectation given the current posterior
probability of states in Altx(s). At each time t, a latent state st ∼ Pt(s|ht) is sampled as reference. Then,
the sampling rule uses the expected divergence between st and alternative states s′

t,

ft(st, a) =
∑

s′
t∈Altx(st)

P (s′
t|ht)KL(µa,x,st

∥µa,x,s′
t
) .

The arm At+1 = arg maxa∈A ft(st, a) is played next.

Because KL(µa,x,st
∥µa,x,s′

t
) measures the information distance between the reward distribution of arm a

under the two latent models st and s′
t, ft(st, a) does a one-to-many test assuming st is the true model and s′

t

is another latent model with probability P (s′
t|ht).

4.3 Recommendation rule

Both algorithms recommend the best arm in the state most believed to be correct in a given instance, so the
recommendation rule is âτ = arg maxa∈A µa,x,ŝτ where ŝτ is the most probable state under the posterior, as
defined in Algorithm 1.

4.4 Stopping rule

It is natural to stop search at t when we are confident enough that the recommended arm ât is optimal under
the posterior over latent states. Since we assume to have access to the full posterior over S, we can use the
simple stopping rule

τ := min
t
{t : Zt ≥ 1− δ} where Zt =

∑
s

P (s|ht)1[ât = a∗
x,s] (5)

and the threshold 1 − δ is the desired confidence level. Whenever this rule is satisfied, so is Chernoff’s
stopping rule based on a threshold log( 1−δ

δ ) on the log-likelihood ratio between states, as used by Garivier
and Kaufmann (2016). See the proof of proposition 2 in appendix A.2 for a derivation.

In many applications, it us sufficient to identify a action which is ϵ-optimal with respect to the best possible
action in the true latent state. We can accommodate this in our algorithm by redefining the set of alternative
states s′ to include only those for which the optimal arm in s is more than ϵ worse than the optimal arm in s′,

Altx(s) := {s′ : µa∗
x,s,x,s′ < µ∗

x,s′ − ϵ} .

This change involves only a minor modification to the stopping criterion in equation 5 and could also be used
in the Divergence explorer sampling rule.

5 Upper bound on the expected stopping time of LLPT explorer

Next, we show that the lower bound derived in Section 3 is matched by an upper bound on the stopping time
for the LLPT Explorer algorithm in the high-confidence limit, δ → 0. Similar to the lower bound, we make
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the simplifying assumption that each latent state has a unique optimal arm, shared with no other states,
Altx(s) = S \ {s}. As a consequence, finding the optimal arm equates to finding the true underlying state.
We have the following result.
Proposition 2. Let τ be the stopping time of LLPT Explorer ϕ, as defined in Algorithm 1. With s the true
state and C∗(s, x) the optimum in equation 3 with the ρ-term removed, there is a constant α > 0 such that

lim
δ→0

Eϕ[τ | s, x]
log(1/δ) ≤ α

C∗(s, x) . (6)

Proof summary. The proof combines and expands arguments from Garivier and Kaufmann (2016) and
Chernoff (1959) to show that after sufficently many samples, a) the true latent state is identified, b) the
tracked proportions are near optimal for the identified state, c) the probability that the stopping criterion
is not satisfied decays exponentially quickly. As a result, the expected stopping time can be bounded using
concentration arguments. For a proof, see appendix A.2.

As stated, proposition 2 applies to the LLPT Explorer, as defined in Algorithm 1, in which the MAP state ŝt is
used for tracking. We have also implemented a slight variation of LLPT with a sampled state ŝt ∼ p(s|ht) and
found that the latter worked slightly better empirically. We report only results for the version in Algorithm 1.

Similarly to the lower bound, we obtain an upper bound on the population search time by taking the
expectation of equation 6 with respect to S and X.
Remark 2. Comparing the result in equation 6 to bounds for pure-exploration without latent variable models;
e.g., Russo (2016); Garivier and Kaufmann (2016), superficially, they appear very similar. However, the
critical quantity in the classical setting is the smallest separation of reward means for alternative, free vectors
of arm parameters. Here, the equivalent quantity is the set of parameters of the discrete latent states, which
is generally much smaller than the set of free parameters, leading to a tighter bound.

More precisely, the sample complexity term C∗(s, x) shrinks when we have knowledge of the latent state
structure because the set of plausible alternative parameters Altx(s) is smaller compared to the case with no
structure in, for example, Garivier and Kaufmann (2016). In our case, Altx(s) comprises a finite set of
parameters, whereas the case where parameters are estimated online without latent structure corresponds to
an infinite set of alternative parameters. As a result, the worst-case (supremum) over alternative parameter
sets shrinks, as do the lower and upper bounds on the stopping time.

6 Experimental study

We evaluate our proposed algorithms in a series of experiments, comparing them to baseline algorithms for
fixed-confidence pure exploration.

6.1 Baseline algorithms

Previous work incorporating latent states in pure exploration was not available at the time of writing, so
to get comparable baselines, we adapted the Top-Two Thompson Sampling (TTTS) rule (Russo, 2016) to
compare to our algorithms.

Top-Two Thompson Sampling (TTTS) TTTS operates with the goal of estimating parameters Πt

(e.g., mean vectors of arms with Gaussian distribution) that yield the best arm for a given confidence level
1− δ. It proceeds as follows; at each time step t either; (i) with probability p, sample a parameter vector
θt ∼ Πt and play the arm at

(1) = arg maxa∈A θt or (ii) with probability 1− p resample θt
′ ∼ Πt until it gets

and subsequently plays arm at
(2) ̸= at

(1). We implemented the T3C (Shang et al., 2020) variant of TTTS
which finds at

(2) ̸= at
(1) faster. TTTS does not make use of a latent variable model.

TTTS-Latent Explorer This is an adaptation of TTTS to our setting where, instead of estimating arm
parameters, the goal is purely to identify the latent state. It does not account for the case where there is
a shared optimal arm over different states which is accounted for in the LLPT and Divergence Explorer.
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At each time step t, the sampling rule samples a latent state s
(1)
t ∼ Pt(s|ht) and either (i) with a Bernoulli

parameter p evaluates the latent state, st = s
(1)
t or (ii) with a Bernoulli parameter 1− p resamples Pt(s|ht)

until it gets a latent state st = s
(2)
t ̸= s

(1)
t . It then plays the arm At = arg maxa∈A µa,x,st

.

Greedy Explorer This is a naïve sampling rule which plays the reward-optimal arm in a state sampled
from the current posterior, akin to TTTS-Latent but without the re-sampling step. At each time t, it picks
st = arg maxs p(s|ht) and then plays the locally reward-maximizing arm At = arg maxa∈A µa,x,st . It is
naïve in the sense that it only considers the rewards from a state, but this is not always informative for
distinguishing alternative states. It also corresponds to standard Thompson Sampling (Thompson, 1933)
which has been shown to perform poorly for pure exploration tasks, hence the motivation for TTTS.

6.2 Experimental environment

As treatment personalization task, we use the Alzheimer’s Disease Causal estimation Benchmark (ADCB)
environment (Kinyanjui and Johansson, 2022). In this environment, simulated subjects go through cognitive
decline, eventually progressing into Alzheimer’s disease. Outcomes Yt represent their cognitive abilities and
treatments At are symptomatic, affecting only immediate outcomes. Both treatment responses and an initial
33-dimensional observed context X ∈ Rd, are affected by a latent state S, representing the disease subtype.

In the ADCB environment, the number of actions is K = 8 and the number of latent states, S = 6. The
outcome Yt at time t is generated as Yt(A, X, S) := Φ(X, S) + ∆(At, S) + ξ, where ξ ∼ N (0, σ2) and Φ is an
non-linear function fit to real data to model the cognitive function of subjects when not treated. For the
environment we are using, Φ is a Random Forest Regressor fit to observed outcomes of untreated patients.
∆ is a function that is defined to moderate the heterogeneity of simulated treatment effects over the latent
dimensions. Here, ∆ := υ1S + 1S(ηυβT ) where υ ∈ RK is the average treatment effect of the treatments,
η > 0 is a heteregoneity scaling parameter, and β ∈ RK×S is a factor matrix whose rows sum to 0.

We define two alternative reward settings (see below), both with Gaussian rewards, based on the ADCB
outcomes of treatments, Y . We give algorithms which make use of latent variables perfect knowledge of the
true latent variable model, as defined by the simulator. Hence, for each context x ∈ Rd, latent state s ∈ [S]
and action a ∈ [K], the corresponding posterior p(s | ht) and reward means, µa,x,s are known.

Reward setting 1: Non-contextual rewards Here, for each latent state we define the reward R :=
−(Y (A, X, S)− Y (0, X, S)). From the definition of the outcome Y above, this removes the effect of context
from the reward, by cancelling Φ(X, s), and takes us closer to a typical best arm identification setting with
additional latent state structure, where the structure is given by ∆. In appendix B.1, Figure 5(a) shows the
structure of the mean rewards µa,x,s under the different latent states s ∈ S, a ∈ K for this setting.

Reward setting 2: Contextual rewards Here, we define the reward R := −Y (A, X, S), thus preserving
the effect of context in the reward. As seen from appendix B.1, Figure 5(b), which is an example of the mean
rewards structure µa,x,s s ∈ S, a ∈ K for some given context x, the reward structure stays the same as in
the previous setting, but the scale is shifted depending on the context. The similarity is a property of the
environment. The results presented in the results section below are for this setting, and those of setting 1
above are appended in the supplementary materials.

Repeated experiments Each experiment proceeds as follows; A new patient is sampled from the envi-
ronment (sampled patients have potentially different latent states and contexts). The algorithms do not
observe the latent state and they proceed as described in Section 4 and Section 6.1. For a run, all algorithms
are provided with the same context. All results are presented for 100 different patients and averages are
computed for the different quantities compared. Errorbars represent the standard deviation across patients.

Evaluation metrics We compare empirical estimates of the expected stopping time E[τ ], convergence of
the posterior probability p(ŝt | ht) with t, and the average correctness level, E[1[âτ = a∗]], of the different
algorithms for i) different levels of confidence δ ∈ (0, 1/2) under a fixed noise level σ > 0 and ii) different levels

9



Published in Transactions on Machine Learning Research (04/2023)

of noise σ for a fixed δ. Results for correctness are presented in Figure 6 in the Appendix, and correspond
closely with the parameter δ.

6.3 Results

In Figure 2, we see an example of the drastic effect that incorporating latent structure can have on the
stopping time of pure-exploration algorithms. All latent-variable methods outperform the non-latent baseline
TTTS by a substantial margin.

0.7 0.8 0.9 0.95 0.99
1

0

50

100

150

200

E[
]

LLPT (With latent structure)
TTTS (No latent structure)

Figure 2: Using latent state structural information significantly reduces the expected number of trials E[τ ]
required to identify an optimal treatment with confidence at least 1− δ in a simulator of Alzheimer’s disease
progression.

Moreover, in Figure 3a, we see that, even for the worst-case instances, the LLPT algorithm is faster than
the average for standard TTTS observed in Figure 2. This supports our hypothesis that exploiting latent
structure between instances (patients), which could be estimated from historical data, contexts, is useful to
design sample-efficient pure-exploration algorithms.

In the graph of latent state posterior convergence, Figure 3b, we see that LLPT Explorer and Divergence
Explorer converge quicker in their belief of the inferred latent state. We also observe less variance across
bandit instances (shaded area) compared to the Greedy and TTTS-Latent baselines. The implication for this
is that these algorithms stop exploration earlier thus attaining our goals outlined in Section 2.

In Figure 3c, we study the average stopping time, Ê[τ ] for all algorithms with access to the same latent variable
model, under changing certainty level 1− δ. LLPT Explorer and Divergence Explorer are consistently more
efficient than baselines, demonstrating benefit of the insights derived from the lower bound in proposition 1.
The difference is especially pronounced in the high-certainty regime, δ ≈ 0, which is the regime that would be
ideal for safety-critical healthcare applications. Interestingly, we find that the Divergence Explorer performs
consistently better than the LLPT Explorer and its average stopping time approaches the lower bound as
δ → 0. We believe this is due to selecting actions based on comparison with alternative states on average
under the current posterior, rather than the worst-case alternative state - some latent states are ruled out by
the posterior and no longer affect the action selection of the divergence explorer.

Studying our algorithms with respect to noise in the rewards, Figure 3d, shows that our proposed methods
are also more robust to noise compared to the baseline algorithms. At σ = 10, which is comparable to the
marginal standard deviation of rewards due to X and S, we see that our algorithms perform better. We also
observe that they are also more robust to over- and under-estimation of the noise level in the rewards as
shown by E[τ ] at other noise levels.

7 Related work

The problem of finding optimal decisions under uncertainty has a long history (Thompson, 1933; Chernoff,
1959; Gittens and Dempster, 1979; Jennison et al., 1982; Lai and Robbins, 1985; Glynn and Juneja, 2004)
and has recently been studied as a pure exploration problem in the multi-armed bandit framework under

2The small discrepancy seen in the case where σ = 1 is due to the exclusion of the ρ term in the computed lower bound.
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(a) Density of stopping times under LLPT(ours) showing
worst-case latent state (δ = 0.01, Number of patients, N =
10, 000). The variance of the stopping time under all the
latent states is reasonably low. The higher stopping times
can be attributed to the worst-case latent states, though they
are still reasonably low.
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(b) Comparison of posterior convergence of the different al-
gorithms [δ = 0.01, Number of patients, N = 100]. The
posteriors for our algorithms, LLPT Explorer and Divergence
Explorer, concentrate more quickly.
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(c) Comparison of stopping time vs confidence (1 − δ) for the
algorithms. Our algorithms, LLPT Explorer and Divergence
Explorer, have stopping times that are consistently lower.
The dashed line shows the lower bound from Proposition 1.
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(d) Comparison of stopping time vs noise for the algorithms
Our algorithms, LLPT Explorer and Divergence Explorer,
are consistently more robust to noisy rewards compared to
the baselines. The dashed line shows the lower bound from
Proposition 1.2

Figure 3: Selected results from our experimental study.

various assumptions(Even-Dar et al., 2006; Bubeck et al., 2009; Jamieson et al., 2013; Kaufmann et al., 2016;
Garivier and Kaufmann, 2016; Jedra and Proutiere, 2020; Wang et al., 2021; Agrawal et al., 2021; Tirinzoni
and Degenne, 2022).

The work of Garivier and Kaufmann (2016) is the first to introduce an optimal algorithm, Track and Stop, in
the fixed confidence setting for classical multi-armed bandits and our LLPT Explorer takes inspiration from
their algorithm, adapting it to the latent bandit setting. Russo (2016) introduces a class of top-two sampling
strategies for the pure-exploration problem, which we here use as baselines. These top-two algorithms were
originally analyzed using a different performance measure but have recently been theoretically analyzed in
the fixed-confidence setting by Jourdan et al. (2022). Our work is also related to (Maillard and Mannor, 2014;
Zhou and Brunskill, 2016; Hong et al., 2020a;b), who study regret minimization in latent bandits, in contrast
to our work which studies the pure-exploration problem in latent bandits.

Kato and Ariu (2021) studied pure exploration in contextual bandits, where a new context is observed at
each time point, and found that contextual information improves the speed at which the average treatment
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effects (Imbens and Rubin, 2015) of actions across contexts can be estimated. Our problem is related to this
setting but differs in that we see only a single context x per bandit instance, and are interested in the effects
of actions for this specific x, not on average. Håkansson et al. (2020) studied fast search for near-optimal
treatments, based on a model learned from historical trajectories, but did not consider online learning. In
their setting, an optimal search strategy can be found by solving a dynamic programming problem in an
estimated discrete state space. This is not feasible here due to the high dimensionality of our history, H.

8 Discussion & conclusion

In this work we have studied the problem of finding the optimal arm in latent bandits using as few trials as
possible. We have empirically and theoretically shown that our proposed algorithms are able to leverage
the latent structure in a near-optimal way to substantially reduce the expected stopping time compared to
available baselines. Our empirical evaluation in a simulator of Alzheimer’s disease derived from real-world
data, demonstrated that our algorithms are able to find the optimal treatment in just a few trials.

Our analysis is limited to the case in which the latent variable model is given and exact. When forced to
estimate the model from historical data, sensitivity to misspecification or misestimation becomes a concern.
Hong et al. (2020a) analyzed latent bandits in regret minimization when the reward model is misspecified but
the resulting bound suffers linear regret scaled by the error, and Hong et al. (2022) provided an improved
sub-linear regret bound for this with additional assumptions on the reward structure. In the pure-exploration
setting, recovering quickly from misspecification is even more critical since the time scale is shorter. We
conjecture that an informative guarantee in the misspecified case will similarly require additional assumptions
on the reward structure or additional sources of data. We believe the setting where a learner needs to recover
the true model up to some pre-specified precision is an interesting direction for future work. Another useful
generalization would be to go beyond the analysis of expected rewards. In high-stakes applications, it is
desirable to manage also the risk of worst-case low-probability events, see e.g., Tamkin et al. (2019). This
would further increase the suitability of our approach for the medical domain.
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Appendix

A Proofs

Our objective can be written as follows

minimize
ϕ

EHτ ,S,ϕ[τ ] (7)

subject to P (µâτ ,x,s < µ∗
x,s | X = x, S = s) ≤ δ, ∀x, s

A.1 Lower bound

Recall the definition of Altx(s), given a latent state s we define the set of alternative latent states as

Altx(s) := {s′ ∈ S : arg max
a

E[r|s, x, a] ̸= arg max
a

E[r|s′, x, a]}. (8)

Proof of lemma 1

Recall the statement of lemma 1, Given a latent state s and context x, any δ-PAC algorithm ϕ will satisfy∑
a

Eϕ[Na|x, s]KLR,a,x
s,s′ + ρ(x; s, s′) ≥ kl(δ||1− δ). (9)

Proof. Let Ht denote the history up to time t. The expected log-ratio between s and s′ ∈ Altx(s) under the
latent state s and algorithm ϕ can be written as

Eϕ[Lt(s, s′)|x, s] = Eϕ

[
log p(Ht|s)

p(Ht|s′) |x, s

]
(10)

= Eϕ

[
ρ(x; s, s′) +

t∑
i=1

log p(ri|s, at, x)
p(ri|s′, at, x) |x, s

]
(11)

= ρ(x; s, s′) +
K∑

a=1
Eϕ[Na|x, s]KLR,a,x

s,s′ (12)

where the last step follows from the KL-divergence decomposition, see Lemma 15.1 in (Lattimore and
Szepesvári, 2020). Further, by definition we have

KL(pϕ(Ht|x, s) ∥ pϕ(Ht|x, s′)) = Eϕ[Lt(s, s′)|x, s] (13)

and using the information-processing inequality (Thomas M. Cover, 2005), as in (Kaufmann et al., 2016)
yields

Eϕ[L(s, s′)|x, s] ≥ kl(δ||1− δ) (14)

where kl(δ||1− δ) is the KL-divergence between two Bernoulli variables with mean δ and 1− δ.

Proof of proposition 1

Proof. This proof follows the same line as the proof for the general lower bound in (Kaufmann et al., 2016).
The main difference is that we, due to lemma 1, get a dependence on the context distribution, p(X|s), in the
lower bound.

From lemma 1 we have

ρ(x; s, s′) +
K∑

a=1
Eϕ[Na|x, s]KLR,a,x

s,s′ ≥ kl(δ||1− δ),∀x and ∀s′ ∈ Altx(s). (15)
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Equation 15 gives a necessary condition which any δ-PAC algorithm needs to obey and we can simply
minimize Eϕ[τ |x, s] w.r.t. this constraint. Note that this yields a LP with finite constraints since the set of
all latent states is finite. Hence, we get the following optimization problem

minimize
ϕ

Eϕ[τ |x, s]

subject to
K∑

a=1
Eϕ[Na|x, s]KLR,a,x

s,s′ + ρ(x : s, s′) ≥ kl(δ||1− δ); ∀s′ ∈ Altx(s)

We introduce

γx,a := E[Na|x, s]
kl(δ||1− δ) (16)

and solving the above optimization problem is equivalent to solving

minimize
γx,a≥0

∑
a

γx,a

subject to
∑

a

γx,aKLR,a,x
s,s′ + ρ(x; s, s′)

kl(δ||1− δ) ≥ 1, ∀s′ ∈ Altx(s).
(17)

Let γ∗
x,a be a optimal solution, then

E[τ |x, s] =
∑

a

E[Na|x, s] ≥ kl(δ||1− δ)
∑

a

γ∗
x,a (18)

and by defining 1/Cδ(s, x) =
∑

a γx,a we get

E[τ |x, s] ≥ kl(δ||1− δ) 1
Cδ(s, x) . (19)

A.2 Upper bound on sample complexity for tracking rule

Let τ represent the (random) stopping time with certainty parameter δ. Further, let Lt(s, s′) represent the
log-likelihood ratio of t samples under model s and s′,

Lt(s, s′) = ρ(xi; s, s′) +
t∑

i=1
zi(s, s′) where

t∑
i=1

zi(s, s′) := log p(ri | S = s, A = ai)
p(ri | S = s′, A = ai)

(20)

and
ρ(xi; s, s′) = log p(xi | S = s)

p(xi | S = s′) .

Next, let the optimal worst-case playing proportions w∗
x,a(s) = γ∗

x,a/
∑

b γ∗
x,b in an observed context x under

an assumed true state s be given by the optimizers γ∗
x,a of equation 17.

When the context X is constant, the second term in the constraint vanishes and the γx,a parameters is
independent of x.
Proposition. The LLPT algorithm ϕ (Algorithm 1) which a) selects actions by tracking proportions w∗

a,x(ŝt) ∝
γ∗

a,x(ŝt), where γ∗
a,x(ŝt) are the solution to equation 17 with δ = 0 and ŝt is the MAP state at time t, and b)

stops according to the stopping rule in Section 4.4, satisfies, with s the true state, and a constant α > 0,

lim
δ→0

Eϕ[τ |s, x]
log(1/δ) ≤

α

C∗(s, x) .
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Proof. We make an adaptation of the proof of Lemma 2 in (Chernoff, 1959) to tracking algorithms with
an initial observed context. Let ai be actions drawn according to a tracking rule which selects actions
according to a concentrating parameter (in our case ŝt concentrates to s and we track w∗

a,x(ŝt)), and let
Na(t) =

∑t
i=1 1[ai = a]. Then, by Lemma 17 in (Garivier and Kaufmann, 2016), for any ζ := ζx(s), there

exists a Tζ such that for T ≥ Tζ , we have

∀t ≥
√

T : max
a

∣∣∣∣Na(t)
t
− w∗

x,a(s)
∣∣∣∣ ≤ 3(K − 1)ζ .

Now, let T0 = inft{t : ∀t′ ≥ t, ŝt′ = s} be the smallest number of samples such that for more samples, the
estimated latent state will be correct. This bound exists, and is reached exponentially fast, by Lemma 1
in (Chernoff, 1959):

p(T0 > t) ≤ Ke−bt .

Next, let Ts′(δ) = inft{t : ∀t′ ≥ t, Lt′(s, s′) > log( 1−δ
δ )} be the shortest time after the log-likelihood ratio

exceeds log( 1−δ
δ ) w.r.t. comparison between s and s′. Whenever the stopping criterion in Section 4.4 is

satisfied with parameter δ, so is this. We can see this by noting that if p(S = s | ht) > 1− δ for some s, then
p(S = s′ | ht) < δ for s′ ̸= s. Hence,

log p(S = s | ht)
p(S = s′ | ht)

= Lt(s, s′) > log
(

1− δ

δ

)
.

It follows that,
τ ≤ max(max

s′ ̸=s
Ts′(δ), T0, Tζ) .

We have from lemma 1 in (Chernoff, 1959) that there exist constants K and b such that

p(T0 > t) ≤ Ke−bt .

Hence, to show that the stopping time is bounded by t, it is sufficient to show that for each alternative state
s′ ̸= s, and sufficiently large t, there are constants K = K(ϵ, s′), b = b(ϵ, s′), such that

p(Ts′(δ) > t) ≤ Ke−bt .

If the result holds for t > α log( 1−δ
δ )/C∗

δ (s, x), we have our result by a simple argument.

For ζ > 0, define W ζ = {w:= wx,a(s) ∈ [0, 1]K : ∥w∥1 = 1, ∥w − w∗
x,a(s)∥∞ ≤ 3(K − 1)ζ} to be the set

of playing proportions ζ-close to w∗
x,a(s). Now, define the ζ-worst-case playing proportions wζ(s) as the

optimizers of Cζ(s, x) = minw∈W ζ mins′
∑

a wx,aKL(µa,x,s, µa,x,s′).

Consider Lt(s, s′) as defined in equation 20. Add and subtract both KLR,ai,x
s,s′ := KL(µai,x,s, µai,x,s′) and

KLR,wζ ,x
s,s′ := Ea∼wζ(s)[KL(µa,x,s, µa,x,s′)] from term i in the sum,

Lt(s, s′) =
t∑

i=1

[
zi(s, s′)−KLR,ai,x

s,s′ + KLR,ai,x
s,s′ −KLR,wζ ,x

s,s′ + KLR,wζ ,x
s,s′

]
+ ρ(x; s, s′)

=
t∑

i=1

[
zi(s, s′)−KLR,ai,x

s,s′

]
︸ ︷︷ ︸

(a)

+
t∑

i=1

[
KLR,ai,x

s,s′ −KLR,wζ ,x
s,s′

]
︸ ︷︷ ︸

(b)

+ tKLR,wζ ,x
s,s′︸ ︷︷ ︸
(c)

+ ρ(x; s, s′)︸ ︷︷ ︸
(d)

.

Starting with term (a), by definition, for any time point i, by definition of the KL-divergence,

E[zi(s, s′)] = ER

[
log p(R | S = s, X = x, A = ai)

p(R | S = s′, X = x, A = ai)
| S = s

]
= KLR,ai,x

s,s′ .
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Hence, for any ϵ1 > 0, (
∑t

i=1[zi(s, s′) − KLR,ai,x
s,s′ ] + ϵ1) has positive mean and finite moment generating

function for moments k ∈ [−1, 0] for any ai and s′ ̸= s. As a result, there exists k∗ < 0 and b1 > 0, depending
on ϵ1, such that for any trial i,

E[ek∗[zi(s,s′)−KLR,ai,x

s,s′ +ϵ1]] ≤ e−b1 .

Following the proof of Lemma 1 in (Chernoff, 1959), we have,

E
[
e

k∗[
∑t

i=1
[zi(s,s′)−KLR,ai,x

s,s′ +ϵ1]
]
≤ e−b1t

and, as a result,

p

(
t∑

i=1
[zi(s, s′)−KLR,ai,x

s,s′ ] < −ϵ1t

)
≤ e−b1t .

For term (b), it follows from the definition of wζ , Tζ and Cζ that, for any t ≥ max(Tζ , T0), ŝt = s and
∥w(t)− w∗(s)∥∞ ≤ 3(K − 1)ζ. Hence,

t∑
i=1

[KLR,ai,x
s,s′ −KLR,wζ ,x

s,s′ ] ≥ 0 .

In other words, after we have collected more than Tζ samples, we will have more information than the
ζ-worst-case rule for s. For term (c), by definition of Cζ , for any s′, KLR,wζ ,x

s,s′ ≥ Cζ(s, x).

Combining the previous results, noting that term (d) is a constant, for any s′ and any ϵ3 > 0 and appropriately
chosen K4, b4, we get that for t ≥ max(T0, Tζ),

p
(
Lt(s, s′) < t[Cζ(s, x)− ϵ3]

)
≤ K4e−b4t .

For t > log( 1−δ
δ )/(Cζ(s, x)− ϵ3), we thus have

p(Ts′ > t) ≤ K4e−b4t .

For any positive random variable T , we have the identity,

E[T ] =
∫ ∞

0
p(T > t)dt .

Hence,
E[Ts′ ] ≤ t0 +

∫ ∞

0
p(T ′

s > t)dt ≤ t0 + K4/b4

and so we can let t0 ≥ T0 + Tζ + log( 1−δ
δ )/(Cζ(s)− ϵ3) + K4/b4.

Next, we study the high-certainty limit δ → 0. We note first that as δ → 0, log( 1−δ
δ ) → log(1/δ). When

δ → 0, the influence of the term ρ(x; s, s′) in equation 3 vanishes and the C∗
δ (s, x) converges to

C∗(s, x) = min
γx,a≥0

∑
a

γx,a (21)

s.t.
∑

a

γx,aKLR,a,x
s,s′ ≥ 1, ∀s′ ∈ Altx(s)

by the continuity of linear programs (Dragomirescu and Bergthaller, 1966). Thus, if we let ζ → 0, we have
Cζ(s, x)→ C∗(s, x). We get,

lim
δ→0

E[τ | x]
log 1/δ

≤ 1
(C∗(s, x)− ϵ3) .

Refactoring, we get the desired result.
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B Additional experiments and results

B.1 Reward Structure
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Figure 4: Structure of the means µs,a under different latent states. (a) Non-contextual rewards and (b)
Contextual rewards

B.2 Outcome Distribution

Shown in Figure 5 below.
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Figure 5: Distributions of treatment outcomes under two different latent states showing that the outcomes
are approximately gaussian

B.3 Correctness Results

Shown in Figure 6 below.
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Figure 6: Correctness levels under (a) Varying δ levels; Dotted line marks the desired correctness level (b)
Varying σ levels with δ = 0.01
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