Under review as a conference paper at ICLR 2021

A DEFINITIONS

Definition 6. A function ¢ is Lipschitz continuous with constant G > 0, if
[£(z) = £(y)| < Gllx = yll2
forall z,y.

B OTHER PROPERTIES OF DIFFERENTIAL PRIVACY

Definition 7 (Renyi Differential Privacy (Mironov, 2017)). We say a randomized algorithm M is
(a, €(«))-RDP with order « > 1 if for neighboring datasets D, D',

Da(M(D)[M(D')) = ——

RDP inherits and generalizes the information-theoretical properties of DP.
Lemma 8 (Selected Properties of RDP (Mironov, 2017)). If M obey € (-)-RDP, then

1. [Indistinguishability] For any measurable set S C Range(M), and any neighboring D, D’

a—1
@,

e @PrM(D') € S]a=1 < Pr[M(D) € S] < e““Pr[M(D’) € 8]
2. [Post-processing] For all function f, €jop(-) < epm(-).
3. [Composition] e a, r,) (1) = enm, () + emo (4)-

This composition rule often allows for tighter calculations of (e, §)-DP for the composed mechanism
than the strong composition theorem in (Kairouz et al., 2015). Moreover, we can covert RDP to
(e, 9)-DP for any § > 0 using:

Lemma 9 (From RDP to DP). If a randomized algorithm M satisfies (c, e(«))-RDP, then M also
satisfies (e(a) + %, 0)-DP for any § € (0,1).

C DP-FEDAVG ALGORITHMS

In this section, we provide two kinds of DP-FedAvg algorithms. Algorithm 3 is from (Geyer
et al., 2017), where noise is added at the server. To prevent the adversary from tapping the network
messages, we extend Algorithm 3 to Algorithm 5. Both algorithms ensure the same agent-level DP
guarantees. When we refer to DP-FedAvg, it corresponds to the version in Algorithm 5.

D MORE DISCUSSIONS OF CHALLENGES FOR GRADIENT-BASED FL

Proposition 10. Let the objective function of agents fi, ..., fx obeys that f; is piecewise linear
(which implies that the global objective F' = % Zi\; fi is piecewise linear) and G-Lipschitz. Let
7 be the learning rate taken by individual agents. Then the outer loop FedAvg update is equivalent
to 0 = 6 — Eng for some g € R?, where (a) g = VF(#) if @ is in the v interior of the linear region
of fi,....fx and E < v/(nG); (2) g is a Clarke-subgradient > of F' at 6, if § is on the boundary
of at least two linear regions and at least v away in Euclidean distance from another boundary and
E < v/(nG); (c) otherwise, we have that [|g — VF'(0)|2 < EnG. Moreover, statement (c) is true
even if we drop the piecewise linear assumption.

Proof. For the Statement (a), observe that for all 6’ such that ||¢’ — 6]] < v neighborhood, we
have that Vf;(0") = V f;(#). When E < v/(nG), the cumulative gradients of agent i is equal to
EV f;(0). For Statement (b), notice that the Clarke subdifferential at 6 is the convex hull of the

2Clarke-subgradient is a generalization of the subgradient to non-convex functions. It reduces to the stan-
dard (Moreau) subgradient when F' is convex.
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Algorithm 3 Standard DP-FedAvg (Geyer Algorithm 5 DP-FedAvg (extend)

et al., 2017) . — Input: Agent selection probability
Input: Agent selection probability ¢ € ¢, noise scale o, clipping threshold
(0,1), noise scale o, clipping threshold ¢
S. )

I+ Initialize elobal model §° 1: Initialize global model 6°
+ Initialize global mode 2 for £ =0,1,2,..., T do

2: for t=0,1,2,....,T do 3.

. my < Sample agents with ¢
3:  my < Sample agents with ¢

.S 4:  for each agent ¢ in parallel do
4:  for eflch agent ¢ in para_llel do 5. At = NoisyUpdate(i, 0%, t, o, my)
5 A} = LocalUpdate(s, 6°, t) 6. end for
6: end for t 7 Al — ZZ‘O Ait
7 A=Y (Aﬁ/max(l, ) 8 Ol =g+ LA
9: end for

8 O =0"+ (AP + N(0,0%5%))
9: end for

Algorithm 6 NoisyUpdate(i, 0°, t, o, m;)

0« 0°

0 « E iterations SGD from 6°
0—6°;

At = (0 —6°)/ max(1, =T 12)

return update A;" + N (0, 02582 /my)

Algorithm 4 LocalUpdate(i, 6, t)

1: 6« 0°
2: 0 « E iterations SGD from 6°
3: return update A;" = 6 — °

Ll S

one-sided gradient, thus as we move along the negative gradient direction in the inner loop, we enter
and remains in the linear region. Thus the update direction is

% > EnV fi(0) + > ngi + (E =1V fi(0 —ngi)

i s.t. f; is differentiable at @ s.t. f; is not differentiable at 0

for all g; such that it is a Clarke-subgradient of f; it can be written as a convex combination. The
proof is complete by observing that the 1/N ). is also a convex combination and by multiplying
and dividing by F. Statement (c) is a straightforward application of the Lipschitz property which
says that F steps can at most get you away for nEG and clearly piecewise linear assumption is not
required. O

This proposition says that in almost all 6, increasing F has the effect of increasing the learning rate
of the subgradient “descent” method for piecewise linear objective functions; and increasing the
learning rate of an approximate gradient method in general for Lipschitz objective functions. It is
known that for the family of G —Lipschitz function supported on a B-bounded domain, any Krylov-
space method * has a rate of convergence that is lower bounded by O(BG/ VT ) if running for T'
iterations. A close inspection of the lower bound construction reveals that the worst-case problem
is mingepr max; 0; + ||0]|?, namely, a regularized piecewise linear function. This is saying that the
variant of FedAvg that aggregates only the loss-function part of the gradient or projects only when
synchronizing essentially requires £2(1/a?) rounds of outer loop iterations (thus communication) in
order to converge to an « stationary point, i.e., increasing E does not help, even if no noise is added.

E DATA-DEPENDENT PRIVACY ANALYSIS

E.1 PRIVACY ANALYSIS

Theorem 11 (Restatement of Theorem 3). Let PATE-FL and Private-kNN-FL answer QQ queries
with noise scale o. For agent-level protection, both algorithms guarantee (o, Qav/(202))-RDP for
all « > 1. For instance-level protection, PATE-FL and Private-kNN-FL obey (o, Qa/o?) and
(o, Qa/ (ka?))-RDP respectively.

3One that outputs a solution in the subspace spanned by a sequence of subgradients.
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Proof. In PATE-FL, for query z, by the independence of the noise added, the noisy sum is identically
distributed to Zfil fi(z) + N(0,0?). Adding or removing one data instance from will change
Ziil fi(x) by at most /2 in L2. The Gaussian mechanism thus satisfies («, as?/202)-RDP on the
instance-level for all o > 1 with an L2-sensitivity s = V/2. This is identical to the analysis in the
original PATE (Papernot et al., 2018).

For the agent-level, the L2 and L1 sensitivities are both 1 for adding or removing one agent.

In Private-kNN-FL, the noisy sum is identically distributed to £ 3™~ | Z?Zl Yi.j + N(0,0?). The
change of adding or removing one agent will change the sum by at most 1, which implies the
same L2 sensitivity and same agent-level protection as PATE-FL. The L2-sensitivity from adding
or removing one instance, on the other hand changes the score by at most 1/2/k in L2 due to that
the instance being replaced by another instance, this leads to an an improved instance-level DP that

reduces € by a factor of \/g .

The overall RDP guarantee follows by the composition over ) queries. The approximate-DP guaran-

tee follows from the standard RDP to DP conversion formula e(«) + % and optimally choosing
o. O

E.2 IMPROVED ACCURACY AND PRIVACY WITH LARGE MARGIN

Let fi,..., fxy : X — A1 where A~ denotes the probability simplex — the soft-label space.
Note that both algorithms we propose can be viewed as voting of these teachers which outputs a
probability distribution in A®~. First let us define the margin parameter () which measures the
difference between the largest and second largest coordinate of +; Zf\; fi(x).

Lemma 12. Conditioning on the teachers, for each public data point x, the noise added to each
coordinate is drawn from N'(0, 02 /N?), then with probability > 1 — C exp{—N?y(x)?/80?}, the
privately released label matches the majority vote without adding noise.

Proof. The proof is a straightforward application of Gaussian tail bounds and a union bound over C'
N2y (a)?

coordinates. Specifically, P[Z;« < —vy(z)/2] < e s-2  for the argmax j*. For j # j*, P[Z; >

N2+(2)?2
v(x)/2] <e” o By a union bound over all coordinates C, we get that there perturbation from
the boundedness is smaller than () /2, which implies correct release of the majority votes. O

This lemma implies that for all public data point = such that v(z) > 27@5(0/5), the output label
matches noiseless majority votes with probability exponentially close to 1.
Next we show that for those data point  such that v(x) is large, the privacy loss for releasing

arg max; [+ Zf\; fi(z)]; is exponentially smaller. The result is based on the following privacy
amplification lemma that is a simplification of Theorem 6 in the appendix of (Papernot et al., 2018).

Lemma 13. Let M satisfy (2, €)-RDP, and there is a singleton output that happens with probability
1 — g when M is applied to D. Then for any D’ that is adjacent to D, Renyi-divergence

Da(M(D)[M(D)) < —log(1 - q) + log(1+¢"/?(1 — g)*tel*™e).

1
a—1
Proof. Let P, @ be the distribution of of M (D) and M(D’) respectively and F be the event that

the singleton output is selected.
EQl(dP/dQ)*] = Eq[(dP/dQ)"|E|Pq[E] + Eq[(dP/dQ)*1(E")

< (1= 0" + \/Bal(dP/dQ)20))\ B 1(F?

2a—1
< (1= q)~@D) 4 gt/2p2a=De/2 _ (1 _ gy~(a=1) (1 F (1= ) lgt2e™s e)

The first part of the second line uses the fact that event E' is a singleton with probability larger
than 1 — ¢ under @) and the probability is always smaller than 1 under P. The second part of the
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second line follows from Cauchy-Schwartz inequality. The third line substitute the definition of
(2, €)-RDP. Finally, the stated result follows by the definition of the Renyi divergence. O

Theorem 14 (Restatement of Theorem 5). The mechanism that releases arg max; [+ Zfil filx)+
N(0, (02 /N?)1)]; obeys (a, €)-data-dependent-RDP, where

N2y (2)? 1 (2a—1)02  N2~(x)2
e<Ce "s7 + log (1+e 22 16z TloeC )

a—1
where s = 1 for PATE-FL, and s = 1/k for Private-KNN-FL.

2. ()2
Proof. The proof involves substituting ¢ = C’e_% from Lemma 4 into Lemma 13 and use the
fact that M satisfies the RDP of a Gaussian mechanism from the RDP’s post-processing lemma.
The expression bound is simplified for readability using —log(1 — ) < 2z for all z > —0.5 and
that (1 —¢)* 1 < 1. O

As we can see, when given teachers that are largely in consensus, the (data-dependent) privacy loss
exponentially smaller.

F DATASETS AND MODELS

Here we provide full details on the datasets and models used in our experiments. To reduce the
privacy budget on global model training, we apply semi-supervised training on the Digit datasets,
while for other datasets, the global model is trained using labeled data only.

Hyperparameters. For DP-FedAvg, the hyperparameters include agent sampling probability g,
the noise parameter o, the clipping threshold S. We do a grid search on all hyperparameters, and
observe (S = 0.08,0 = 0.06) works best for the simple CNN (used in ablation study) and AlexNet.
The choice of ¢ depends on the number of agents and the task complexity. A smaller ¢ implies a
stronger privacy guarantee and a larger variance. We set ¢ = 0.05 for Digit dataset and ¢ = 0.04
for CelebA. The number of local iterations £ is another consideration. We empirically observe
E = 20 achieves beset trade-offs between privacy and accuracy. For all experiments, the learning
rate is 0.015, and we decay the learning rate through communication rounds, which leads to better
performance compared to the original implementation in (Geyer et al., 2017).

For DP-FedSGD, we train each local model using Noisy SGD (Abadi et al., 2016), where the privacy
parameters include batch size, the clipping threshold S, and the noisy scale o. After a grid search,
we use a batch size of 16 for Caltech dataset and 32 for DomainNet. We set the clipping threshold
S to 0.08 and tune the noisy scale based on a fixed privacy budget. To amplify the privacy guarantee
of DP-SGD using SMC, we set the number of local iteration £ = 1.

Dataset. We provide detailed information datasets here. For Office-Caltech and DomainNet-fruit,
we provide the number of images in each domain. An overview of DomainNet with seven selected
fruit classes is depicted in Figure 3. For Office-Caltech and DomainNet, we split 70% data from the
server domain as public available unlabeled data while the remaining 30% data is used for testing.

Details of Digit Datasets Evaluation We set the noise scale 0 = 25 for PATE-FL and 0 = 30
for PATE-FL+DA. The noise is set larger for PATE-FL+DA because there is a stronger consensus
among agent predictions, allowing larger noise level without sacrificing accuracy. Both PATE-FL
and PATE-FL+DA privately pseudo label 500 USPS data. Following PATE (Papernot et al., 2018), a
semi-supervised model is trained using both labeled and pseudo-labeled data via virtual adversarial
training (VAT) (Miyato et al., 2018). For DP-FedAvg, we clip the local update at each communi-
cation round to S = 0.08 and set the noise scale as 0 = 0.06. At each communication round,
we randomly sample agents with probability ¢ = 0.05. We apply ImageNet (Deng et al., 2009)
pre-trained AlexNet (Krizhevsky et al., 2012) for all Digit experiments.

Details of CelebA Datasets Evaluation For DP-FedAvg, we set (S = 0.08,0 = 0.06,¢ = 0.04).
Note that the global sensitivity depends on the number of attributes, in which we use the same
clipping technique in (Zhu et al., 2020) to restrict each agent’s prediction clipped to 7 attributions.
We set 7 = 4, 0 = 50 for PATE-FL. We apply AlexNet for all methods in this evaluation.
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Splits  Clipart Infograph Painting Quickdraw Real Sketch  Total

Total 938 1585 2274 3500 3282 1312 12891

Table 4: DomainNet with seven classes

Splits Amazon Dslr Webcam Caltech Total
Total 958 157 295 1123 2533

Table 5: Office-Caltech10

Office-Caltech Evaluation: Both AlexNet and Resnet50 are Imagenet pre-trained. For Private-
kNN-FL, we instantiate the public feature extractor using the network backbone without the classifier
layer. We set 0 = 15 for Private-kNN-FL with AlexNet and ¢ = 25 for ResNet50. The privacy is

calculated over all unlabeled data (71" is the number of shared data).

DomainNet Evaluation: We set 0 = 35 for Private-kNN-FL with ResNet50. 1" is the number of

shared data.

16



Under review as a conference paper at ICLR 2021

clp

rel

'-"- e
o s

pnt inf

qdr

Skt

Ulateomefon

sty @ Sl &
Grapes Watermelon Strawberry Pineapple Pear Apple Banana

Figure 3: An overview of DomainNet dataset with seven selected fruit classes.
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