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Abstract

While open-source vision-language models perform well on001
simple question-answering, they still struggle with com-002
plex questions that require heterogeneous vision capabili-003
ties. Unfortunately, we have yet to develop methods that004
infuse fine-grained recognition, visual grounding, depth es-005
timation, and 3D reasoning into a single vision-language006
model. Instead of forcing smaller models to learn both per-007
ception and reasoning, we propose LATTE, a family of008
vision-language models that have LeArned to Think wiTh009
vision spEcialists. By offloading perception to state-of-the-010
art vision models, our approach enables vision-language011
models to focus solely on reasoning over high-quality per-012
ceptual information. To train LATTE, we create and fil-013
ter a large dataset of 273K high-quality synthetic reasoning014
traces over perceptual outputs of vision specialists. LATTE015
trains on this data and brings significant gains across 6016
benchmarks covering both perception and reasoning abil-017
ities, compared to baselines instruction-tuned with direct018
answers. On the other hand, models trained by distill-019
ing both perception and reasoning from larger models lead020
to smaller gains or even degradation on some perception021
tasks. Further, our method results in a 2% to 5% improve-022
ment on average across all benchmarks over the vanilla023
instruction-tuned baseline regardless of model backbones,024
with gains up to 16% in MMVet.025

1. Introduction026

The landscape of real-world vision-language tasks is vast,027
spanning from basic visual question answering [1] and fine-028
grained object recognition to complex multi-step geomet-029
ric reasoning [24]. These tasks demand both perception030
and reasoning. For instance, a user might photograph a gas031
price panel and ask how much fuel they can afford within032
a given budget (Figure 1). Solving this requires a vision-033
language model with strong perception—localizing prices034
via OCR—and multi-step reasoning to compute the answer.035
While large proprietary models like GPT-4o excel due to036
extensive data and model size scaling, smaller open-source037
models still struggle [51].038

To narrow the gap between large proprietary models and 039
smaller open-source counterparts within a reasonable bud- 040
get, researchers have explored distilling both perception and 041
reasoning from larger vision-language models [64, 77] or 042
specialized vision models [25]. Despite these efforts, open- 043
source models continue to lag behind. 044

We argue that the primary reason for this lag is the per- 045
ception limitations of open-source vision-language models. 046
While open-source language models have largely caught up 047
with their proprietary counterparts [4, 31], vision remains 048
a complex fusion of heterogeneous capabilities. The com- 049
puter vision community has historically tackled these ca- 050
pabilities separately—e.g., DepthAnything [79] for depth 051
estimation and GroundingDINO [44] for object recogni- 052
tion—while unified models still lag behind [46]. Simi- 053
larly, the human brain dedicates distinct regions to cat- 054
egorical recognition (ventral stream) and spatial reason- 055
ing (dorsal stream)[19], with the reasoning and language- 056
processing frontal and temporal lobes occupying a smaller 057
volume[29]. By contrast, vision-language models remain 058
heavily skewed toward language, treating visual encoders 059
as an afterthought [15]. 060

We depart from the learning to perceive and reason 061
paradigm to propose a new approach: learning to rea- 062
son with vision specialists. Rather than expecting a small 063
model to master both perception and reasoning, we lever- 064
age decades of advancements in computer vision by relying 065
on specialized vision models to provide perceptual informa- 066
tion. This allows the vision-language model to focus exclu- 067
sively on acquiring perceptual information from vision spe- 068
cialists and reasoning over them—enabling it to ‘see further 069
by standing on the shoulders of giants.’ Such a paradigm re- 070
duces the burden on models to extract low-level perceptual 071
signals, allowing them to concentrate on higher-level rea- 072
soning while benefiting from the robust capabilities of ded- 073
icated vision specialists, which is particularly important for 074
small open-source models because of their limited capacity 075
to effectively learn both perception and reasoning. 076

To implement this paradigm, we curate high-quality 077
training data in the form of multi-step reasoning traces that 078
integrate perceptual information from vision specialists. We 079
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Mantis-LLaVA-7B: 3.6

LLaVA-OV: 5.2

Mantis-LLaVA: (A) 

LLaVA-OV: A. The boy can reach the book.

Q: How many gallons of supreme gasoline can 
I get with $50?

A: 13.7

t0: I need to extract the price of supreme gasoline from the image.

a0: OCR(image-0)


t1: The price of supreme gasoline is $3.65 per gallon...I need to 
divide $50 by $3.65.

a1: Calculate(“50 / 3.65”)


t2: The calculation shows that you can get approximately 13.7 
gallons of supreme gasoline with $50.

a2: Terminate(“13.7”)

o0: “Gasoline - Self Serve - Regular - 3.49 9/10 - Plus - 3.55 9/10 - 
Supreme - 3.65 9/10 - Diesel No. 2 - 3.60 9/10”



o1: 13.6986



LATTE  LATTE
t0: To determine if the boy can reach the highest book, I need to analyze the image for 
the boy's height and the height of the bookshelf.


Q: Can the boy reach the highest book? 

(A) Yes, (B) No

A: (B)    

a0: LocalizeObjects(image-0, ["boy", "bookshelf"])

o0: [{'label': 'boy', 'bbox': [0.07, 0.48, 0.18, 0.95], 
'score': 0.89}, 

{'label': 'bookshelf', 'bbox': [0.13, 0.01, 0.32, 0.72], 
'score': 0.72}]


t1: The boy's height is below the bookshelf, 
indicating he cannot reach the highest book.

a1: Terminate(“B”)

Figure 1. Example outputs of LATTE vs. SoTA multi-modal large language models. Our LATTE model is able to answer challenging
visual questions by reasoning over perceptual information output by vision specialists.

formulate the multi-step reasoning traces as LATTE-trace,080
where each step consists of: (1) a thought for verbalized081
reasoning; (2) an action to retrieve perceptual information082
from a specific vision specialist; and (3) an observation of083
the returned data. Since obtaining these traces at scale with084
human annotators is costly, we develop two data engines085
for synthetic data generation. First, we leverage GPT-4o’s086
strong multimodal reasoning and state-of-the-art vision spe-087
cialists’ precise perception to generate large-scale synthetic088
reasoning traces across diverse image sources, applying ag-089
gressive filtering and mixing techniques. Second, we gen-090
erate reasoning traces using Python programs and struc-091
tured reasoning templates, comparing them against GPT-092
generated traces to evaluate reasoning quality. In total, we093
produce over 1M reasoning traces across 31 datasets with094
GPT-4o and handcrafted programs.095

With this data, we finetune small multi-modal language096
models to reason with vision specialists and evaluate our097
models on 6 benchmarks covering both perception and rea-098
soning skills. We compare our model to two types of base-099
lines: (1) multi-modal language models trained with vanilla100
instruction tuning with only direct answers; and (2) models101
trained by distilling both perception and reasoning.102

Finally, we highlight four major takeaways from our ex-103
periments: First, learning to reason with vision specialists104
enables our model to outperform vanilla instruction-tuned105
baseline by significant margins on both perception and rea-106
soning benchmarks, with an overall average gain of 6.4%.107
By contrast, the other distillation methods lead to smaller108
gains or even degradation in the perception performance.109
This trend holds as we scale the training data. Second,110
our method consistently outperforms the vanilla instruction-111
tuned baseline by 2 − 5% on average across all bench-112
marks regardless of model backbones, with staggering per-113
formance gains of 10 − 20% on MMVet. Third, through114
data ablations, we confirm that the quality of LATTE-trace115
matters more than quantity: our best data recipe consists of116
only 293K LATTE-trace which GPT-4o generated and an-117

swered correctly, and it leads to larger performance gains 118
than all other data recipes of larger scales (up to 2x larger or 119
more). Finally, programmatically-generated LATTE-trace 120
can hurt model performance as a result of the worse reason- 121
ing quality, suggesting that again that high-quality reason- 122
ing is crucial to the model’s performance. 123

2. Learning to Think with Vision Specialists 124

Our goal is to train vision-language models to reason about 125
complex multi-modal tasks with the help of vision special- 126
ists. To train such models, we need reasoning traces that in- 127
volve (1) invoking vision specialists and (2) reasoning over 128
their outputs. We refer to such data as LATTE-trace. One 129
LATTE-trace T is a sequence of steps Si, where each step 130
consists of thought ti, action ai and observation oi: 131

T = (S0, S1, ..., Sn) = (Si)
n
i=0 (1) 132

Si = (ti, ai, oi), ti ∈ L, ai ∈ A (2) 133

where L represents language space, and A is the action 134
space consisting of vision specialists. Note that the model 135
only generates ti and ai, which the training loss is applied 136
on, whereas oi is obtained from the vision specialists. 137
Action space. The action space A of our model consists 138
of vision tools that are either specialized vision models or 139
image processing tools. Concretely, these include OCR 140
[27], GETOBJECTS [88], LOCALIZEOBJECTS [44], ES- 141
TIMATEOBJECTDEPTH [79], ESTIMATEREGIONDEPTH 142
[79], DETECTFACES [36], CROP, ZOOMIN, GETIMAGE- 143
TOTEXTSSIMILARITY [61], GETIMAGETOIMAGESSIMI- 144
LARITY [61], GETTEXTTOIMAGESSIMILARITY [61]. In- 145
spired by prior works on multi-modal tool use [21, 24, 43, 146
51, 70], we include a few additional tools to help with 147
reasoning: QUERYLANGUAGEMODEL, QUERYKNOWL- 148
EDGEBASE, CALCULATE, and SOLVEMATHEQUATION. 149
We also include TERMINATE as a tool for the model to out- 150
put a final answer in the same action format. Our final ac- 151
tion space consists of 15 tools, and their full implementation 152
details can be found in the Appendix. 153
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t1: Then, I can extract the 

numbers on the motorcycles.

a1: OCR(image-1)


t2: The motorcyclist wearing a yellow suit is the 
middle one with 16 on the motorcycle.

a2: Terminate(“16”)

o1: “17, 9, 16, 2, 23”



Model-based generation

Programmatic generation

Parse

Direct Answer (Direct) 
t0: After inspecting the image closely, I can 
conclude that the answer is 16.

a0: Terminate(“16”)

Q: Between {obj1.name} and {obj2.name}, which is 
closer to the camera?  

A. {obj1.name}  B. {obj2.name}

A: B

t0: I need to first get the depth of {obj1.name}.

a0: EstimateObjectDepth(image-0, {obj1.name})

o0: depth: {obj1.depth}



t1: Then, I need to estimate the depth of {obj2.name}.

a1: EstimateObjectDepth(image-0, {obj2.name})

o1: depth: {obj2.depth}



t2: I’ve gather enough information to answer...

a2: Terminate(“B”)

t0: I need to first get the depth of the ...

a0: EstimateObjectDepth(image-0, )

o0: depth: 

t1: Then, I need to estimate the depth of the .

a1: EstimateObjectDepth(image-0, )

o1: depth:

t2: I’ve gather enough information to answer...

a2: Terminate(“B”)

motorcyclist
“motorcyclist...”

5.91



grass
“grass”

 5.44



Generate

Generate

Q: What is the number on the 
motorcycle of the motorcyclist 
wearing a yellow suit?

A: 16

Annotate

Q: Between the  
and the , which is closer to the camera?  

A.    B. 
A: B

 motorcyclist wearing a yellow suit

motorcyclist
grass

grass


obj1
 name: 

 depth: 
obj2:

 name: 
 depth: 

motorcyclist 
wearing a yellow sui

5.91


gras
5.44


t0: I need to first identify the motorcyclist wearing 
a yellow suit. 

a0: LocalizeObjects(image-0, “motorcyclist 
wearing a yellow suit”)

o0: image-1

Verify

LATTE-trace

Templates Generated QA and LATTE-trace

MLM

t0: There are two motorcyclists in yellowish suits, 
but one is more neon-green than yellow. The other 
motorcyclist has number 16 on their motorcycle. 

a0: Terminate(“16”)

Chain-of-Thought (CoT) 

OR

Figure 2. Data generation. We illustrate our model-based data generation (top) and programmatic generation (bottom) pipelines.

2.1. LATTE-trace generation154
We generate synthetic LATTE-trace data with two auto-155
matic approaches: Model-based generation and Program-156
matic data generation.157

Model-based generation. The model-based data genera-158
tion pipeline consists of three steps (Figure 2 top):159

1. GENERATE. First, we leverage images and QA ex-160
amples in existing visual instruction tuning datasets and161
generate LATTE-traces to solve the questions with GPT-162
4o (2024-08-06). We include diverse questions on both163
single-image and multi-image examples from two large-164
scale instruction tuning datasets, Cauldron and Mantis-165
Instruct [28, 32]. We feed the images and questions to GPT-166
4o and prompt it to answer the questions by following a167
LATTE-trace or just CoT when it is not necessary (e.g., the168
question is straightforward) or helpful (e.g., the question re-169
quires domain-specific knowledge out of the scope of avail-170
able tools) to call specialized vision tools (Figure 2).171
2. VERIFY. Second, we verify GPT-4o’s generated an-172
swers against the ground-truth. We force GPT-4o to always173
end with TERMINATE(answer) and compare its prediction174
to the ground-truth. If the final answer following a reason-175
ing trace is correct, we move this LATTE-trace to the next176
stage. Otherwise, we convert this example into the direct177
answer (Direct) format with the ground-truth (Figure 2).178
3. PARSE. Finally, we check the JSON syntax of each step179
of the LATTE-trace. Similar to the previous stage, we again180
keep the LATTE-traces free of syntax errors and turn the181
others into the Direct format with ground-truth answers.182

Programmatic data generation. While model-based data183
generation distills reasoning from proprietary models, we184
are curious if reasoning with vision specialists can be185
learned in another manner without reliance on proprietary186
models. To study this perspective, we implement a pro-187

grammatic data generation engine for synthesizing LATTE- 188
traces (Figure 2 bottom). This pipeline involves two steps: 189

1. ANNOTATE. First, we gather existing dense annotations 190
of images. We adopt Visual Genome (VG) as it contains 191
rich human annotations of objects, attributes, and relation- 192
ships of the images. In addition, we obtain depth maps of 193
the VG images with Depth-Anything-v2 [79]. 194
2. GENERATE. Next, we programmatically generate both 195
the QA pairs and the corresponding LATTE-traces with 196
manually written templates and the dense annotations of the 197
images. We reuse the pipeline from [84, 86] for generating 198
diverse QA pairs that cover various vision capabilities such 199
as counting and spatial understanding. To generate LATTE- 200
traces, we define templates for thoughts, actions, and obser- 201
vations across all steps. See Appendix for more details. 202

3. Experiments 203

We perform extensive experiments with small multi-modal 204
models and 9 data recipes on 6 benchmarks. 205

Models. We adopt models that support multi-image inputs 206
as our data includes reasoning traces with multiple images. 207
For most of our experiments, we use Mantis-8B-SigLIP- 208
LLaMA-3 as the base model. We additionally experiment 209
with Mantis-8B-CLIP-LLaMA-3, and LLaVA-OneVision- 210
7B (Qwen2-7B and SigLIP) in our ablations. 211

Baselines. We compare our model to two types of 212
baselines: (1) vanilla instruction-tuning (Vanilla IT) – 213
instruction-tuning data with only direct answers – and (2) 214
distillation methods that train small models by distilling 215
both perception and reasoning from larger models, includ- 216
ing VPD [25], VisCoT [64], and LLaVa-CoT[77]. 217

Evaluation setup. We select 6 multi-modal benchmarks 218
covering both perception and reasoning. The perception- 219
focused benchmarks include RealWorldQA, CV-Bench and 220
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Table 1. LATTE vs. Baselines on Perception and Reasoning Benchmarks. Our method LATTE brings substantial gains over the
vanilla instruction-tuned (Vanilla IT) baseline on both perception and perception + reasoning benchmarks.

Method
Perception Perception + Reasoning Overall

BLINK CV-Bench RealWorldQA Avg MathVista MMStar MMVet Avg Avg

Vanilla IT 44.1 49.2 41.4 44.9 31.0 39.7 27.8 32.8 38.9
VPD 41.6 48.8 44.8 45.1 (+0.2) 33.0 41.1 32.8 35.7 (+2.8) 40.4 (+1.5)
LLaVa-CoT 42.2 40.4 38.0 40.2 (-4.7) 36.7 44.6 40.2 40.5 (+7.7) 40.4 (+1.5)
LATTE 46.4 54.0 42.0 47.5 (+2.6) 36.9 44.2 47.9 43.0 (+10.2) 45.2 (+6.4)

Table 2. LATTE vs. Vanilla IT with Different Models. We learn that LATTE leads to performance gains over Vanilla IT regardless of
the base models. The gains are 2-5% on average across all 6 benchmarks and up to 16% on MMVet.

Language / Vision Starting
checkpoint Method Perception Perception + Reasoning Overall

CV-Bench BLINK RealWorldQA Avg MathVista MMStar MMVet Avg Avg

LLaMA3-8B / CLIP Mantis
Pretrained

Vanilla IT 52.6 45.8 52.3 50.2 33.1 36.7 28.9 32.9 41.6
LATTE 56.9 49.6 51.1 52.6 36.6 40.8 45.2 40.8 46.7 (+5.1)

LLaMA3-8B / SigLIP

Vanilla IT 52.3 43.7 51.8 49.3 31.1 40.5 33.0 34.9 42.1
LATTE 57.2 47.8 53.7 52.9 34.9 44.6 45.2 41.6 47.2 (+5.2)

Mantis
Instruct-tuned

Vanilla IT 50.6 46.7 54.8 50.7 36.2 40.7 29.7 35.5 43.1
LATTE 51.7 47.6 56.5 51.9 36.3 42.5 45.7 41.5 46.7 (+3.6)

Qwen2-7B / SigLIP LLaVa-OV
Stage 1.5

Vanilla IT 56.8 50.3 57.8 55.0 42.4 50.1 39.3 43.9 49.5
LATTE 60.2 49.9 58.8 56.3 41.9 51.0 50.9 48.0 52.1 (+2.7)

BLINK [17, 33, 63, 73], and the perception + reasoning221
ones are MathVista, MMStar, and MMVet [8, 48, 83]. Ad-222
ditional details can be found in the Appendix.223

3.1. Main results224
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Figure 3. Performance of LATTE vs. Baselines across Train-
ing Data Scales. We find that our method leads to consistent gains
across varying training data sizes – 98K, 200K and 293K.

Our method leads to substantial gains compared to225
vanilla instruction-tuning on both perception and rea-226
soning benchmarks, whereas other distillation baselines227
result in smaller gains or even degradation on some per-228
ception tasks. We find that learning to reason with vision229
specialists enables our model to achieve consistent gains230
on perception-focused VQA benchmarks as well as bench-231
marks that require both perception and reasoning, with av-232
erage gains of 2.6% and 10.2% respectively (Table 1). By233
contrast, both distillation baselines VPD and LLaVa-CoT234
bring much smaller gains, with an average of 1.5% across235
all benchmarks, compared to ours (6.4%). Further, we ob-236
serve that the same trend holds as we scale the training237
data size from 98K to 200K and 293K, where our method238
consistently brings larger gains on both perception and per-239
ception + reasoning benchmarks (Figure 3). Interestingly,240
LLaVa-CoT even hurts the model’s performance on percep-241

tion benchmarks, even though it increases the performance 242
on the perception + reasoning benchmarks (Table 1). This 243
result suggests that GPT4-o might still be inferior to vision 244
specialists on some perception tasks, as LLaVa-CoT distills 245
purely from GPT4-o. 246

Our method beats the vanilla instruction-tuning base- 247
line on average across all benchmarks regardless of the 248
base model and checkpoint, with significant gains of 10- 249
16% on MMVet. We fine-tune 3 different multi-modal 250
models with all 293K LATTE-traces starting from different 251
checkpoints. We observe that our method leads to consis- 252
tent gains of 2-5% in the model’s average accuracy across 253
6 benchmarks compared to the baselines instruction-tuned 254
with the same examples in the Direct format (Table 2). We 255
note that our method results in staggering gains of 10-16% 256
on MMVet, which covers a wide range of perceptual and 257
reasoning capabilities. Moreover, we find that our data re- 258
sults in larger gains on earlier pretrained checkpoints than 259
on later-stage instruction-tuned checkpoints, likely due to 260
the relatively small size of our data compared to Mantis’ 261
and LLaVa-OV’s instruction-tuning data (1.2M and 4.5M) 262
and some overlap in the images and questions [28, 35]. 263

4. Conclusion 264
We propose to learn multi-modal language models to rea- 265
son with vision specialists instead of becoming both vision 266
specialists and reasoning experts. 267

Limitations and Future Work. First, our method requires 268
customized implementations of the specialized vision tools. 269
Second, reasoning with the vision specialists also requires 270
additional compute at inference time. Future work can opti- 271
mize and enhance the implementations of vision specialists. 272
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LATTE: Learning to Reason with Vision Specialists

Supplementary Material

A. Additional details on methods658

A.1. Programmatic generation659

We manually design five thought templates for each action660
and randomly sample one during generation. As for the ac-661
tions, we manually select the specialized vision tools for662
each type of questions (e.g., ESTIMATEOBJECTDEPTH for663
questions on objects’ relative depths, and LOCALIZE for ob-664
ject counting questions, etc.) and compose templates with665
them. We fill in the actions’ inputs in the templates with666
annotations obtained from the previous step. Similarly, we667
define observation templates based on the action outputs’668
formats, and fill them in with dense annotations.669

A.2. Data filtering and mixing670

In total, we generate 815K data with GPT-4o for both671
single-image and multi-image questions across 31 data672
sources from Cauldron and Mantis-Instruct [28, 32]. We673
also programmatically generate 1M+ QA pairs and corre-674
sponding LATTE-traces with VG images and annotations675
[30], which we randomly sample from to augment model-676
generated data. We then develop different data recipes with677
3 filtering/mixing techniques, where we vary the distribu-678
tion of: (1) data formats; (2) data sources; and (3) model-679
generated vs. program-generated reasoning traces.680
Data format. As mentioned in the data generation pipeline,681
model-generated data can be categorized into two formats:682
LATTE-trace or CoT examples (Figure 2). Additionally,683
they can be further grouped into LATTE-trace/CoT-pos and684
LATTE-trace/CoT-neg examples where the final answers685
are correct and wrong respectively (Figure 4). Note that686
we convert both LATTE-trace-neg and CoT-neg examples687
into the direct answer (Direct) format with ground-truth an-688
swers (Figure 2) so the final data format is one of LATTE-689
trace, CoT, and Direct. We experiment with data consisting690
of only LATTE-trace, LATTE-trace + CoT, LATTE-trace +691
Direct, and all three formats (Figure 4).692
Data source. We also perform filtering based on data693
sources as Cauldron and Mantis-Instruct cover a wide range694
of tasks, some of which benefit more from vision special-695
ists than others. To this end, we define LATTE-useless696
datasets as the ones where GPT-4o either decides to out-697
put CoT much more often than LATTE-trace (i.e. % of698
CoT-pos − LATTE-trace-pos > 10), or reaches wrong an-699
swers much more frequently than correct ones when using700
LATTE-trace (i.e. % LATTE-trace-neg − LATTE-trace-pos701
> 10) (Figure 4). The remaining datasets are considered702
LATTE-useful datasets, and we experiment with including703
all datasets vs. only the LATTE-useful datasets (Figure 4).704

Model-generated vs. program-generated data. Due to 705
the lack of controllability, the distribution of actions in 706
model-generated data is highly imbalanced, with a couple 707
of actions such as GETOBJECTS and OCR dominating the 708
dataset. Therefore, we also try increasing action diversity 709
by adding programmatic data involving underrepresented 710
actions such as LOCALIZEOBJECTS, ESTIMATEOBJECT- 711
DEPTH and ESTIMATEREGIONDEPTH. We experiment 712
with data mixtures with different ratios of model-generated 713
vs. program-generated data, ranging from 1:1 to 1:0.1. 714

While the best data recipe varies with the benchmark, 715
one recipe stands out, resulting in consistent gains in the 716
average performance across 6 benchmarks for all 3 models. 717
This dataset consists of 293K LATTE-traces generated by 718
GPT-4o across all 31 data sources. 719

B. Additional Experimental Details 720

Baselines. For VPD, since their data and model are not re- 721
leased, we reproduce their data by converting our LATTE- 722
traces into CoTs in VPD’s format, where we remove the ac- 723
tion calls and add the observations to the reasoning chains. 724
For LLaVa-CoT, we directly use their data to finetune the 725
same model. For VisCoT, since it only has reasoning steps 726
for one data source, training with its data leads to much 727
worse performance. We include its results in the Appendix. 728
For fair comparison, we train our models and baselines with 729
the same model backbone (e.g. Mantis-SigLIP), the same 730
hyperparameters, and the same number of examples. 731

Training details. We fine-tune models starting from check- 732
points at different stages – pretrained and instruction tuned 733
for Mantis-8B-SigLIP-LLaMA-3, and stage 1.5 for LLaVA- 734
OneVision-7B – to investigate where LATTE-traces bring 735
the largest gains. We adopt the hyperparameters from 736
[28, 42] and fine-tune both the language model and the pro- 737
jector with learning rate = 1e − 5 for 1 epoch with either 738
NVIDIA A100s 40GB or H100s 80GB. We additionally 739
perform hyperparameter tuning with LLaVA-OneVision-7B 740
and vary the tunable components, the language models’ 741
learning rate, and number of epochs. We include this re- 742
sult in the Appendix. 743

Evaluation details. We adapt VLMEvalKit [16] for our 744
evaluation, where an LLM judge (i.e. GPT-4-turbo) is 745
used to score predictions between 0 and 1 compared to the 746
groundtruth short answers for open-ended questions. Addi- 747
tional details about experimental setup can be found in the 748
Appendix. 749

1



CVPR
#36

CVPR
#36

CVPR 2025 Submission #36. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

LATTE-useful 
LATTE-useless 

Original / Final format

Data source 

LATTE-pos / LATTE

LATTE-neg / Direct 
CoT-neg / Direct

CoT-pos / CoT

Distribution of LATTE-traces vs. CoTs in GPT4-generated Data across All Data Sources

Figure 4. Distribution of data formats and sources. We visualize the frequency of data formats (i.e. LATTE-pos/neg, and CoT-pos/neg,
pos = correct final answers, neg = incorrect) in the original GPT-4-generated data and in our training data (i.e. LATTE-trace, CoT, or
Direct) across all data sources.

C. Additional Results750

C.1. Main Results751

Table 3. Perception. We highlight the large performance gains
brought by our method on subsets of the perception benchmarks.

Method
BLINK CV Bench

Relative
Depth* Jigsaw

Multi-view
Reasoning

Visual
Similarity 2D 3D

Vanilla IT 51.6 51.3 51.1 65.2 38.9 59.4
VPD 46.0 44.0 55.6 59.3 40.4 57.3
LLaVa-CoT 53.2 52.0 54.1 47.4 45.1 35.7
LATTE 58.1 68.7 55.6 85.2 47.8 60.2

Learning to reason with vision specialists allows our752
model to excel at vision-centric tasks that require fine-753
grained perception. Taking a closer look at the perception-754
centric benchmarks, we note that our model does exception-755
ally well on the subsets that require fine-grained perception756
such as depth estimation (Table 3). For example, our model757
scores higher on the Relative Depth subset of BLINK and758
3D subset of CV-Bench, most likely because it has learned759
to utilize the ESTIMATEDEPTH tool. Similarly, learning to760
use the localization specialists via LOCALIZEOBJECTS en-761
ables it to do better on the 2D tasks in CV-Bench by almost762
9%; and the image-image and image-text similarity tools763
boost its performance on Jigsaw, Multi-view reasoning, and764
Visual Similarity by significant margins of up to 20%.765

C.2. Ablations766

We perform ablations with both model-generated and pro-767
grammatic LATTE-traces. For model-generated data, we768
explore two data filtering techniques to adjust the distribu-769
tion of (1) data formats and (2) data sources (Figure 4).770
Data quality matters more than quantity: our best data771
recipe is the smallest and yet leads to better performance772
than other recipes of larger scales. We find that 293K773
LATTE-traces result in the biggest gain of 4.9% on aver-774
age over the baseline across all benchmarks (Figure 5).775
Adding CoT examples results in a smaller gain of 2.6%,776
even though the training data size almost doubles (Fig-777

Table 4. Ablation Results across Data Sources. We learn that in-
cluding all data sources hurts model’s perception and overall per-
formance while including only LATTE-useful datasets helps.

Data source Size Method Perception Percept. + Reason. Overall

All datasets 815K
Vanilla IT 50.7 34.7 42.7
LATTE 47.7 (-3.0) 35.1 (+0.4) 41.4 (-1.4)

LATTE-useful datasets 566K
Vanilla IT 46.3 33.3 39.8
LATTE 46.8 (+0.5) 35.6 (+2.3) 41.2 (+1.4)

Table 5. Ablations on programmatic LATTE-traces. We find
that training with only or additional programmatic LATTE-traces
hurts model performance.

M: P Data format Size Perception Percept. + Reason. Overall

— Direct
293K

49.2 34.9 42.0
0:1 P-traces 38.4 15.9 27.2
1:0 M-traces 52.9 41.6 47.2

1:0.1 +P-traces 29K 322K 47.8 40.1 44.0
1:0.25 +P-traces 73K 366K 50.5 42.1 46.3
1:0.5 +P-traces 147K 440K 51.2 39.7 45.5
1:1 +P-traces 293K 586K 50.3 36.2 43.2

ure 5). On the other hand, combining LATTE-trace and Di- 778
rect examples hurts the model’s performance compared to 779
LATTE-traces only, especially on the perception tasks (Fig- 780
ure 5). This is likely because the mixture makes the model 781
more likely to rely on its own perceptual ability, which is 782
worse than the vision specialists’. We empirically observe 783
that models trained with a mix of LATTE-trace and Di- 784
rect examples tend to adopt the Direct format more often 785
at inference time. Again, these results suggest that small 786
multi-modal language model’s perceptual ability is weak, 787
and learning to reason with specialists helps the most with 788
its performance on perception tasks. 789

Data sources matter too: including all datasets hurts 790
performance whereas including only LATTE-useful 791
datasets brings performance gains. Similarly, we see that 792
including only the LATTE-useful datasets – where GPT- 793
4o frequently chooses to reason with vision specialists and 794
reach correct final answers – improves the model’s aver- 795
age performance compared to the baseline, while including 796
all data sources does not (Table 4). Again, we see that a 797
smaller set of 566K LATTE-traces can lead to better per- 798
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Size

293K   

528K

580K

815K

Data formats

LATTE-traces

+ Direct 

+ CoT

+ Direct + CoT

Figure 5. Ablation Results across Data Formats. The best data recipe is 293K LATTE-traces, which leads to the greatest gains over
Vanilla IT and the highest overall performance. Adding either CoT or Direct doesn’t bring additional gains despite the increased data size.

formance than a much larger dataset (815K), implying that799
data quality matters more than quantity.800

Programmatically generated LATTE-traces lead to per-801
formance degradations, suggesting that we need both802
high-quality perceptual information and reasoning to803
achieve strong performance. We experiment with train-804
ing with only programmatic LATTE-traces and with a805
mixture of model-generated and programmatic reasoning806
traces, with different ratios ranging from 1:0.1 to 1:1.807
Unfortunately, we find that training with only program-808
matic LATTE-traces results in large performance drops,809
and adding programmatic LATTE-traces fails to bring ad-810
ditional gains despite the increase in overall data size (Ta-811
ble 5). This is likely due to the model’s weaker reasoning812
capability learned from templated reasoning traces, which813
is further validated by qualitative examples (See Appendix).814
These results suggest that reasoning over perceptual infor-815
mation is a challenging reasoning task that requires high-816
quality reasoning data for the model to learn well, and that817
model-generated reasoning traces are a lot more helpful for818
this task than templated reasoning traces are.819

Overall, our experiments suggest that the quality of per-820
ceptual information and reasoning are both crucial to our821
model’s superior performance across diverse visual tasks.822

C.3. Additional qualitative examples823

We present additional successful outputs of LATTE across824
both single-image and multi-image examples in Figures 8825
and 9 as well as failure cases in Figure 10.826

C.4. Qualitative error analysis827

Why does adding programmatic LATTE-trace help on828
MathVista but hurt MMVet performance? We observe829
that adding programmatic LATTE-trace can result in up to830
3% gain on MathVista and 9% drop on MMVet. Upon anal-831
ysis, we discover that programmatic LATTE-trace improves832
the general VQA split in MathVista the most by almost 9%.833
This is because LOCALIZE is helpful for these questions,834
and our programmatic data includes many LOCALIZE in-835
stances that allow LATTE to learn to use it effectively (Fig-836
ure 6). Conversely, programmatic data hurts LATTE’s per-837

formance on MMVet most likely due to the model’s worse 838
reasoning ability as a result of the simple and rigid thoughts 839
generated with templates in our programmatic data (Fig- 840
ure 6). 841

C.5. Additional quantitative results 842

We report additional quantitative results of data ablations on 843
Mantis-CLIP in Table 11, where we see the same trends we 844
observe with Mantis-SigLIP: the smallest dataset of 293K 845
LATTE-trace examples leads to the highest absolute perfor- 846
mance and gain compared to other datasets with a mix of 847
LATTE-trace, CoT, and/or Direct examples at larger scales. 848

Table 6. VisCoT results
Method A-OKVQA BLINK MathVista MMMU MMStar MMVet MMVP RealWorldQA Avg

VPD-LLaVA 80.7 43.9 35.1 40.8 40.1 40.6 61.3 45.1 48.5
VisCoT-LLaVA 67.9 39.4 12.9 36.1 36.0 26.7 61.3 34.0 39.3

Visual-CoT Performance. We experimentally com- 849
pare LATTE to Visual-CoT. We finetune Mantis-LLaVA- 850
Pretrained (LLama3+SigLIP) with Visual CoT and compare 851
its performance with LATTE (Table 6). We use 413K ex- 852
amples where the bounding boxes are valid and within the 853
image. We find that the models trained with Visual CoT 854
data achieve an average accuracy of 39.3% (much lower as 855
Visual COT’s data are mostly Text/Doc images and con- 856
tain only bboxes without natural language thoughts) on the 857
benchmarks. 858

Table 7. LATTE vs. Direct inference
Test prompt A-OKVQA BLINK MathVista MMMU MMStar MMVet MMVP RealWorldQA Avg

LATTE 82.1 45.9 37.0 39.8 43.4 46.7 66.0 41.6 50.3
Direct 81.9 46.6 31.2 42.1 39.1 35.0 68.3 40.2 48.0

Performance gain with LATTE inference. We compare 859
the model’s performance when trained with a random mix 860
of 293K LATTE-traces and Direct data (1:1) and tested 861
with LATTE format vs. Direct prompt. We find that the 862
model achieves an average of 50.3% when tested following 863
LATTE format vs. 48% with the Direct prompt (Table 7), 864
suggesting that reasoning with vision specialists at infer- 865
ence time improves model’s performance. 866
Hyperparameter tuning Additional gains can be 867
achieved by tuning the vision encoder, training with 868
a smaller learning rate or for more epochs. Last but 869
not least, our hyperparameter tuning experiments with 870
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t0: To determine the answer, I need to identify the number of 
dirtbikes and small green metallic cars in the image.

a0: 

t1: 

a1: Terminate( )

Localize(image-0, ["dirtbike", "small green metallic car"])


There are three dirtbikes and one small green metallic car. 
Therefore, the number of dirtbikes is not less than the number 
of small green metallic cars.


“B”

o0: [{'label': 'dirtbike', 'bbox': [0.53, 0.2, 0.72, 0.47], 'score': 0.66}, 

{'label': 'dirtbike-2', 'bbox': [0.41, 0.24, 0.47, 0.36], 'score': 0.44}, 

{'label': 'dirtbike-3', 'bbox': [0.52, 0.45, 0.67, 0.6], 'score': 0.5}, 

{'label': 'small green metallic car', 'bbox': [0.5, 0.25, 0.56, 0.34], 
'score': 0.61}]


t0: I need to extract the text from the image to find the last equation.

a0: OCR(image-0)

o0: The texts in the image are: 1. 5 + a = 7...10. 34 + y = 39

t1: The last equation in the image is 34 + y = 39. 

a1: Terminate( )
Therefore, y is 39.


“39”

t1: The last equation is '34 + y = 39'. To find 
the value of y, I need to solve this equation.

a1: Calculate(“39 - 34”)

o1: 5

t0: To determine the number of dirtbikes 
and small green metallic cars, I need to 
analyze the image.

a0: GetObjects(image-0)

o0: ['ambulance', 'bicycle', 'bus', 'car', 'table', 
'floor', 'lego', 'miniature', 'motorbike', 
'motorcycle', 'toy', 'toy car']

LATTE trained with M-traces + P-traces 

Q: Is the number of dirtbikes 
less than the number of 
small green metallic cars? 
A. Yes; B. No

Q: What is y in the last 
equation? A: 5

MathVista

MMVet

t1: The observation doesn't clearly specify 
the number of dirtbikes and small green 
metallic cars. I need to visually inspect the 
image to count them.

a1: Terminate(“A”)

Figure 6. We present examples of LATTE success and failure after adding programmatic data to the fine-tuning dataset.

2.0 1.5 1.0 0.5 0.0 0.5 1.0
Delta in Avg. Accuracy (%)

LR=5e-5

LR=5e-6

Tune vision

Tune vision,
 2 Epochs

H
yp

er
pa

ra
m
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ha

ng
e

Avg. Accuracy Change Compared to Default Hyperparams 
 (LR=1e-5, Tune vision=No, Epoch=1)

Figure 7. Hyperparameter ablations. Additional gains can be
achieved with a smaller learning rate for the language model, tun-
ing the vision encoder, and training for more epochs.

LLaVa-OV-Stage1.5 suggest that we can further improve871
the model’s absolute performance by tuning the vision en-872
coder, training with a smaller learning rate and/or for longer873
epochs (Figure 7).874

D. Dataset and model comparison875

We summarize the differences between our work and the876
other CoT datasets including ScienceQA, M3COT, Visual877
CoT, VPD, and LLaVA-CoT (which is concurrent and un-878
published work), in Table 8.879

E. Related work880

We contexualize our work on language-only and multi-881
modal tool use and multi-modal language models.882
Language-only tool use. Augmenting LLMs with exter-883
nal tools and APIs can significantly enhance their problem-884
solving capabilities, especially for tasks that require spe-885
cialized knowledge or interaction with external resources886
[60]. Examples include web searching [53, 81], mathemati-887
cal calculations [13, 22], code interpretation [18, 87], and888

other domain-specific operations that are challenging for 889
LLMs to accomplish solely with their intrinsic knowledge. 890

Researchers have mainly explored two approaches to 891
enable LLMs to effectively leverage external tools. The 892
first approach is through in-context learning, where instruc- 893
tions on tool usage and contextually relevant examples are 894
provided directly in the prompt [11, 20, 49, 55, 65, 82]. 895
The second approach involves training models to specialize 896
in calling external functions [5, 56, 59, 62, 71, 85]. For 897
instance, Toolformer [62] proposed training LLMs to call 898
APIs precisely to solve complex tasks in a self-supervised 899
manner. More recently, xLAM unified data formats across 900
various environments, and achieved more powerful LLMs 901
specialized in function calling that are also referred to as 902
large action models [85]. These works demonstrated the 903
effectiveness of fine-tuning LLMs to execel at calling tools, 904
which inspired our work on tuning multi-modal language 905
models to be multi-modal action models. 906

907
908

Multi-modal tool-use. Unlike language-only tool use, 909
most works in the multi-modal space have only explored 910
training-free methods, which adapt existing LLMs to use 911
multi-modal tools via zero-shot/few-shot prompting [21, 912
70, 80]. Visprog first demonstrates the potential of leverag- 913
ing LLMs for visual question answering by prompting them 914
to generate programs of predefined modules for image un- 915
derstanding and manipulation [21]. Simlarly, ViperGPT de- 916
fines a comprehensive list of APIs and prompts code LLMs 917
to generate Python programs for solving visual queries [70]. 918
In addition to question answering, m&ms further inves- 919
tigated LLMs’ abilities in planning and executing open- 920
ended multi-modal tasks with external tools [51]. Be- 921
yond LLMs, more recent efforts such as VisualSketchPad 922

4



CVPR
#36

CVPR
#36

CVPR 2025 Submission #36. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 8. Dataset and model comparison.

Title Dataset Model
Training set size Domains Data

source
number

Tools involved in
reasoning chain

Multi-
image
questions?

Multimodal
reasoning
chain?

Inference-
time action
calling?

Multi-
image
support?

Science
QA

12.6K Science 1 ✗ ✗ ✗ ✗ ✗

M3CoT 7.8K Science, Math,
Commonsense

2 ✗ ✗ ✗ ✗ ✗

VPD 90K General, OCR,
Compositional,
Knowledge, Count-
ing

6 OCR, Object De-
tection, Depth Esti-
mation, VQA, Cap-
tioning, Knowledge

✗ ✗ ✗ ✗

VisualCoT 98K (+340K
with bboxes but
no thoughts)

General, Doc, Fine-
grained, Relation,
Chart

12 Localize, Crop ✗ ✗ ✓ ✓

LLaVA-
o1

100K Science, Math,
General, Science,
Doc

10 ✗ ✗ ✗ ✗ ✗

LATTE 293K (+over 1M
program gener-
ated reasoning
traces)

Includes all of the
above

31 15 tools (see Sec-
tion 2)

✓ ✓ ✓ ✓

also augmented multi-modal models with external tools and923
showcased success [24]. However, in-context tool use only924
works well with powerful proprietary multi-modal models925
such as GPT-4o; all open-source multi-modal models fail to926
perform tool use well without fine-tuning.927

There are only a few works on training multi-modal928
models to be better at tool use. LLaVa-Plus was the first929
work that shows the possibility of training a multi-modal930
model to use vision specialists [43]. However, it exhibits931
poor performance due to the weakness of the model back-932
bone and the small scale and suboptimal quality of the data933
[43]. Visual Program Distillation distills tool-use and rea-934
soning abilities into a multi-modal model with chain-of-935
thought (CoT) data obtained from programs [23]. Nonethe-936
less, this model is unable to use tools at inference and is937
limited to simple question answering tasks [23]. Similarly,938
the more recent work Visual CoT introduces a new syn-939
thetic CoT dataset for training multi-modal models for en-940
hanced reasoning [64]. The closest work to ours is Cog-941
CoM, which identifies 6 useful manipulations and trains942
multi-modal models with synthetic chain-of-manipulation943
(CoM) data [58]. Nonetheless, the manipulations are lim-944
ited and useful for only detailed visual question answering945
and visual grounding, and the authors have only experi-946
mented with adding 70K CoM data to 500K QA examples.947
None of these works studied or improved the quantity and948
quality of these chains to enhance multi-modal models’ per-949
formance across diverse complex multi-modal tasks, which950
our work focuses on.951

Multi-modal language models. Most recently, there have 952
been many advances made on open-source multi-modal 953
models [2, 3, 6, 7, 9, 10, 12, 14, 26, 34, 37–39, 39– 954
42, 45, 47, 50, 52, 54, 57, 66–69, 72, 74–76, 78]. These 955
efforts include training multi-modal models to take in mul- 956
tiple images, engage in multi-turn conversations, and even 957
understand videos [28, 35, 42]. For example, LLaVA-Next 958
achieves strong multi-image understanding through large- 959
scale interleaved visual instruction tuning with M4-Instruct 960
[42]. Similarly, Mantis introduces a new large-scale multi- 961
image instruction tuning dataset Mantis-Instruct for multi- 962
image training [28]. These efforts pave the foundation for 963
our work on training multi-modal models to learn from 964
multi-image interleaved chains-of-thought-and-action data. 965

F. Model-based data generation 966

F.1. Generation prompt 967

We present the full data generation prompt used in our 968
model-based data generation pipeline in Listing 2. 969

F.2. Dataset statistics 970

We present a table with detailed statistics of the LATTE- 971
trace 293K dataset in Table 12. 972

G. Action implementation 973

Our Python implementation of all actions can be found in 974
Listing 1. 975

5



CVPR
#36

CVPR
#36

CVPR 2025 Submission #36. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

H. Programmatic data generation976

H.1. QA and action templates977

We present the question-answer and corresponding action978
templates used in our programatic data generation in Ta-979
ble 13. We design 16 different question templates for both980
single-image and multi-image examples that cover 5 capa-981
bilities: attribute recognition, counting, 2D and 3D spatial982
understanding, and multi-image understanding.983

H.2. Thought templates984

We also present the five thought templates in Listing 3 we985
define for each action, where one of them is randomly sam-986
pled and used during generation.987

H.3. Example action distribution988

We plot example distributions of all actions before and after989
adding programmatic LATTE-trace 73K data in Figure 11.990

I. Additional training details991

We report additional training hyperparameters for Mantis992
models and LLaVA-OV in Table 9 and 10 respectively.993

Table 9. Additional training hyperparameters for Mantis-
SigLIP and Mantis-CLIP.

Name Value

bf16 TRUE
tf32 True
per device train batch size 1
per device eval batch size 1
gradient accumulation steps 16
weight decay 0
warmup ratio 0.03
lr scheduler type cosine
lora enabled FALSE
qlora enabled FALSE
max seq len 8192

Table 10. Additional training hyperparameters for LLaVA-OV.

Name Value

bf16 TRUE
tf32 True
mm vision tower lr 2.00E-06
mm projector type mlp2x gelu
mm vision select layer -2
image aspect ratio anyres max 9
image grid pinpoints ”(1x1),...,(6x6)”
mm patch merge type spatial unpad
per device train batch size 1
per device eval batch size 1
gradient accumulation steps 16
weight decay 0
warmup ratio 0.03
lr scheduler type cosine
model max length 8192

J. Additional evaluation details 994

We present additional inference and evaluation details in Ta- 995
ble 14 and the LLM judge prompts used for MMVet and 996
MathVista from VLMEvalKit [16] in Listings 4 and 5. 997
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Table 11. Additional Results on Model-generated data ablations with Mantis-CLIP. We observe similar results of data ablations on
Mantis-CLIP as on Mantis-SigLIP.

Data source Final data format Size Model A-OKVQA BLINK MathVista MMMU MMStar MMVet MMVP RealWorldQA Avg Delta

All datasets

Direct
293K

Mantis-CLIP 80.7 45.8 33.1 42.2 36.7 28.9 62.7 52.3 47.8
LATTE-trace LATTE 81.1 49.6 36.6 42.8 40.8 45.2 63.3 51.1 51.3 3.5

Direct
580K

Mantis-CLIP 82.0 47.2 31.5 40.6 38.3 31.4 63.3 49.0 47.9
LATTE-trace+ CoT LATTE 82.6 47.7 35.9 38.3 39.6 43.4 61.0 51.1 49.9 2.0

Direct
815K

Mantis-CLIP 81.0 47.3 32.9 47.3 38.1 29.1 63.0 51.0 48.7
LATTE-trace+ CoT+ Direct LATTE 81.3 43.1 32.7 48.0 37.7 31.0 58.7 47.6 47.5 -1.2

LATTE-useful datasets
Direct

566K
Mantis-CLIP 79.1 44.1 30.9 39.4 35.5 30.1 62.7 49.8 46.5

LATTE-trace+ CoT+ Direct LATTE 80.7 41.6 31.5 41.0 38.2 36.1 59.0 48.2 47.0 0.6

Table 12. Detailed statistics of the LATTE-trace 293K dataset.

Original Dataset Subset Instance # Max Image # Avg Image # Max Turn # Avg Turn #

Cauldron

ai2d 694 2 1 6 2
aokvqa 6322 5 1.1 7 2.1
chartqa 4726 2 1 10 2.1
cocoqa 13289 3 1.1 4 2
dvqa 2158 2 1 7 2.5
iconqa 3791 3 1.1 5 2.2
infographic vqa 3822 3 1 9 2.3
mimic cgd 6899 6 2.1 7 2.8
nlvr2 9716 4 2.1 6 2.5
ocrvqa 22991 2 1 7 2
scienceqa 850 2 1 6 2.3
st vqa 11322 3 1 8 2
tabmwp 14548 1 1 10 2.5
tallyqa 16171 3 1.4 5 2.1
textvqa 15475 5 1 6 2.1
visual7w 4773 3 1.1 5 2.1
vqarad 115 2 1 4 2.2
vqav2 13394 5 1.2 6 2.1
vsr 1864 2 1.2 4 2.1

Mantis

birds-to-words 742 4 2 5 2.7
coinstruct 31773 8 2.3 8 2.2
contrastive caption 4296 8 3.6 6 2
dreamsim 1738 3 3 3 2
iconqa 6660 7 2.6 6 2.2
imagecode 559 18 10.1 10 3.1
lrv multi 3401 9 3.3 6 2.2
multi vqa 2089 7 3.8 8 2.6
nlvr2 5436 4 2 5 2.5
spot-the-diff 2591 5 2.8 8 3
nextqa 3057 15 8.2 9 2.3
llava 665k multi 77843 11 2.2 10 2.1

Total 293105 18 2.2 10 2.3
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Q: Is the trash can empty or full?

A: Empty 

Q: Given the following images of art paintings, use the first image as the reference image, and 
determine which one of the second or the third image shares the same style as the reference image? 
Select from the following choices. 
A. the second image 
B. the third image

Q: You are a judge in a photography competition, and now you are given the four images. Please 
examine the details and tell which one of them is most likely to be a real photograph. 
Select from the following choices. 

B. the second image, C. the third imageA. the first image, 

t0: The image shows a trash bin with a hand placing a bag inside. I need to determine if the trash bin is 
empty or full.

a0: GetObjects(image-0)


t1: The observation indicates the presence of a bag and a bin, but it doesn't specify the contents of the 
bin. Based on the image, the trash bin appears to be empty as there is no visible trash inside.

a1: Terminate(“ ”)

o0: ['bag', 'bin', 'box', 'container', 'dish washer', 'drawer', 'food', 'home appliance', 'person', 'kitchen', 
'kitchen counter', 'kitchen sink', 'lid', 'package', 'plastic', 'sink', 'stand', 'woman']


empty

t0: To determine which image shares the same style as the reference image, I need to analyze the 
styles of the images.

a0: GetImageToImagesSimilarity("image-0", ["image-1", "image-2"])


t1: The similarity scores indicate that image-2 is more similar to the reference image than image-1. 
Therefore, the third image shares the same style as the reference image.

a1: Terminate(“ ”)

o0: {'best_image': 'image-2', 'best_image_index': 1, 'similarity': [0.49, 0.65]}


B

image-0 image-1

image-0 image-1

image-2 image-3

image-2

Q: Compare the average kinetic energies of the particles in each sample. Which sample has the 
higher temperature? Sample A or sample B? 
A: Sample A

t0: To determine which sample has a higher temperature, I need to compare the average kinetic 
energies of the particles in each sample using the formula: KE = 0.5 * m * v^2, where m is the mass 
and v is the velocity. Since both samples have the same number of particles, the sample with the 
higher average kinetic energy will have the higher temperature.

a0: Calculate(“0.5 * 44 * 830**2”)


t1: Now, I need to calculate the average kinetic energy for Sample B to compare.

a1: Calculate(“0.5 * 36 * 690**2”)


t2: The average kinetic energy for Sample A is 15,155,800, and for Sample B is 8,569,800. Since 
Sample A has a higher average kinetic energy, it has the higher temperature.

a2: Terminate(“ ”)

o0: 15155800.0


o1: 8569800.0


Sample A

t0: To determine which image is most likely a real photograph, I need to analyze the content and 
context of each image.

a0: GetObjects(“image-0”)


t1: The first image shows a person playing a game, likely a sport, on a field. This suggests it is a real 
photograph. I will now check the other images.

a1: GetObjects(“image-1”)


t2: The second image shows a person playing in water, likely at a beach or lake, which is also a real 
photograph. I will now check the third image.

a2: GetObjects(“image-2”)


t3: The third image shows a person swimming in water, which is also a real photograph. I will now 
check the fourth image.

a3: GetObjects(“image-3”)


t4: All four images depict real-life scenes with people engaging in activities like playing sports or 
swimming. However, the first image shows a person playing a sport on a field, which is a more typical 
setting for a real photograph compared to the others.

a4: Terminate(“ ”)

o0: ['baseball hat', 'CD', 'dive', 'field', 'floor', 'frisbee', 'game', 'grass', 'person', 'lush', 'man', 'play', 'rugby 
player', 'tackle']


o1: ['ball', 'beach ball', 'frisbee', 'girl', 'jump', 'lake', 'sea', 'play', 'splash', 'throw', 'water', 'woman', 'yellow']


o2: ['swimwear', 'bikini', 'bikini top', 'blue', 'girl', 'jump', 'sea', 'water', 'woman']


o3:['swimwear', 'catch', 'CD', 'frisbee', 'girl', 'jump', 'lake', 'pink', 'play', 'throw', 'water', 'woman']


A

t0: The image shows a pie, likely a strawberry pie. I need to provide a general recipe for cooking a pie.

a0: QueryLanguageModel(“How to cook a strawberry pie?”)


t1: I have enough information to provide a general recipe for cooking a strawberry pie.

a1: Terminate(“

”)

o0: Cooking a strawberry pie is a delightful process, and here's a simple recipe to guide you: 
Ingredients: For the Pie Crust:\n- 2 ½ cups all-purpose flour\n- 1 cup (2 sticks) unsalted butter, ... ¼ 
teaspoon salt\n- 2 tablespoons unsalted butter, cut into small pieces...


Cooking a strawberry pie involves making a pie crust and filling with strawberries and 
sugar. Ingredients: For the Pie Crust:\n- 2 ½ cups all-purpose flour\n- 1 cup (2 sticks) unsalted 
butter, cold and cut into small pieces...For the Filling:- 5 cups fresh strawberries, hulled and 
halved\n- ¾ cup granulated sugar\n-...9. **Fill the Pie:** Pour the filling into the pie crust

Q: How to cook this dish?

A: This dish is called "Strawberry Rhubarb Pie". This strawberry rhubarb pie is a favorite springtime 
dessert in our house...Ingredients: 1 cup white sugar, ½ cup all-purpose flour...2 tablespoons white 
sugar...Step 1: Preheat oven to 400 degrees F (200 degrees C)...Step 8: Bake at 400 degrees F (200 
degrees C), for 35 to 40 minutes, or until bubbly and brown. Cool on rack.     

Figure 8. We present additional successful examples of LATTE.
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Q: How many yellow stars are on a colorful bridge?

A. 4, B. 3, D. 1C. 2, 

Q: What are all the Chinese scene text in the image?

A: 马曳<AND>著<AND>每个人都有自己的困境<AND>但总会被光亮吸引<AND>身不由己地慢慢靠近

t0: To determine the number of yellow stars on the bridge, I need to analyze the image for stars.

a0: GetObjects(image-0)


t1: The object detection did not identify yellow stars specifically. I need to visually inspect the image 
to count the yellow stars on the bridge.

a1: N/A


t2: I need to visually inspect the image to count the yellow stars on the bridge.

a2: LocalizeObjects(image-0, “star”)


t3: The image shows two stars detected on the bridge. This matches option C.

a3: Terminate(“ ”)

o0: ['building', 'car', 'christmas light', 'city', 'city street', 'light', 'night', 'night view', 'tower', 'road', 'street 
scene']


o1: N/A


o2: [{'label': 'star', 'bbox': [0.84, 0.56, 0.87, 0.6], 'score': 0.56}, 

{'label': 'star-2', 'bbox': [0.53, 0.63, 0.56, 0.66], 'score': 0.5}]}


C

Q: Can you give a short introduction to this painting? 
A: The Arnolfini Portrait (or The Arnolfini Wedding, The Arnolfini Marriage, the Portrait of Giovanni 
Arnolfini and his Wife, or other titles) is a 1434 oil painting on oak panel by the Early Netherlandish 
painter Jan van Eyck. It forms a full-length double portrait, believed to depict the Italian merchant 
Giovanni di Nicolao Arnolfini and his wife, presumably in their residence at the Flemish city of Bruges.

t0: I can provide information about the painting based on general knowledge.

a0: QueryKnowledgeBase(“The Arnolfini Portrait”)

o0: 

t1: I have enough information to provide a short introduction to the painting.

a1: Terminate(“

”)

“The Arnolfini Portrait (or The Arnolfini Wedding) is an oil painting on oak panel by the Early 
Netherlandish painter Jan van Eyck, dated 1434 and now in the National Gallery, London. It is a full-
length double portrait, believed to depict the Italian merchant Giovanni di Nicolao Arnolfini and his 
wife, presumably in their residence at the Flemish city of Bruges. (url: https://en.wikipedia.org/wiki/
Arnolfini_Portrait)


The Arnolfini Portrait is a full-length double portrait by Jan van Eyck, depicting 
Giovanni di Nicolao Arnolfini and his wife in their residence at Bruges. It is an oil painting on oak 
panel, dated 1434, and is now in the National Gallery, London

Q: I am getting two margherita pizza and one calzone. How much should I pay in total? 
A: 25.80

t0: I need to extract the prices of the margherita pizza and calzone from the image to calculate the 
total cost.

a0: OCR(image-0)


t1: The price of a margherita pizza is 5.90€, and the price of a calzone is 14.00€. I need to calculate 
the total cost for two margherita pizzas and one calzone.

a1: Calculate(“2 * 5.90 + 14.00”)


t2: The total cost for two margherita pizzas and one calzone is 25.80€.

a2: Terminate(“ ”)

o0: The text on the blackboard reads:\n\n**PIZZA**\n\n- Margherita 5.90€\n- Capricciosa 
8.50€...Funghi 6.90€\n\n**Calzone 14,00**\n\n**WI-FI FREE inside**'


o1: 25.8


25.80€

t0: I need to extract the text from the image to identify the Chinese scene text.

a0: OCR(image-0)


t1: The extracted text provides the Chinese scene text from the image.

a1: Terminate(“ ”)

o0: The text in the image is:\n\n马叙 —— 著  \n细细密密的光  \n\n每个人都有自己的困境，  \n却总会被光亮
吸引，身不由己地慢慢靠近


细细密密的光\n每个人都有自己的困境，\n却总会被光亮吸引，身不由己地慢慢靠近。

t0: To determine if the boy can reach the highest book, I need to analyze the image for the boy's 
height and the height of the bookshelf.

a0: LocalizeObjects(image-0, ["boy", "bookshelf"])


t1: The boy's height is below the bookshelf, indicating he cannot 

reach the highest book.

a1: Terminate(“ ”)

o0: [{'label': 'boy', 'bbox': [0.07, 0.48, 0.18, 0.95], 'score': 0.89}, 

{'label': 'bookshelf', 'bbox': [0.13, 0.01, 0.32, 0.72], 'score': 0.72}]


B

Q: Can the boy reach the highest book?

(A) Yes, (B) No    

t0: I need to extract the prices of the Merlot and Cabernet from the image to calculate the total price.

a0: OCR(image-0)


t1: The prices for the Merlot and Cabernet are $139.99 and $109.99, respectively. I can now calculate 
the total price.

a1: Calculate(“139.99 + 109.99”)


t2: The total price for a bottle of Merlot and a bottle of Cabernet is $249.98.

a2: Terminate(“ ”)

o0: Here are the texts from the image: NORTHSTAR MERLOT  COLUMBIA VALLEY 3.0 L  
**139.99**...CHATEAU ST MICHELLE COLD CREEK CABERNET COLUMBIA VALLEY 3.0 L **109.99** ...


o1: 249.98


$249.98

Q: What is the total price for a bottle of Merlot and a bottle of Cabernet shown in the image?

A: $249.98     

Figure 9. We present additional successful examples of LATTE.
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Q: Who created this image?

 B. EDVARD MUNCH, C. EDGAR DEGAS, D. ANDY WARHOLA. PAUL CÉZANN,

Q: Which type of eggs are in the corner of the picture?

A. Quail eggs, B. Chicken eggs

t0: To determine the creator of the artwork in image-0, I need to analyze its style and characteristics.

a0: QueryLanguageModel("Who created the painting with a dark, expressive style often associated 
with emotional intensity?")


t1: Based on the description of a dark, expressive style often associated with emotional intensity, 
Edvard Munch is the most likely creator.

a1: Terminate(“ ”)

o0: The painting style you're describing sounds like it could be associated with several artists, but 
one of the most prominent figures known for a dark, expressive style and emotional intensity is 
Edvard Munch. His famous painting "The Scream" epitomizes such characteristics...'}


B

Q: The picture shows the microscopy of Mr Tan's gastric tumour. Which of the following statements is 
CORRECT? 

A. The findings show an adenoma

B. The findings show a squamous cell carcinoma


D. The findings show diffuse signet ring cell adenocarcinoma the Flemish city of Bruges.
C. The findings show intestinal type adenocarcinoma


Q: Is the wind blowing the flag?

A. Yes, B. No

t0: To determine if the wind is blowing the flag, I need to analyze the image for signs of movement or 
distortion in the flag.

a0: GetObjects(image-0)


t1: The presence of 'wind' and 'wave' in the detected objects suggests that the flag is indeed being 
blown by the wind.

a1: Terminate(“ ”)

o0: ['blue', 'flag', 'flag pole', 'fly', 'mast', 'pole', 'sky', 'wave', 'wind']}


A

t0: To determine the type of eggs in the corner of the image, I need to analyze the visual characteristics 
of the eggs.

a0: GetObjects(image-0)


t1: The object detection did not identify the eggs specifically. However, based on the visual 
characteristics of the eggs in the image, they appear to be quail eggs due to their small size.

a1: Terminate(“ ”)

o0: ['bakery', 'bread', 'butter', 'table', 'dip', 'dough', 'flour', 'food', 'hummus', 'pastry', 'platter', 'tray', 'type']


A

t0: To determine the angle of the image, I need to analyze the perspective and orientation of the snake.

a0: GetObjects(image-0)


t1: The image shows a snake from a side view, as the snake's body is visible from the side rather than 
directly facing the camera.

a1: Terminate(“ ”)

o0: ['branch', 'green', 'log', 'reptile', 'sit', 'snake', 'stool', 'tail', 'tree', 'tree branch', 'tree trunk', 'twig']


B

Q: From which angle is this image taken?

, B. Side    A. Front

t0: To determine the correct statement, I need to analyze the microscopic features in the image.

a0: QueryLanguageModel(“What are the microscopic features of adenoma, squamous cell 
carcinoma, intestinal type adenocarcinoma, and diffuse signet ring cell adenocarcinoma?”)

o0: 

t1: The image shows a gastric tumour with specific architectural and cellular features. Based on the 
options, diffuse signet ring cell adenocarcinoma is known for its distinct signet ring cells, which may 
be present in the image.

a1: Terminate(“ ”)

“The microscopic features of the mentioned conditions are distinct and reflective of their 
pathological origins: 1. **Adenoma**:   - **Architectural Features**: Typically show glandular 
structures with some degree of dysplasia...3. **Intestinal Type Adenocarcinoma**:   - **Architectural 
Features**: Gland-forming neoplasm with varying degrees of differentiation...'})


D

t0:To determine the type and size of the image formed, we need to analyze the position of the object 
relative to the focal length.", "actions": [{"name": "", "arguments": {"query": ""}}]}

a0: QueryLanguageModel(“What type of image is formed when an object is placed at a distance of 
1.5f from a converging lens of focal length f?”)


t1: The image is real and inverted, and the magnification indicates that the image size is larger than 
the object.

a1: Terminate(“ ”)


o0: When an object is placed at a distance of 1.5 times the focal length (1.5f) from a converging lens, 
the lens forms a real, inverted, and magnified image...Additionally, to find the magnification \\( m \\), 
we use:\n\n\\[\nm = \\frac{v}{u} = \\frac{\\frac{3f}{5}}{1.'}


A

Q: An object is placed at a distance of 1.5f from a converging lens of focal length f, as shown. What 
type of image is formed and what is its size relative to the object? Type/Size 

A. Virtual/Larger 
B. Virtual/Same size 
C. Real/Smaller 
D. Real/Larger    

Figure 10. We present additional failure cases of LATTE.
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Table 13. Templates for programmatic data generation.

# of input images Capabilities Question Template Action Template

1

Counting
How many {object} are there?

LocalizeObjects

Among {objects}, which is the most frequent object?
Among {objects}, which object appears the least?

Counting, Attribute recognition How many {attribute} {object} are there?

2D spatial reasoning

Among {objects}, which is on the most left side?
Among {objects}, which is on the most right side?
Among {objects}, which is on the most top side?
Among {objects}, which is on the most bottom side?

3D spatial reasoning Which of {objects} is closer? LocalizeObjects, EstimateRegionDepth x2
OR, EstimateObjectDepth x2Which of {objects} is farther?

2-3

Multi-image understanding Which image has {object}?

LocalizeObjects x N

Multi-image understanding, Counting How many {object} are in in these images?
Multi-image understanding, Counting Which image has most {object}?
Multi-image understanding, Counting Which image has least {object}?
Multi-image understanding, Attribute recognition Which image has {attribute} {object}?
Multi-image understanding, Attribute recognition, Counting How many {attribute} {object} in these images?

Figure 11. Action distribution of model-generated data vs. model and program data mixtures.

Table 14. Additional inference and evaluation details.

Stage Name Value

Inference

do sample FALSE
temperature 0
max new tokens 2000
max consecutive auto reply 10

Evaluation

llm judge for multiple choice & yes/no questions gpt-3.5-turbo-0125
llm judge for short answer questions (i.e. MMVet, MathVista) gpt-4-1106-preview
llm judge max new tokens 2048
llm judge retry 5
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1 class BaseAction:998
2 """999
3 This is the Action class for agent to use.1000
4 Using this Action class to wrap APIs, tools, models as an Action of an agent1001
5 """1002
61003
7 def __init__(1004
8 self,1005
9 id: int,1006

10 description: str = "",1007
11 args_spec: dict = {},1008
12 rets_spec: dict = {},1009
13 examples: List = []1010
14 ) -> None:1011
15 """1012
16 the agent action should be connected with data and env1013
17 Args:1014
18 id: the id of the action1015
19 description: the description of the action1016
20 args_spec: the specification of the arguments1017
21 rets_spec: the specification of the returns1018
22 examples: a list of examples of the action1019
23 """1020
24 self.name = self.__class__.__name__1021
25 self.id = id1022
26 self.description = description1023
27 self.args_spec = args_spec1024
28 self.rets_spec = rets_spec1025
29 self.examples = examples1026
30 self.device = "cuda:0" if torch.cuda.is_available() else "cpu"1027
311028
32 def __call__(self, **kwargs) -> str:1029
33 """1030
34 implement the Action as1031
35 """1032
36 raise NotImplementedError1033
371034
381035
39 class OCR(BaseAction):1036
40 def __init__(self, id) -> None:1037
41 description = "Extract texts from an image or return an empty string if no text is in the image1038

. Note that the texts extracted may be incorrect or in the wrong order. It should be used as a1039
reference only."1040

42 args_spec = {"image": "the image to extract texts from."}1041
43 rets_spec = {"text": "the texts extracted from the image."}1042
44 examples = [{"name": "OCR", "arguments": {"image": "image-0"}}]1043
451044
46 super().__init__(1045
47 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples1046
48 )1047
491048
50 def __call__(self, image, tool_version=LATEST_GPT_MODEL_ID):1049
51 if tool_version == "easyocr":1050
52 import easyocr1051
53 import io1052
54 reader = easyocr.Reader(["en"]) # Load the OCR model into memory1053
55 image = image_processing(image)1054
56 if isinstance(image, str):1055
57 # If image is a path, use it directly1056
58 image_path_or_bytes = (1057
59 image if os.path.exists(image) else get_full_path_data(image)1058
60 )1059
61 else:1060
62 # If image is an Image object, convert it to a bytes stream1061
63 buffer = io.BytesIO()1062
64 image.save(buffer, format="JPEG")1063
65 buffer.seek(0)1064
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66 image_path_or_bytes = buffer 1065
67 1066
68 result = reader.readtext(image_path_or_bytes) 1067
69 result_text = [text for _, text, _ in result] 1068
70 result_formatted = {"text": ", ".join(result_text)} 1069
71 else: 1070
72 from openai import OpenAI 1071
73 import base64 1072
74 client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) 1073
75 1074
76 def encode_image(image_path): 1075
77 with open(image_path, "rb") as image_file: 1076
78 return base64.b64encode(image_file.read()).decode(’utf-8’) 1077
79 1078
80 image_path = image_processing(image, return_path=True) 1079
81 base64_image = encode_image(image_path) 1080
82 1081
83 response = client.chat.completions.create( 1082
84 model=tool_version, 1083
85 messages=[ 1084
86 { 1085
87 "role" : "user", 1086
88 "content": [ 1087
89 {"type": "text", "text": f"What are the texts in the image?"}, 1088
90 { 1089
91 "type" : "image_url", 1090
92 "image_url": { 1091
93 "url": f"data:image/jpeg;base64,{base64_image}", 1092
94 }, 1093
95 }, 1094
96 ], 1095
97 } 1096
98 ], 1097
99 max_tokens=300, 1098

100 ) 1099
101 result_formatted = {"text": response.choices[0].message.content} 1100
102 1101
103 return result_formatted 1102
104 1103
105 1104
106 class GetObjects(BaseAction): 1105
107 def __init__(self, id) -> None: 1106
108 description = "Using this function to get objects in an image." 1107
109 args_spec = {"image": "the image to get objects from."} 1108
110 rets_spec = {"objects": "the objects detected in the image."} 1109
111 examples = [{"name": "GetObjects", "arguments": {"image": "image-0"}}] 1110
112 1111
113 super().__init__( 1112
114 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples 1113
115 ) 1114
116 1115
117 def __call__(self, image, tool_version="https://huggingface.co/xinyu1205/recognize-anything-plus- 1116

model/resolve/main/ram_plus_swin_large_14m.pth?download=true"): 1117
118 from ram.models import ram_plus 1118
119 from ram import get_transform, inference_ram_openset as inference 1119
120 1120
121 model_path_or_url = tool_version 1121
122 image_size = 384 1122
123 transform = get_transform(image_size=image_size) 1123
124 1124
125 vit_size = "swin_l" 1125
126 # load model 1126
127 model = ram_plus(pretrained=model_path_or_url, 1127
128 image_size=image_size, 1128
129 vit=vit_size) 1129
130 model.eval() 1130
131 model = model.to(self.device) 1131
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132 image = image_processing(image)1132
133 image = transform(image).unsqueeze(0).to(self.device)1133
134 tags = inference(image, model)1134
135 objs = tags.split(" | ")1135
136 return {"objects": objs}1136
1371137
1381138
139 class VisualizeRegionsOnImage(BaseAction):1139
140 def __init__(self, id) -> None:1140
141 description = "Using this function to label regions on an image."1141
142 args_spec = {"image": "the image to label.",1142
143 "regions": "the regions to label on the image, where each region is represented by1143

a dictionary with the region’s bounding box and label text (can be empty string).",1144
144 "color": "an optional argument that specifies the color of the bounding box."1145
145 }1146
146 rets_spec = {"image": "the image with regions labeled."}1147
147 examples = [1148
148 {"name": "VisualizeRegionsOnImage", "arguments": {"image": "image-0", "regions": [{"label":1149

"", "bbox": [0.3, 0.2, 0.5, 0.4]}]}},1150
149 {"name": "VisualizeRegionsOnImage", "arguments": {"image": "image-0", "regions": [{"label":1151

"cat", "bbox": [0.3, 0.2, 0.5, 0.4]}], "color": "red"}}1152
150 ]1153
1511154
152 super().__init__(1155
153 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples1156
154 )1157
1551158
156 def __call__(self, image, regions: List[Region], color=’yellow’, width=4):1159
157 image = image_processing(image)1160
158 text_color = ’black’1161
159 W,H = image.size1162
160 img1 = image.copy()1163
161 draw = ImageDraw.Draw(img1)1164
162 font = ImageFont.truetype(’/usr/share/fonts/truetype/dejavu/DejaVuSansMono-Bold.ttf’, 16)1165
163 for i, obj in enumerate(regions):1166
164 bbox = obj[’bbox’]1167
165 bbox = bbox[0] * W, bbox[1] * H, bbox[2] * W, bbox[3] * H1168
166 draw.rectangle(bbox, outline=color, width=width)1169
167 x1, y1, x2, y2 = bbox1170
168 label = obj[’label’] if "label" in obj else ""1171
169 w,h = font.getsize(label)1172
170 if x1 + w > W or y2 +h > H:1173
171 draw.rectangle((x1, y2 - h, x1 + w, y2), fill=color)1174
172 draw.text((x1, y2-h),label,fill=text_color,font=font)1175
173 else:1176
174 draw.rectangle((x1, y2, x1 + w, y2 + h), fill=color)1177
175 draw.text((x1, y2),label,fill=text_color,font=font)1178
176 return {"image": img1}1179
1771180
1781181
179 class LocalizeObjects(BaseAction):1182
180 def __init__(self, id) -> None:1183
181 description = "Localize one or multiple objects/regions with bounding boxes. This tool may1184

output objects that don’t exist or miss objects that do. You should use the output only as weak1185
evidence for reference. When answering questions about the image, you should double-check the1186
detected objects. You should be especially cautious about the total number of regions detected,1187
which can be more or less than the actual number."1188

182 args_spec = {1189
183 "image": "the image to localize objects/regions in.",1190
184 "objects": "a list of object names to localize. e.g. [’dog’, ’cat’, ’person’]. the model1191

might not be able to detect rare objects or objects with complex descriptionriptions."1192
185 }1193
186 rets_spec = {"image": "the image with objects localized and visualized on it.", "regions": "the1194

regions of interests localized in the image, where each region is represented by a dictionary with1195
the region’s label text, bounding box and confidence score. The confidence score is between 0 and1196
1, where 1 means the model is very confident. Note that both the bounding boxes and confidence1197
scores can be unreliable and should only be used as reference."}1198
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187 examples = [{"name": "LocalizeObjects", "arguments": {"image": "image-0", "objects": ["dog", " 1199
cat"]}}] 1200

188 1201
189 super().__init__( 1202
190 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples 1203
191 ) 1204
192 1205
193 def __call__(self, image, objects: List[str]): 1206
194 from groundingdino.util.inference import load_model, load_image, predict, annotate 1207
195 import cv2 1208
196 text = ". ".join(objects) 1209
197 model = load_model("/user/mma/mma/GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py 1210

", 1211
198 "/user/mma/mma/GroundingDINO/weights/groundingdino_swint_ogc.pth", 1212
199 device=self.device) 1213
200 BOX_TRESHOLD = 0.35 1214
201 TEXT_TRESHOLD = 0.25 1215
202 image_path = image_processing(image, return_path=True) 1216
203 original_image = image_processing(image) 1217
204 image_source, image = load_image(image_path) 1218
205 1219
206 boxes, logits, phrases = predict( 1220
207 model=model, 1221
208 image=image, 1222
209 caption=text, 1223
210 box_threshold=BOX_TRESHOLD, 1224
211 text_threshold=TEXT_TRESHOLD 1225
212 ) 1226
213 1227
214 objects = [] 1228
215 obj_cnt = {} 1229
216 for i in range(len(boxes)): 1230
217 xyxy = box_convert(boxes=boxes[i], in_fmt="cxcywh", out_fmt="xyxy").numpy() 1231
218 bbox = [round(val, 2) for val in list(xyxy)] 1232
219 score = round(logits[i].item(), 2) 1233
220 phrase = phrases[i] 1234
221 obj_cnt[phrase] = obj_cnt.get(phrase, 0) + 1 1235
222 phrase = f"{phrase}-{obj_cnt[phrase]}" if obj_cnt[phrase] > 1 else phrase 1236
223 objects.append({"label": phrase, "bbox": bbox, "score": score}) 1237
224 visualize = VisualizeRegionsOnImage(0) 1238
225 results = visualize(image=original_image, regions=objects) 1239
226 tagged_image = results["image"] 1240
227 results_formatted = {"regions": objects, "image": tagged_image} 1241
228 return results_formatted 1242
229 1243
230 1244
231 class Crop(BaseAction): 1245
232 def __init__(self, id) -> None: 1246
233 description = "Crop an image with the bounding box. It labels the cropped region with a 1247

bounding box and crops the region with some margins around the bounding box to help with contextual 1248
understanding of the region." 1249

234 args_spec = { 1250
235 "image": "the image to crop.", 1251
236 "bbox": "the bbox to crop. It should be a list of [left, top, right, bottom], where each 1252

value is a float between 0 and 1 to represent the percentage of the image width/height and how far 1253
it is from the top left corner at [0, 0].", 1254

237 } 1255
238 rets_spec = {"image": "the cropped image."} 1256
239 examples = [{"name": "Crop", "arguments": {"image": "image-0", "bbox": [0.33, 0.21, 0.58, 1257

0.46]}}] 1258
240 1259
241 super().__init__( 1260
242 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples 1261
243 ) 1262
244 1263
245 def __call__(self, image, bbox): 1264
246 image = image_processing(image) 1265
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2471266
248 if isinstance(bbox, str):1267
249 try:1268
250 bbox = ast.literal_eval(bbox)1269
251 except:1270
252 bbox = []1271
2531272
254 use_percent = (all(x <= 1.0 for x in bbox))1273
255 if not use_percent:1274
256 raise ValueError("Bounding box coordinates must be between 0 and 1.")1275
2571276
258 visualize = VisualizeRegionsOnImage(0)1277
259 results = visualize(image=image, regions=[{"label": "", "bbox": bbox}])1278
260 image = results["image"]1279
2611280
262 W, H = image.size1281
263 bbox = [bbox[0] * W, bbox[1] * H, bbox[2] * W, bbox[3] * H]1282
264 bbox = expand_bbox(bbox, image.size)1283
265 out_img = image.crop(bbox)1284
266 return {"image": out_img}1285
2671286
2681287
269 class ZoomIn(BaseAction):1288
270 def __init__(self, id) -> None:1289
271 description = "Zoom in on a region of the input image. This tool first crops the specified1290

region from the image with the bounding box and then resizes the cropped region to create the zoom1291
effect. It also adds some margins around the cropped region to help with contextual understanding1292
of the region."1293

272 args_spec = {1294
273 "image": "the image to zoom in on.",1295
274 "bbox": "The bbox should be a list of [left, top, right, bottom], where each value is a1296

float between 0 and 1 to represent the percentage of the image width/height and how far it is from1297
the top left corner at [0, 0].",1298

275 "zoom_factor": "the factor to zoom in by. It should be greater than 1.",1299
276 }1300
277 rets_spec = {"image": "the zoomed in image."}1301
278 examples = [1302
279 {"name": "ZoomIn", "arguments": {"image": "image-0", "bbox": [0.4, 0.3, 0.5, 0.4], "1303

zoom_factor": 2}},1304
280 ]1305
2811306
282 super().__init__(1307
283 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples1308
284 )1309
2851310
286 def __call__(self, image, bbox, zoom_factor):1311
287 if zoom_factor <= 1:1312
288 raise ValueError("Zoom factor must be greater than 1 to zoom in")1313
2891314
290 image = image_processing(image)1315
291 use_percent = (all(x <= 1.0 for x in bbox))1316
292 if not use_percent:1317
293 raise ValueError("Bounding box coordinates must be between 0 and 1.")1318
2941319
295 crop = Crop(0)1320
296 cropped_image = crop(image, bbox)["image"]1321
2971322
298 W, H = cropped_image.size1323
2991324
300 # Calculate the size of the zoomed image1325
301 new_width = int(W * zoom_factor)1326
302 new_height = int(H * zoom_factor)1327
3031328
304 # Resize the cropped image to create the zoom effect1329
305 zoomed_image = cropped_image.resize((new_width, new_height), Image.LANCZOS)1330
306 return {’image’: zoomed_image}1331
3071332
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308 1333
309 class GetImageToImagesSimilarity(BaseAction): 1334
310 def __init__(self, id) -> None: 1335
311 description = "Get the similarity between one image and a list of other images. Note that this 1336

similarity score may not be accurate and should be used as a reference only." 1337
312 args_spec = { 1338
313 "image": "the reference image.", 1339
314 "other_images": "the other images to compare to the reference image.", 1340
315 } 1341
316 rets_spec = {"similarity": "the CLIP similarity scores between the reference image and the 1342

other images.", "best_image_index": "the index of the most similar image."} 1343
317 examples = [ 1344
318 {"name": "GetImageToImagesSimilarity", "arguments": {"image": "image-0", "other_images": [" 1345

image-1", "image-2"]}} 1346
319 ] 1347
320 1348
321 super().__init__( 1349
322 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples 1350
323 ) 1351
324 1352
325 def __call__(self, image, other_images, tool_version=’ViT-H-14-378-quickgelu’, other_images_raw= 1353

None): 1354
326 import torch 1355
327 import open_clip 1356
328 original_images = other_images_raw 1357
329 model, _, preprocess = open_clip.create_model_and_transforms(tool_version, pretrained=’dfn5b’) 1358
330 model.eval() 1359
331 image = image_processing(image) 1360
332 images = [image_processing(image) for image in other_images] 1361
333 1362
334 image = preprocess(image).unsqueeze(0) 1363
335 images = torch.stack([preprocess(image) for image in images]) 1364
336 1365
337 with torch.no_grad(), torch.cuda.amp.autocast(): 1366
338 image1_features = model.encode_image(image) 1367
339 image2_features = model.encode_image(images) 1368
340 1369
341 image1_features /= image1_features.norm(dim=-1, keepdim=True) 1370
342 image2_features /= image2_features.norm(dim=-1, keepdim=True) 1371
343 1372
344 probs = image1_features @ image2_features.T 1373
345 sim_scores = [round(sim_score, 2) for sim_score in probs[0].tolist()] 1374
346 best_image_match = torch.argmax(probs).item() 1375
347 return {’similarity’: sim_scores, "best_image_index": best_image_match, "best_image": 1376

original_images[best_image_match]} 1377
348 1378
349 1379
350 class GetImageToTextsSimilarity(BaseAction): 1380
351 def __init__(self, id) -> None: 1381
352 description = "Get the similarity between one image and a list of texts. Note that this 1382

similarity score may not be accurate and should be used as a reference only." 1383
353 args_spec = { 1384
354 "image": "the reference image.", 1385
355 "texts": "a list of texts to compare to the reference image.", 1386
356 } 1387
357 rets_spec = {"similarity": "the CLIP similarity between the image and the texts.", " 1388

best_text_index": "the index of the most similar text.", "best_text": "the most similar text."} 1389
358 examples = [ 1390
359 {"name": "GetImageToTextsSimilarity", "arguments": {"image": "image-0", "texts": ["a cat", 1391

"a dog"]}} 1392
360 ] 1393
361 1394
362 super().__init__( 1395
363 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples 1396
364 ) 1397
365 1398
366 def __call__(self, image, texts, tool_version=’ViT-H-14-378-quickgelu’): 1399
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367 import torch1400
368 import open_clip1401
3691402
370 model, _, preprocess = open_clip.create_model_and_transforms(tool_version, pretrained=’dfn5b’)1403
371 model.eval() # model in train mode by default, impacts some models with BatchNorm or1404

stochastic depth active1405
372 tokenizer = open_clip.get_tokenizer(tool_version)1406
3731407
374 image = preprocess(image_processing(image)).unsqueeze(0)1408
375 text = tokenizer(texts)1409
3761410
377 with torch.no_grad(), torch.cuda.amp.autocast():1411
378 image_features = model.encode_image(image)1412
379 text_features = model.encode_text(text)1413
380 image_features /= image_features.norm(dim=-1, keepdim=True)1414
381 text_features /= text_features.norm(dim=-1, keepdim=True)1415
3821416
383 probs = image_features @ text_features.T1417
384 sim_scores = [round(sim_score, 2) for sim_score in probs[0].tolist()]1418
385 best_text_match = torch.argmax(probs).item()1419
386 return {’similarity’: sim_scores, "best_text_index": best_text_match, "best_text": texts[1420

best_text_match]}1421
3871422
3881423
389 class GetTextToImagesSimilarity(BaseAction):1424
390 def __init__(self, id) -> None:1425
391 description = "Get the similarity between one text and a list of images. Note that this1426

similarity score may not be accurate and should be used as a reference only."1427
392 args_spec = {1428
393 "text": "the reference text.",1429
394 "images": "a list of images to compare to the reference text.",1430
395 }1431
396 rets_spec = {"similarity": "the CLIP similarity between the image and the texts.", "1432

best_image_index": "the index of the most similar image."}1433
397 examples = [1434
398 {"name": "GetTextToImagesSimilarity", "arguments": {"text": "a black and white cat", "1435

images": ["image-0", "image-1"]}}1436
399 ]1437
4001438
401 super().__init__(1439
402 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples1440
403 )1441
4041442
405 def __call__(self, text, images, tool_version=’ViT-H-14-378-quickgelu’):1443
406 import torch1444
407 import open_clip1445
408 original_images = images1446
409 model, _, preprocess = open_clip.create_model_and_transforms(tool_version, pretrained=’dfn5b’)1447
410 model.eval() # model in train mode by default, impacts some models with BatchNorm or1448

stochastic depth active1449
411 tokenizer = open_clip.get_tokenizer(tool_version)1450
4121451
413 text = tokenizer([text])1452
414 images = [image_processing(image) for image in images]1453
415 images = torch.stack([preprocess(image) for image in images])1454
4161455
417 with torch.no_grad(), torch.cuda.amp.autocast():1456
418 image_features = model.encode_image(images)1457
419 text_features = model.encode_text(text)1458
420 image_features /= image_features.norm(dim=-1, keepdim=True)1459
421 text_features /= text_features.norm(dim=-1, keepdim=True)1460
4221461
423 probs = text_features @ image_features.T1462
424 sim_scores = [round(sim_score, 2) for sim_score in probs[0].tolist()]1463
425 best_image_match = torch.argmax(probs).item()1464
426 return {’similarity’: sim_scores, "best_image_index": best_image_match, "best_image":1465

original_images[best_image_match]}1466
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427 1467
428 1468
429 class EstimateObjectDepth(BaseAction): 1469
430 def __init__(self, id) -> None: 1470
431 description = "Estimate the depth of an object in an image using DepthAnything model. It 1471

returns an estimated depth value of the object specified by the a brief text description. The 1472
smaller the value is, the closer the object is to the camera, and the larger the farther. This tool 1473
may help you to better reason about the spatial relationship, like which object is closer to the 1474
camera." 1475

432 args_spec = { 1476
433 "image": "the image to get the depth from.", 1477
434 "object": "a short description of the object to get the depth from.", 1478
435 } 1479
436 rets_spec = {"depth": "the estimated depth of the object."} 1480
437 examples = [ 1481
438 {"name": "EstimateObjectDepth", "arguments": {"image": "image-0", "object": "a black cat" 1482

}}, 1483
439 ] 1484
440 1485
441 super().__init__( 1486
442 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples 1487
443 ) 1488
444 1489
445 def __call__(self, image, object, mode="mean"): 1490
446 action = LocalizeObjects(0) 1491
447 results = action(image=image, objects=[object]) 1492
448 if len(results["regions"]) == 0: 1493
449 return {"depth": "Object not found."} 1494
450 else: 1495
451 # use the best match object’s bbox 1496
452 best_match = np.argmax([region["score"] for region in results["regions"]]) 1497
453 bbox = results["regions"][best_match]["bbox"] 1498
454 depth_estimator = EstimateRegionDepth(0) 1499
455 return depth_estimator(image=image, bbox=bbox, mode=mode) 1500
456 1501
457 1502
458 class EstimateRegionDepth(BaseAction): 1503
459 def __init__(self, id) -> None: 1504
460 description = "Estimate the depth of a region in an image using DepthAnything model. It returns 1505

an estimated depth value of the region specified by the input bounding box. The smaller the value 1506
is, the closer the region is to the camera, and the larger the farther. This tool may help you to 1507
better reason about the spatial relationship, like which object is closer to the camera. " 1508

461 args_spec = { 1509
462 "image": "the image to get the depth from.", 1510
463 "bbox": "the bbox of the region to get the depth from. It should be a list of [left, top, 1511

right, bottom], where each value is a float between 0 and 1 to represent the percentage of the 1512
image width/height and how far it is from the top left corner at [0, 0].", 1513

464 # "mode": "the mode to get the depth. It should be one of ’center’ or ’average’. ’center’ 1514
returns the depth of the center of the region. ’average’ returns the average depth of the region.", 1515

465 } 1516
466 rets_spec = {"depth": "the estimated depth of the region."} 1517
467 examples = [ 1518
468 {"name": "EstimateRegionDepth", "arguments": {"image": "image-0", "bbox": [0.3, 0.2, 0.5, 1519

0.4]}}, 1520
469 ] 1521
470 super().__init__( 1522
471 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples 1523
472 ) 1524
473 1525
474 def __call__(self, image, bbox: List[str], mode="mean"): 1526
475 import numpy as np 1527
476 from scipy import stats 1528
477 image = image_processing(image) 1529
478 depth_model = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-V2-Small- 1530

hf", device=self.device) 1531
479 result = depth_model(image) 1532
480 depth = result["predicted_depth"][0].numpy() 1533
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481 depth = depth.max() - depth # smaller values in depth map are farther from the camera so1534
reversing the values1535

482 H, W = depth.shape1536
4831537
484 use_percent = all(x <= 1.0 for x in bbox)1538
485 if not use_percent:1539
486 raise ValueError("Bounding box coordinates must be between 0 and 1.")1540
487 bbox = [bbox[0] * W, bbox[1] * H, bbox[2] * W, bbox[3] * H]1541
488 if mode == "center":1542
489 x, y = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 21543
490 x, y = int(x), int(y)1544
491 depth_value = depth[y, x]1545
492 elif mode == "mean":1546
493 x1, y1, x2, y2 = bbox1547
494 x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)1548
495 depth_value = np.mean(depth[y1:y2, x1:x2])1549
496 elif mode == "mode":1550
497 x1, y1, x2, y2 = bbox1551
498 x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)1552
499 mode_result = stats.mode(depth[y1:y2, x1:x2])1553
500 depth_value = mode_result.mode[0]1554
501 else:1555
502 raise NotImplementedError(f"Depth mode {mode} is not supported.")1556
503 return {"depth": round(depth_value, 2)}1557
5041558
5051559
506 class Calculate(BaseAction):1560
507 def __init__(self, id) -> None:1561
508 description = "Calculate a math expression."1562
509 args_spec = {"expression": "the math expression to calculate."}1563
510 rets_spec = {"result": "the result of the math expression."}1564
511 examples = [1565
512 {"name": "Calculate", "arguments": {"expression": "2 + 2"}},1566
513 {"name": "Calculate", "arguments": {"expression": "4*9*84"}},1567
514 {"name": "Calculate", "arguments": {"expression": "5-4/2"}},1568
515 ]1569
5161570
517 super().__init__(1571
518 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples1572
519 )1573
5201574
521 def __call__(self, expression):1575
522 result = eval(expression)1576
523 return {"result": result}1577
5241578
5251579
526 class SolveMathEquation(BaseAction):1580
527 def __init__(self, id) -> None:1581
528 description = "Using this action to solve a math problem with WolframAlpha."1582
529 args_spec = {"query": "a question that involves a math equation to be solved."}1583
530 rets_spec = {"result": "the result of the query."}1584
531 examples = [1585
532 {"name": "SolveMathEquation", "arguments": {"query": "2 + 2=?"}},1586
533 {"name": "SolveMathEquation", "arguments": {"query": "xˆ2 + 2x + 1 = 0, what is x?"}},1587
534 ]1588
5351589
536 self.client = wolframalpha.Client(os.getenv("WOLFRAM_ALPHA_API_KEY"))1590
537 super().__init__(1591
538 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples1592
539 )1593
5401594
541 def __call__(self, query):1595
542 from urllib.error import HTTPError1596
5431597
544 is_success = False1598
5451599
546 res = self.client.query(query)1600
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547 1601
548 if not res["@success"]: 1602
549 return ( 1603
550 "Your Wolfram query is invalid. Please try a new query for wolfram.", 1604
551 is_success, 1605
552 ) 1606
553 assumption = next(res.pods).text 1607
554 answer = "" 1608
555 for result in res["pod"]: 1609
556 if result["@title"] == "Solution": 1610
557 answer = result["subpod"]["plaintext"] 1611
558 if result["@title"] == "Results" or result["@title"] == "Solutions": 1612
559 for i, sub in enumerate(result["subpod"]): 1613
560 answer += f"ans {i}: " + sub["plaintext"] + "\n" 1614
561 break 1615
562 if answer == "": 1616
563 answer = next(res.results).text 1617
564 1618
565 if answer is None or answer == "": 1619
566 return {"result": "No good Wolfram Alpha Result was found"} 1620
567 else: 1621
568 return {"result": answer} 1622
569 1623
570 1624
571 class DetectFaces(BaseAction): 1625
572 def __init__(self, id) -> None: 1626
573 description = "Using this function to detect faces in an image." 1627
574 args_spec = {"image": "the image to detect faces from."} 1628
575 rets_spec = {"image": "the image with objects localized and visualized on it.", "regions": "the 1629

regions of the faces detected, where each regin is represented by a dictionary with the region’s 1630
label text and bounding box."} 1631

576 examples = [ 1632
577 {"name": "DetectFaces", "arguments": {"image": "image-0"}} 1633
578 ] 1634
579 import face_detection 1635
580 ckpt_path = f"/root/.cache/torch/hub/checkpoints/WIDERFace_DSFD_RES152.pth" 1636
581 if not os.path.exists(ckpt_path): 1637
582 from huggingface_hub import hf_hub_download 1638
583 hf_hub_download(repo_id="user/mma", filename="WIDERFace_DSFD_RES152.pth", local_dir="/root 1639

/.cache/torch/hub/checkpoints/") 1640
584 1641
585 self.model = face_detection.build_detector( 1642
586 "DSFDDetector", confidence_threshold=.5, nms_iou_threshold=.3) 1643
587 super().__init__( 1644
588 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples 1645
589 ) 1646
590 1647
591 def enlarge_face(self,box,W,H,f=1.5): 1648
592 x1,y1,x2,y2 = box 1649
593 w = int((f-1)*(x2-x1)/2) 1650
594 h = int((f-1)*(y2-y1)/2) 1651
595 x1 = max(0,x1-w) 1652
596 y1 = max(0,y1-h) 1653
597 x2 = min(W,x2+w) 1654
598 y2 = min(H,y2+h) 1655
599 return [x1,y1,x2,y2] 1656
600 1657
601 def __call__(self, image): 1658
602 import numpy as np 1659
603 image = image_processing(image) 1660
604 1661
605 with torch.no_grad(): 1662
606 faces = self.model.detect(np.array(image)) 1663
607 1664
608 W,H = image.size 1665
609 objs = [] 1666
610 for i,box in enumerate(faces): 1667
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611 x1,y1,x2,y2,c = [int(v) for v in box.tolist()]1668
612 normalized_bbox = [x1/W, y1/H, x2/W, y2/H]1669
613 objs.append(dict(1670
614 bbox=[round(num, 2) for num in normalized_bbox],1671
615 label=f’face {i+1}’ if i > 0 else ’face’,1672
616 ))1673
617 visualize = VisualizeRegionsOnImage(0)1674
618 results = visualize(image=image, regions=objs)1675
619 tagged_image = results["image"]1676
620 results_formatted = {"regions": objs, "image": tagged_image}1677
621 return results_formatted1678
6221679
6231680
624 class QueryLanguageModel(BaseAction):1681
625 def __init__(self, id) -> None:1682
626 description = "Using this function to ask a language model a question."1683
627 args_spec = {"query": "the question to ask the language model."}1684
628 rets_spec = {"result": "the response from the language model."}1685
629 examples = [1686
630 {"name": "QueryLanguageModel", "arguments": {"query": "What is the capital of France?"}},1687
631 ]1688
632 super().__init__(1689
633 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples1690
634 )1691
6351692
636 def __call__(self, query):1693
637 from openai import OpenAI1694
638 client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))1695
6391696
640 response = client.chat.completions.create(1697
641 model=LATEST_GPT_MODEL_ID,1698
642 messages=[1699
643 {1700
644 "role" : "user",1701
645 "content": [1702
646 {"type": "text", "text": f"{query}"},1703
647 ],1704
648 }1705
649 ],1706
650 max_tokens=300,1707
651 )1708
6521709
653 return {’result’: response.choices[0].message.content}1710
6541711
6551712
656 class QueryKnowledgeBase(BaseAction):1713
657 def __init__(self, id) -> None:1714
658 description = "Using this function to query a knowledge base."1715
659 args_spec = {"query": "the query to search in a knowledge base such as wikipedia."}1716
660 rets_spec = {"result": "the answer from the knowledge base."}1717
661 examples = [1718
662 {"name": "QueryKnowledgeBase", "arguments": {"query": "Paris"}},1719
663 ]1720
6641721
665 super().__init__(1722
666 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples1723
667 )1724
6681725
669 def __call__(self, query, lang="en", sentences=2, knowledge_base="wikipedia"):1726
670 if knowledge_base == "wikipedia":1727
671 # Set the language for Wikipedia (default is ’en’ for English)1728
672 wikipedia.set_lang(lang)1729
6731730
674 # Search Wikipedia for pages related to the query1731
675 search_results = wikipedia.search(query)1732
676 if not search_results:1733
677 return {"No results found."}1734
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678 1735
679 # Get the summary of the first search result 1736
680 page = wikipedia.page(search_results[0]) 1737
681 summary = wikipedia.summary(page.title, sentences=sentences) 1738
682 result = { 1739
683 "title": page.title, 1740
684 "url": page.url, 1741
685 "summary": summary 1742
686 } 1743
687 return result 1744
688 else: 1745
689 raise NotImplementedError(f"Knowledge base {knowledge_base} is not supported.") 1746
690 1747
691 1748
692 class Terminate(BaseAction): 1749
693 def __init__(self, id) -> None: 1750
694 description = "Using this function to finish the task." 1751
695 args_spec = {"answer": "the final answer."} 1752
696 rets_spec = {"answer": "the final answer."} 1753
697 examples = [{"name": "Terminate", "arguments": {"answer": "yes"}}] 1754
698 1755
699 super().__init__( 1756
700 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=examples 1757
701 ) 1758
702 1759
703 def __call__(self, answer): 1760
704 return {"answer": answer} 1761

Listing 1. Python implementation of all actions
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1 [BEGIN OF GOAL]1762
2 You are a helpful assistant, and your goal is to solve the # USER REQUEST #. You can either rely on1763

your own capabilities or perform actions with external tools to help you. A list of all available1764
actions are provided to you in the below.1765

3 [END OF GOAL]1766
41767
5 [BEGIN OF ACTIONS]1768
6 Name: OCR1769
7 Description: Extract texts from an image or return an empty string if no text is in the image. Note1770

that the texts extracted may be incorrect or in the wrong order. It should be used as a reference1771
only.1772

8 Arguments: {’image’: ’the image to extract texts from.’}1773
9 Returns: {’text’: ’the texts extracted from the image.’}1774

10 Examples:1775
11 {"name": "OCR", "arguments": {"image": "image-0"}}1776
121777
13 Name: LocalizeObjects1778
14 Description: Localize one or multiple objects/regions with bounding boxes. This tool may output objects1779

that don’t exist or miss objects that do. You should use the output only as weak evidence for1780
reference. When answering questions about the image, you should double-check the detected objects.1781
You should be especially cautious about the total number of regions detected, which can be more or1782
less than the actual number.1783

15 Arguments: {’image’: ’the image to localize objects/regions in.’, ’objects’: "a list of object names to1784
localize. e.g. [’dog’, ’cat’, ’person’]. the model might not be able to detect rare objects or1785
objects with complex descriptionriptions."}1786

16 Returns: {’image’: ’the image with objects localized and visualized on it.’, ’regions’: "the regions of1787
interests localized in the image, where each region is represented by a dictionary with the region1788
’s label text, bounding box and confidence score. The confidence score is between 0 and 1, where 11789
means the model is very confident. Note that both the bounding boxes and confidence scores can be1790
unreliable and should only be used as reference."}1791

17 Examples:1792
18 {"name": "LocalizeObjects", "arguments": {"image": "image-0", "objects": ["dog", "cat"]}}1793
191794
20 Name: GetObjects1795
21 Description: Using this function to get objects in an image.1796
22 Arguments: {’image’: ’the image to get objects from.’}1797
23 Returns: {’objects’: ’the objects detected in the image.’}1798
24 Examples:1799
25 {"name": "GetObjects", "arguments": {"image": "image-0"}}1800
261801
27 Name: EstimateRegionDepth1802
28 Description: Estimate the depth of a region in an image using DepthAnything model. It returns an1803

estimated depth value of the region specified by the input bounding box. The smaller the value is,1804
the closer the region is to the camera, and the larger the farther. This tool may help you to1805
better reason about the spatial relationship, like which object is closer to the camera.1806

29 Arguments: {’image’: ’the image to get the depth from.’, ’bbox’: ’the bbox of the region to get the1807
depth from. It should be a list of [left, top, right, bottom], where each value is a float between1808
0 and 1 to represent the percentage of the image width/height and how far it is from the top left1809
corner at [0, 0].’}1810

30 Returns: {’depth’: ’the estimated depth of the region.’}1811
31 Examples:1812
32 {"name": "EstimateRegionDepth", "arguments": {"image": "image-0", "bbox": [0.3, 0.2, 0.5, 0.4]}}1813
331814
34 Name: EstimateObjectDepth1815
35 Description: Estimate the depth of an object in an image using DepthAnything model. It returns an1816

estimated depth value of the object specified by the a brief text description. The smaller the1817
value is, the closer the object is to the camera, and the larger the farther. This tool may help1818
you to better reason about the spatial relationship, like which object is closer to the camera.1819

36 Arguments: {’image’: ’the image to get the depth from.’, ’object’: ’a short description of the object1820
to get the depth from.’}1821

37 Returns: {’depth’: ’the estimated depth of the object.’}1822
38 Examples:1823
39 {"name": "EstimateObjectDepth", "arguments": {"image": "image-0", "object": "a black cat"}}1824
401825
41 Name: Crop1826
42 Description: Crop an image with the bounding box. It labels the cropped region with a bounding box and1827

crops the region with some margins around the bounding box to help with contextual understanding of1828
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the region. 1829
43 Arguments: {’image’: ’the image to crop.’, ’bbox’: ’the bbox to crop. It should be a list of [left, top 1830

, right, bottom], where each value is a float between 0 and 1 to represent the percentage of the 1831
image width/height and how far it is from the top left corner at [0, 0].’} 1832

44 Returns: {’image’: ’the cropped image.’} 1833
45 Examples: 1834
46 {"name": "Crop", "arguments": {"image": "image-0", "bbox": [0.33, 0.21, 0.58, 0.46]}} 1835
47 1836
48 Name: ZoomIn 1837
49 Description: Zoom in on a region of the input image. This tool first crops the specified region from 1838

the image with the bounding box and then resizes the cropped region to create the zoom effect. It 1839
also adds some margins around the cropped region to help with contextual understanding of the 1840
region. 1841

50 Arguments: {’image’: ’the image to zoom in on.’, ’bbox’: ’The bbox should be a list of [left, top, 1842
right, bottom], where each value is a float between 0 and 1 to represent the percentage of the 1843
image width/height and how far it is from the top left corner at [0, 0].’, ’zoom_factor’: ’the 1844
factor to zoom in by. It should be greater than 1.’} 1845

51 Returns: {’image’: ’the zoomed in image.’} 1846
52 Examples: 1847
53 {"name": "ZoomIn", "arguments": {"image": "image-0", "bbox": [0.4, 0.3, 0.5, 0.4], "zoom_factor": 2}} 1848
54 1849
55 Name: QueryLanguageModel 1850
56 Description: Using this function to ask a language model a question. 1851
57 Arguments: {’query’: ’the question to ask the language model.’} 1852
58 Returns: {’result’: ’the response from the language model.’} 1853
59 Examples: 1854
60 {"name": "QueryLanguageModel", "arguments": {"query": "What is the capital of France?"}} 1855
61 1856
62 Name: GetImageToImagesSimilarity 1857
63 Description: Get the similarity between one image and a list of other images. Note that this similarity 1858

score may not be accurate and should be used as a reference only. 1859
64 Arguments: {’image’: ’the reference image.’, ’other_images’: ’the other images to compare to the 1860

reference image.’} 1861
65 Returns: {’similarity’: ’the CLIP similarity scores between the reference image and the other images.’, 1862

’best_image_index’: ’the index of the most similar image.’} 1863
66 Examples: 1864
67 {"name": "GetImageToImagesSimilarity", "arguments": {"image": "image-0", "other_images": ["image-1", " 1865

image-2"]}} 1866
68 1867
69 Name: GetImageToTextsSimilarity 1868
70 Description: Get the similarity between one image and a list of texts. Note that this similarity score 1869

may not be accurate and should be used as a reference only. 1870
71 Arguments: {’image’: ’the reference image.’, ’texts’: ’a list of texts to compare to the reference 1871

image.’} 1872
72 Returns: {’similarity’: ’the CLIP similarity between the image and the texts.’, ’best_text_index’: ’the 1873

index of the most similar text.’, ’best_text’: ’the most similar text.’} 1874
73 Examples: 1875
74 {"name": "GetImageToTextsSimilarity", "arguments": {"image": "image-0", "texts": ["a cat", "a dog"]}} 1876
75 1877
76 Name: GetTextToImagesSimilarity 1878
77 Description: Get the similarity between one text and a list of images. Note that this similarity score 1879

may not be accurate and should be used as a reference only. 1880
78 Arguments: {’text’: ’the reference text.’, ’images’: ’a list of images to compare to the reference text 1881

.’} 1882
79 Returns: {’similarity’: ’the CLIP similarity between the image and the texts.’, ’best_image_index’: ’ 1883

the index of the most similar image.’} 1884
80 Examples: 1885
81 {"name": "GetTextToImagesSimilarity", "arguments": {"text": "a black and white cat", "images": ["image 1886

-0", "image-1"]}} 1887
82 1888
83 Name: DetectFaces 1889
84 Description: Using this function to detect faces in an image. 1890
85 Arguments: {’image’: ’the image to detect faces from.’} 1891
86 Returns: {’image’: ’the image with objects localized and visualized on it.’, ’regions’: "the regions of 1892

the faces detected, where each regin is represented by a dictionary with the region’s label text 1893
and bounding box."} 1894

87 Examples: 1895
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88 {"name": "DetectFaces", "arguments": {"image": "image-0"}}1896
891897
90 Name: QueryKnowledgeBase1898
91 Description: Using this function to query a knowledge base.1899
92 Arguments: {’query’: ’the query to search in a knowledge base such as wikipedia.’}1900
93 Returns: {’result’: ’the answer from the knowledge base.’}1901
94 Examples:1902
95 {"name": "QueryKnowledgeBase", "arguments": {"query": "Paris"}}1903
961904
97 Name: Calculate1905
98 Description: Calculate a math expression.1906
99 Arguments: {’expression’: ’the math expression to calculate.’}1907

100 Returns: {’result’: ’the result of the math expression.’}1908
101 Examples:1909
102 {"name": "Calculate", "arguments": {"expression": "2 + 2"}}1910
103 {"name": "Calculate", "arguments": {"expression": "4*9*84"}}1911
104 {"name": "Calculate", "arguments": {"expression": "5-4/2"}}1912
1051913
106 Name: SolveMathEquation1914
107 Description: Using this action to solve a math problem with WolframAlpha.1915
108 Arguments: {’query’: ’a question that involves a math equation to be solved.’}1916
109 Returns: {’result’: ’the result of the query.’}1917
110 Examples:1918
111 {"name": "SolveMathEquation", "arguments": {"query": "2 + 2=?"}}1919
112 {"name": "SolveMathEquation", "arguments": {"query": "xˆ2 + 2x + 1 = 0, what is x?"}}1920
1131921
114 Name: Terminate1922
115 Description: Using this function to finish the task.1923
116 Arguments: {’answer’: ’the final answer.’}1924
117 Returns: {’answer’: ’the final answer.’}1925
118 Examples:1926
119 {"name": "Terminate", "arguments": {"answer": "yes"}}1927
1201928
121 [END OF ACTIONS]1929
1221930
123 [BEGIN OF TASK INSTRUCTIONS]1931
124 1. You must only select actions from # ACTIONS #.1932
125 2. You can only call one action at a time.1933
126 3. If no action is needed, please make actions an empty list (i.e. ’’actions’’: []).1934
127 4. You must always call Terminate with your final answer at the end.1935
128 [END OF TASK INSTRUCTIONS]1936
1291937
130 [BEGIN OF FORMAT INSTRUCTIONS]1938
131 Your output should be in a strict JSON format as follows:1939
132 {"thought": "the thought process, or an empty string", "actions": [{"name": "action1", "arguments": {"1940

argument1": "value1", "argument2": "value2"}}]}1941
133 [END OF FORMAT INSTRUCTIONS]1942
1341943
135 [BEGIN OF EXAMPLES]:1944
136 # USER REQUEST #:1945
137 In image-0, Which of the two objects on the plate is the biggest?1946
138 A. The pile of scrambled eggs is the biggest.1947
139 B. The strawberries are the biggest object.1948
140 Please answer directly with only the letter of the correct option and nothing else.1949
141 # RESPONSE #:1950
142 {"thought": "To determine which of the two objects on the plate is larger, I need to analyze the size1951

of the scrambled eggs, and the strawberries", "actions": [{"name": "LocalizeObjects", "arguments":1952
{"image": "image-0", "objects": ["scrambled eggs", "strawberries"]}}]}1953

143 OBSERVATION:1954
144 {"image": "image-1", "regions": [{"label": "eggs", "bbox": [0.5, 0.6, 0.6, 0.8], "score": 0.85}, {"1955

label": "strawberries", "bbox": [0.4, 0.5, 0.45, 0.7], "score": 0.54}]}1956
145 {"thought": "To calculate the area of a bounding box, we can use the formula: area = (x_max - x_min) *1957

(y_max - y_min). We first get the area of the scrambled eggs.", "actions": [{"name": "Calculate", "1958
arguments": {"expression": "(0.6-0.5) * (0.8-0.6)"}}]}1959

146 OBSERVATION:1960
147 {"result": "0.02"}1961
148 {"thought": "Then, we also calculate the area of the strawberries.", "actions": [{"name": "Calculate",1962
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"arguments": {"expression": "(0.45-0.4) * (0.7-0.5)"}}]} 1963
149 OBSERVATION: 1964
150 {"result": "0.01"} 1965
151 {"thought": "Since 0.02 > 0.01, it is apparent that the eggs cover a larger area within their bounding 1966

box.", "actions": [{"name": "Terminate", "arguments": {"answer": "A"}}]} 1967
152 1968
153 # USER REQUEST #: 1969
154 Given the input image image-0, How many pedestrians are there in the image? Please answer directly 1970

with a single word or number. 1971
155 # RESPONSE #: 1972
156 {"thought": "To determine the number of pedestrians, I need to first localize them on the image.", " 1973

actions": [{"name": "LocalizeObjects", "arguments": {"image": "image-0", "objects": ["person"]}}]} 1974
157 OBSERVATION: 1975
158 {"image": "image-1", "regions": [{"label": "person", "bbox": [0.77, 0.47, 0.79, 0.54], "score": 0.83}, 1976

{"label": "person-2", "bbox": [0.69, 0.49, 0.7, 0.52], "score": 0.43}]} 1977
159 {"thought": "The LocalizeObjects action returns two regions for \"person\", but one of the regions has 1978

a lower confidence score. Upon a closer look at the output image image-1, we can see that there is 1979
actually only one pedestrian in the image.", "actions": [{"name": "Terminate", "arguments": {" 1980
answer": "1"}}]} 1981

160 1982
161 # USER REQUEST #: 1983
162 Based on image-0, is the object on top bigger than the object below? 1984
163 A. The object on the bottom is bigger. 1985
164 B. The object on top is bigger. 1986
165 C. Both objects are the same size. 1987
166 Please answer directly with only the letter of the correct option and nothing else. 1988
167 # RESPONSE #: 1989
168 {"thought": "By looking at the image, we can see that both objects are game consoles of the same brand 1990

and size.", "actions": [{"name": "Terminate", "arguments": {"answer": "C"}}]} 1991
169 1992
170 # USER REQUEST #: 1993
171 What is x in the image? 1994
172 # RESPONSE #: 1995
173 {"thought": "To get the result of the equation, I need to first extract the equation from the image.", 1996

"actions": [{"name": "OCR", "arguments": {"image": "image-0"}}]} 1997
174 OBSERVATION: 1998
175 {"text": "x-2ˆ3=0"} 1999
176 {"thought": "The math equation is ’x-2ˆ3=0’, and I need to find x. I can solve it with a math-related 2000

tool.", "actions": [{"name": "SolveMathEquation", "arguments": {"query": "x-2ˆ3=0, what is x?"}}]} 2001
177 OBSERVATION: 2002
178 {"result": "x = 8"} 2003
179 {"thought": "As suggested in the last observation, the answer is 8.", "actions": [{"name": "Terminate", 2004

"arguments": {"answer": "8"}}]} 2005
180 2006
181 [END OF EXAMPLES] 2007

Listing 2. Model-based data generation system prompt
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1 def GetObjects_template():2008
2 thought_templates = ["I need to check what objects are present in the {image_kw}.",2009
3 "I need to analyze the {image_kw} for context."2010
4 "I need to identify the objects in the {image_kw}.",2011
5 "To answer the question, let’s first analyze the {image_kw}.",2012
6 "To answer the question, analyzing the objects in the {image_kw} is necessary."2013

]2014
7 return thought_templates2015
82016
9 def LocalizeObjects_template():2017

10 thought_templates = ["I need to analyze the positions of {objects} in the {image_kw}.",2018
11 "I need to analyze the locations of {objects} in the {image_kw}.",2019
12 "I need to localize the {objects} based on the {image_kw}.",2020
13 "I’ll identify the positions of {objects} in the {image_kw}.",2021
14 "I need to determine the positions of {objects} by analyzing the {image_kw}."]2022
15 return thought_templates2023
162024
17 def EstimateObjectDepth_template():2025
18 thought_templates = ["I should estimate the depth of {object} to determine whether it is closer or2026

farther.",2027
19 "I will estimate the depth of {object}.",2028
20 "I need to estimate the depth for {object} to make a comparison.",2029
21 "To determine how far {object} is, I need to evaluate the distance to it.",2030
22 "I now need to estimate the depth for {object}."]2031
23 return thought_templates2032
242033
252034
26 def EstimateRegionDepth_template():2035
27 thought_templates = ["I should estimate the objects’ depths to determine which one is closer.",2036
28 "I need to estimate the region’s depth in the image.",2037
29 "I need to determine the depths of the detected objects based on their2038

positions.",2039
30 "I need to estimate the depth of the objects to make a comparison.",2040
31 "To determine the relative proximity of the objects in the image, I need to2041

estimate the depth of each object."]2042
32 return thought_templates2043
332044
34 def Terminate_template():2045
35 thought_templates = ["Based on the information above, I can conclude that the answer is {answer}",2046
36 "Based on a close analysis of the {image_kw} and additional information above,2047

I believe the answer is {answer}.",2048
37 "I have analyzed the {image_kw} and the information above, and I believe the2049

answer is {answer}.",2050
38 "The {image_kw} and the information above suggest that the answer is {answer}.2051

",2052
39 "According to the content of the {image_kw} and the observations, I can2053

conclude that the answer is {answer}."]2054
40 return thought_templates2055

Listing 3. Thought templates for each action
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1 Compare the ground truth and prediction from AI models, to give a correctness score for the prediction. 2056
<AND> in the ground truth means it is totally right only when all elements in the ground truth are 2057
present in the prediction, and <OR> means it is totally right when any one element in the ground 2058
truth is present in the prediction. The correctness score is 0.0 (totally wrong), 0.1, 0.2, 0.3, 2059
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1.0 (totally right). Just complete the last space of the 2060
correctness score. 2061

2 Question | Ground truth | Prediction | Correctness 2062
3 --- | --- | --- | --- 2063
4 What is x in the equation? | -1 <AND> -5 | x = 3 | 0.0 2064
5 What is x in the equation? | -1 <AND> -5 | x = -1 | 0.5 2065
6 What is x in the equation? | -1 <AND> -5 | x = -5 | 0.5 2066
7 What is x in the equation? | -1 <AND> -5 | x = -5 or 5 | 0.5 2067
8 What is x in the equation? | -1 <AND> -5 | x = -1 or x = -5 | 1.0 2068
9 Can you explain this meme? | This meme is poking fun at the fact that the names of the countries 2069

Iceland and Greenland are misleading. Despite its name, Iceland is known for its beautiful green 2070
landscapes, while Greenland is mostly covered in ice and snow. The meme is saying that the person 2071
has trust issues because the names of these countries do not accurately represent their landscapes. 2072
| The meme talks about Iceland and Greenland. It’s pointing out that despite their names, Iceland 2073
is not very icy and Greenland isn’t very green. | 0.4 2074

10 Can you explain this meme? | This meme is poking fun at the fact that the names of the countries 2075
Iceland and Greenland are misleading. Despite its name, Iceland is known for its beautiful green 2076
landscapes, while Greenland is mostly covered in ice and snow. The meme is saying that the person 2077
has trust issues because the names of these countries do not accurately represent their landscapes. 2078
| The meme is using humor to point out the misleading nature of Iceland’s and Greenland’s names. 2079

11 Iceland, despite its name, has lush green landscapes while Greenland is mostly covered in ice and snow. 2080
The text ’This is why I have trust issues’ is a playful way to suggest that these contradictions 2081
can lead to distrust or confusion. The humor in this meme is derived from the unexpected contrast 2082
between the names of the countries and their actual physical characteristics. | 1.0 2083

Listing 4. LLM judge prompt for MMVet

1 Please read the following example. Then extract the answer from the model response and type it at the 2084
end of the prompt. 2085

2 2086
3 Hint: Please answer the question requiring an integer answer and provide the final value, e.g., 1, 2, 2087

3, at the end. 2088
4 Question: Which number is missing? 2089
5 Model response: The number missing in the sequence is 14. 2090
6 Extracted answer: 14 2091
7 2092
8 Hint: Please answer the question requiring a floating-point number with one decimal place and provide 2093

the final value, e.g., 1.2, 1.3, 1.4, at the end. 2094
9 Question: What is the fraction of females facing the camera? 2095

10 Model response: The fraction of females facing the camera is 0.6, 2096
11 which means that six out of ten females in the group are facing the camera. 2097
12 Extracted answer: 0.6 2098
13 2099
14 Hint: Please answer the question requiring a floating-point number with two decimal places and provide 2100

the final value, e.g., 1.23, 1.34, 1.45, at the end. 2101
15 Question: How much money does Luca need to buy a sour apple candy and a butter-scotch candy? (Unit: $) 2102
16 Model response: Luca needs $1.45 to buy a sour apple candy and a butterscotch candy. 2103
17 Extracted answer: 1.45 2104
18 2105
19 Hint: Please answer the question requiring a Python list as an answer and provide the final list, e.g., 2106

[1, 2, 3], [1.2, 1.3, 1.4], at the end. 2107
20 Question: Between which two years does the line graph saw its maximum peak? 2108
21 Model response: The line graph saw its maximum peak between 2007 and 2008. 2109
22 Extracted answer: [2007, 2008] 2110
23 2111
24 Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the end. 2112
25 Question: What fraction of the shape is blue? 2113
26 Choices: (A) 3/11 (B) 8/11 (C) 6/11 (D) 3/5 2114
27 Model response: The correct answer is (B) 8/11. 2115
28 Extracted answer: B 2116

Listing 5. LLM judge prompt for MathVista
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