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ABSTRACT

Dynamical systems governed by ordinary differential equations (ODEs) serve as
models for a vast number of natural and social phenomena. In this work, we
offer a fresh perspective on the classical problem of imputing missing time se-
ries data, whose underlying dynamics are assumed to be determined by ODEs.
Specifically, we revisit ideas from amortized inference and neural operators, and
propose a novel supervised learning framework for zero-shot time series imputa-
tion, through parametric functions satisfying some (hidden) ODEs. Our proposal
consists of two components. First, a broad probability distribution over the space
of ODE solutions, observation times and noise mechanisms, with which we gener-
ate a large, synthetic dataset of ODE solutions, along with their noisy and sparse
observations. Second, a neural recognition model that is trained offline, to map
the generated time series onto the spaces of initial conditions and time derivatives
of the (hidden) ODE solutions, which we then integrate to impute the missing
data. We empirically demonstrate that one and the same (pretrained) recognition
model can perform zero-shot imputation across 63 distinct time series with miss-
ing values, each sampled from widely different dynamical systems. Likewise, we
demonstrate that it can perform zero-shot imputation of missing high-dimensional
data in 10 vastly different settings, spanning human motion, air quality, traffic and
electricity studies, as well as Navier-Stokes simulations — without requiring any
fine-tuning. What is more, our proposal often outperforms state-of-the-art meth-
ods which are trained on the target datasets.
Our pretrained model, repository and tutorials are available online1.

1 INTRODUCTION

Dynamical systems are mathematical systems that change with time according to a fixed evolution
rule, and serve as representational and analytical tools for phenomena which generate patterns that
change over time. Very often, the recorded changes of these empirical patterns are such that they
can be viewed as occurring continuously in time, and thus can be represented mathematically by
systems whose evolution rule is defined through differential equations. Dynamical systems governed
by ordinary differential equations (ODEs) correspond to an important subset of these models, and
describe the rate of change of a single parametric function x : R+ → RD, which represents the state
of the (D-dimensional) system, as time evolves, by means of a vector field f : R+ × RD → RD. In
equations, we write

ẋ(t) = f(t,x(t)), where ẋ(t) =
dx(t)

dt
. (1)

These deceptively simple systems have had a fundamental role in our understanding of many natural
processes across nearly every scientific discipline — from their very introduction and application
to celestial mechanics in the late seventeenth century (Newton, 1687; Bernoulli, 1712), to their
function as models of concentration changes in molecular reaction networks (Hoff, 1986); models
of population oscillations in biology (Lotka, 1925; Volterra, 1927); of atmospheric convection and
its chaotic features (Lorenz, 1963); and of the coherent, high energy modes within turbulent flows

1https://fim4science.github.io/OpenFIM/intro.html
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Figure 1: Foundation Inference Model (FIM). Left: Graphical model of the data generation
model (Eq. 2). Filled (empty) circles represent observed (unobserved) random variables. Cen-
ter: Schematic representation of imputation mechanism for temporal-wise missing patterns (Eq. 7).
Right: Neural operator module processing the context vector uq and query time t (Eq. 4 and 8).

(Noack et al., 2003), just to name a few — and continue to be the go-to mathematical objects for the
representation of dynamic phenomena today.

In this work, we consider the general problem of imputing missing values in time series data,
recorded from some empirical process (y∗ : R+ → RD) whose dynamics are assumed to be gov-
erned by some unknown ODE. In other words, we assume that both available and missing values
in the series y∗(τ1), . . . ,y

∗(τl) correspond to the values taken by the solution x(t) of some hidden
ODE, at the observation times τ1, . . . , τl, potentially corrupted by some noise signal of which only a
few statistics are known. Therefore, the goal is to infer the ODE solution x(t) that best interpolates
the noisy time series y∗(τ1), . . . ,y

∗(τl) and hence imputes its missing values.

The current machine learning paradigm tackles this problem by (implicitly) constraining models to
handle a single process only. That is, practitioners typically encode their inductive biases into either
the model architectures or the training objectives, and optimize the model parameters to fit a single
empirical distribution (see e.g. Section 2). One disadvantage of this approach is that models trained
to fit a single process tend to be overly specific to its distribution, and thus can rarely be reused to
impute the missing values of a second one, even when both processes are assumed to be governed
by e.g. similar ODEs. Another disadvantage is that, to succeed, the paradigm requires practitioners
to have access to enough observations on the process they study, to train and test their models from
scratch, and that they also have the experience and expertise to face the trials and tribulations of their
intricate training procedures.

In this paper, we instead frame the imputation problem as an instance of amortized inference, in the
sense introduced by Stuhlmüller et al. (2013). Indeed, in lieu of training one complex model on a
single empirical process, we train a neural recognition model offline to infer a large and varied set of
ODE solutions x(t), from a synthetic dataset that is composed of noisy series of observation on those
solutions, displaying different missing value patterns. Somewhat more precisely, we train our model
in a supervised fashion, to infer both the (latent) initial conditions x(0) and (latent) time derivatives
ẋ(t) that determine the target set of ODE solutions. However, opposite to Stuhlmüller et al. (2013)
and other follow-up works, like that by Paige & Wood (2016), who treat their recognition models
as auxiliary to Monte Carlo methods, we employ our pretrained models to directly impute different
synthetic, simulation and experimental datasets, without any parameter fine-tuning. We therefore
adopt the “zero-shot” terminology introduced by Larochelle et al. (2008)2. Let us briefly note here
that we have recently used this general amortized inference framework to train models that perform
zero-shot inference of both Markov jump processes (Berghaus et al., 2024) and stochastic differential
equations (Seifner et al., 2025).

In what follows, we first review previous work on time series imputation in Section 2. Section
3 introduces our main ideas, the synthetic dataset encoding our assumptions, and our recognition

2We invite the reader to check Appendix A, where we also comment on the differences between our method-
ology and other meta-learning methods.
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model, which we name Foundation Inference Model3 (FIM) for dynamical systems. In Section 4,
we report our experimental findings and empirically demonstrate that: (i) the hierarchical structure
underlying FIM — which treats x(0) and ẋ(t) as latent variables — allows us to reconstruct, in
a zero-shot fashion, the phase portrait of complex dynamical systems; (ii) FIM is able to impute,
in zero-shot mode, missing values in a set of 63 noisy time series, each of which is sampled from
dynamical systems of different dimensionalities; and (iii) the same (pretrained) FIM can perform
zero-shot imputation of vastly different, high-dimensional, experimental and simulation data, while
often out-performing state-of-the-art models which are trained on the target datasets. Finally, Section
5 comments on the main limitations of our methodology, and closes the paper with some concluding
remarks about future work.

2 RELATED WORK

In its most general form, the problem of imputing missing time series data with an ODE model
involves inferring the vector field (f : R+ ×RD → RD) that defines the (hidden) ODE in question.
In practice, however, one does not need to explicitly infer the vector field in order to impute the
missing data — and we will take this perspective in the present work. Prominent examples are
the variants by Che et al. (2018) and Cao et al. (2018) that model the dynamics interpolating the
data in some latent, high-dimensional space via linear ODEs, or the neural ODE model of Chen
et al. (2018) that learns latent albeit nonlinear ODEs. The latter has in fact been modified to suit
very different imputation and “smoothing” scenarios (Rubanova et al., 2019; Yildiz et al., 2019;
Norcliffe et al., 2021; Seifner & Sanchez, 2023). Other works depart from ODEs and assume the
dynamics are stochastic. Examples thereof include the works by Fortuin et al. (2020) and Fang
et al. (2024), which leverage Gaussian processes to represent the time evolution, and that by Tashiro
et al. (2021), which instead utilizes conditional score-based diffusion models. Researcher have also
recently dispensed with continuous-time models altogether, and deployed self-attention mechanisms
to impute missing data (Du et al., 2023). Wang et al. (2024) provides a recent and comprehensive
review on these and many other imputation methods, and we refer the reader to it for completeness.

Regardless of whether they rely on ODEs or not, all the models above find themselves under the
umbrella of the classical paradigm, insofar as they are all optimized with respect to a single em-
pirical process. There are, nevertheless, two recent exceptions. Similar to us, Becker et al. (2023)
and d’Ascoli et al. (2024) generate large datasets of ODE systems and their (noisy) observations.
Opposite to us, they attempt to explicitly infer the vector fields, and do so in symbolic form. The
work of Becker et al. (2023) is however limited to one dimensional ODEs, whereas that of d’Ascoli
et al. (2024) is limited to six-dimensional ones. To the best of our knowledge, we present the first
zero-shot solution that is applicable to real-world empirical processes of any dimensionality.

3 FOUNDATION INFERENCE MODELS FOR DYNAMICAL SYSTEMS

In this section, we introduce a novel methodology for zero-shot imputation of missing time series
data. Let the series y∗(τ1), . . . ,y

∗(τl) correspond to a sequence of l observations on some D-
dimensional empirical process y∗(t), where each observation is represented by a vector y∗(τj) ∈
RD, with j = 1, . . . , l. Suppose that some of the components of these observation vectors are
missing, and the goal is to impute them back. Our proposal frames the problem of estimating these
missing values as an inference task, in which one seeks to infer the ODE solution x(t) that best
interpolates the series y∗(τ1), . . . ,y

∗(τl), and thus imputes its missing values.

The classical formulation of the imputation problem typically involves different missing patterns
and in this work we focus on two of them. The first one is the so-called point-wise missing pattern,
where individual vectors in the series randomly lack some of their components. The second one is
the temporal missing pattern, where certain components of the vectors in the series are missing over
consecutive observation times. To handle them, we make the following two simple assumptions.

3We choose to name our model foundation model because it goes in line with the definition proposed
by Bommasani et al. (2021). To wit: a foundation model is any model that is trained on broad data (generally
using self-supervision at scale) that can be adapted to a wide range of downstream tasks.

3



Published as a conference paper at ICLR 2025

First, we assume that for every time series of observations featuring point-wise missing patterns,
one can always find a certain time scale τsimple, or some (sequential) subset of observations, for
which the best interpolating ODE solution is “simple”4. Furthermore, we assume that the set of all
such simple parametric functions can be well-represented by a heuristically constructed synthetic
distribution. Second, we assume that time series featuring temporal missing patterns involve more
complex interpolating functions, meaning that no such τsimple is to be found in this case. Although
more complex in nature, we assume that these functions are locally “simple”, and that they of-
ten exhibit generic secular and seasonal structures, which encode important information about the
missing values and can be well-represented by a second, synthetic distribution over parametric func-
tions. Should these two general assumptions hold true, a model trained to infer both our synthetic
set of “simple” parametric functions, and that of functions exhibiting generic, secular and seasonal
structures, from noisy and sparse observations on them, will automatically interpolate any unseen
sequence of empirical observations and, consequently, impute all of its missing values. In the ex-
perimental section below, we empirically demonstrate that this is indeed the case in a variety of
scenarios.

Our methodology thus consists of two components. The first comprises a synthetic data generation
model, and encodes our beliefs about both the “simple” ODE solutions that interpolate the data
locally, and the more complex ones that feature global, generic structures. The second corresponds
to a neural recognition model of minimal inductive biases, that maps sets of noisy observations
onto the space of parametric functions. In what follows, we delve into the details of these two
components and name our recognition model as Foundation Inference Model (FIM) for dynamical
systems. Figure 1 illustrates the FIM framework.

3.1 SYNTHETIC DATA GENERATION MODEL

In this subsection, we describe the synthetic data generation model we use to sample a large and
varied set of ODE solutions, together with their noisy and sparse observations. Given that every
ODE solution is a parametric function of time, and that each component of any such D-dimensional
function is itself a one-dimensional, parametric function of time, we focus only on the space of 1D
time series. In other words, we opt for a channel independent strategy (Nie et al., 2023; Han et al.,
2024). Let us then define the probability of observing the 1D noisy time series y1, y2, . . . , yl at the
observation times 0 ≤ τ1 < τ2 < · · · < τl ≤ 1 — which might correspond to the values taken by
any of the components of some D-dimensional process — as

l∏
i=1

pnoise(yi|xi, σ)p(σ)δ
(
xi − x0 −

∫ τi

0

f(s)ds

)
pgrid(τ1, . . . , τl, ηg)p(f, ηf )p(x0), (2)

where δ(·) represents the Dirac delta function, which identifies the ODE solution x(t), evaluated at
time τi, with x0 +

∫ τi
0
f(s)ds. That is, we understand our ODE solutions as being determined by

some initial condition x0 and the parametric function f(t), which represents the time derivative of
x(t). Note that we use the notation xi to denote x(τi), and that we denote both random variables and
their values with the same symbol. Let us now specify each term in Eq. 2, starting from the right.

DISTRIBUTION OVER INITIAL CONDITIONS. We define the prior p(x0) over initial conditions as
a standard Gaussian distribution. A standard Gaussian suffices, because the values of every time
series we process are first normalized to lie on the unit interval (see Section 3.2.1).

DISTRIBUTION OVER PARAMETRIC FUNCTIONS OF TIME. The prior distribution p(f, ηf ) factor-
izes as p(f |ηf )p(ηf ), with p(ηf ) the prior over the hyperparameter set ηf . The conditional dis-
tribution p(f |ηf ) is a distribution over the space of parametric functions of time, defined on the
unit interval. It encodes our beliefs about the class of interpolating functions we expect to find in
practice. Indeed, as we briefly motivated earlier, we design two such distributions. One represents
“simple” parametric functions that are assumed to be typical interpolating functions imputing point-
wise missing patterns at the characteristic time scale τsimple. The other represents functions that are
locally simple, but that exhibit secular and seasonal structures at longer time scales (i.e. τ ≫ τsimple).
Structures that, in turn, are assumed to carry crucial information about temporal missing patterns.

4By simple we loosely mean functions that can be approximated by low-degree polynomials, and functions
whose Fourier transform has support at low frequencies only.
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We define these distributions by means of random Chebyshev expansions and Gaussian processes
with different kernels, and refer the reader to Appendix B.1 for details.

DISTRIBUTION OVER OBSERVATION TIMES. We define the prior distribution pgrid(τ1, . . . , τl, ηg),
with hyperparameter set ηg , to represent missing data patterns that we expect to be relevant in real-
world imputation tasks. Again, we consider two such distributions. The first one represents point-
wise missing patterns and allows for regular and irregular observation grid instances with different
observation count. The second one represents temporal missing patterns and combines point-wise
patterns with randomly located observation gaps. We allow the latter to be as large as one-third of
the unit interval. Appendix B.2 provides details regarding our implementations.

DISTRIBUTION OVER NOISE PROCESSES. When recording any empirical process, one typically
only has access to the mean square error of those measurements. According to the maximum entropy
principle, a Gaussian distribution is the best guess one can make about the noise distribution —
actually, it is the most likely distribution — given the available information (that is, given those first
two moments) (Jaynes, 2003). We choose our noise model pnoise(yi|xi, σ) accordingly, and set p(σ)
to also be a Gaussian distribution of zero mean and variance 10−1.

We use the generative model, Eq. 2 above, to sample a large and varied set of noisy and sparse ODE
solutions. We refer the reader to Appendix B.4 for details on the specifics of the sampling procedure.

3.2 FOUNDATION INFERENCE MODEL

In this subsection, we introduce a recognition model that exploits ideas from neural operators (Lu
et al., 2021; Kovachki et al., 2023) to map time series data onto parametric functions. Indeed, given
a set of noisy observations (y1, τ1), . . . , (yl, τl) on some ODE solution x(t) — sampled from the
data generation model, Eq. 2 above — our goal is to infer both the 1D parametric function f(t) and
initial condition x0 that specified x(t) in the first place. In other words, we want to reverse the data
generation process. Below, we first introduce a neural interpolation model that is trained to infer
the distribution p(f |ηf ) over “simple” functions, from time series exhibiting point-wise missing
patterns. Note that in this setting τsimple is, by construction, of order one. Later, we introduce a
second interpolation model that is trained to infer p(f |ηf ) over functions that are locally “simple”
but display global structures at time scales τ ≫ τsimple, from time series characterized by temporal
missing patterns. In what follows, we denote the first interpolation model with FIM-ℓ, for it handles
local dynamic features, and use FIM to refer to the the second one.

3.2.1 FIM FOR INTERPOLATING POINT-WISE MISSING PATTERNS

In order to interpolate time series featuring point-wise missing patterns, and values of every scale, we
first need to normalize every input sequence and rescale their target parametric functions accordingly
(see Appendix C.1 for details). Let us label the set of normalized, noisy observations with Y , the
space of rescaled 1D parametric functions with F and that of rescaled initial conditions with X0.
Our interpolation problem can then be understood as the problem of mapping Y onto both F and
X0. We begin with the first of these two maps.

Let us use ϕθ and ψθ to denote feedforward (FFN) and sequence processing neural networks, re-
spectively. Let us also denote the trainable network parameters with θ. We now define the function

hθ(t) = ϕθ3(u
θ, ϕθ1(t)), with uθ = ϕθ2(ψ

θ
1(y1, τ1, . . . , yl, τl)), (3)

where ϕθ1 and the composition ϕθ2 ◦ψθ
1 can be interpreted as the trunk and branch nets of DeepONets

(Lu et al., 2021), while uθ is the context vector encoding the (context) points (y1, τ1, . . . , yl, τl).
Given the vector-valued, parametric function hθ(t), we now define the mean and variance of a
Gaussian random variable over the possible values of the estimated time derivative as follows

f̂(t) = ϕθ4(h
θ(t)), logVar(f̂)(t) = ϕθ5(h

θ(t)), (4)

where, similar to the works of Lakshminarayanan et al. (2017) and Valdenegro-Toro & Mori (2022),
the variance Var(f̂) is used to represent the model’s uncertainty in the estimation of f(t) (see
e.g. Figure 3 for an illustration). Next, to perform the map between Y and X0, we also model
the initial condition x̂(0) as a Gaussian random variable, whose mean and variance are given by

x̂0 = ϕθ6(u
θ), logVar(x̂0) = ϕθ7(u

θ). (5)
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Figure 2: Zero-shot phase portrait reconstruction of two dynamical systems. Left: Van der Pol
oscillator. Center and Right: Rössler attractor in the position-velocity and velocity-acceleration
planes, respectively.

Equations 4 and 5 allow us to express the function interpolating the time series (y1, τ1), . . . , (yl, τl)
— at any desired time τ ∈ (0, 1) — as x̂0 +

∫ τ

0
f̂(s)ds. We train FIM-ℓ in a supervised fashion, to

maximize the log-likelihood of Eqs. 4 and 5, and minimize the one-step reconstruction error of the
integrated solution, both with respect to the distribution over “simple” functions. Thus, FIM-ℓ can
be understood as an estimator of the posterior distribution over the space of interpolating functions,
given the context points (y1, τ1, . . . , yl, τl). We refer the reader to Appendices C.2 and C.3 for details
regarding the model architecture and training objective.

3.2.2 BEYOND SIMPLE FUNCTIONS: PROCESSING DATA OF ANY LENGTH AND
DIMENSIONALITY WITH FIM-ℓ

Let us briefly comment on how to use our (pretrained) FIM-ℓ to process time series of any length
and dimensionality. We provide further details (and limitations) of our strategies’ implementation in
Appendix C.6. During training, FIM-ℓ processes only 1D time series with at least Lmin and at most
Lmax observations (see Appendix B.2). We define Lmin as the minimum number of context points
FIM generally needs to function, as shorter time series are considered out-of-distribution. Similarly,
time series with more than Lmax observations also fall outside the distribution, not just because
of their length, but because their (hidden) interpolating function may not be well-represented by
our distribution of “simple” functions. To address this limitation, we first split any target time
series longer5 than Lmax into successive and overlapping time windows, ensuring that both their
observation count and dynamic features remain within distribution. That is, we assume that each
time window spans a time scale of order O(τsimple). Then, we combine the local FIM-ℓ estimates
obtained from each window into a global one for the entire target time series (see Appendix C.6). In
an analogous manner, we adopt a channel independent strategy and process each component of any
target, D-dimensional process independently with FIM-ℓ.

We empirically demonstrate the efficacy of these approaches in Section 4 below. We also investigate
the effect of changing the length (and number) of the overlapping windows in Appendix F.4.4.

3.2.3 FIM FOR INTERPOLATING TEMPORAL MISSING PATTERNS

In this subsection, we tackle the interpolation of time series displaying temporal missing patterns by
decoupling trends and seasonality from local fluctuations. Suppose we are given a noisy time series
with l observations, whose values and observation times lie within the unit interval. Suppose that
this time series has been split into K sequential (i.e. ordered) sets

y1, . . . , yw1
∪ yw1+1, . . . , yw1+w2

∪ · · · ∪ yl−wK+1, . . . , yl, (6)

where wk is the number of observations within the kth set. Suppose now that the qth set is missing,
and the goal is to impute it back. See e.g. the center image in Figure 1.

5Note that this approach can also be applied to time series of length shorter than Lmax, but whose dynamic
features are believed to be out-of-distribution.
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Table 1: MAE of the inferred time derivative ẋ(t) and ODE solution x(t) on ODEBench. The
standard deviation is calculated across 10 samplings of the corruption schemes.

Inferred time derivative ẋ(t) Reconstructed ODE solution x(t)
Model γ = 0 γ = 0.05 γ = 0 γ = 0.05

ODEFormer 8.00 ± 0.40 7.90 ± 0.60 1.18 ± 0.05 1.16 ± 0.05
FIM-ℓ 2.44 ± 0.05 3.79 ± 0.05 0.17 ± 0.01 0.34 ± 0.01

We assume that locally, within every set (even the missing one), the functions underlying the data
are well represented by our synthetic distribution of simple functions. That is, we assume that each
set spans a time scale of the order O(τsimple) and thus, that its underlying function can be modelled
well with our pretrained FIM-ℓ. We also assume that beyond those time scales (τ ≥ τsimple), there
exist inter-set, global structures and correlations that carry information about the missing (i.e. qth)
set. Our task is to define a model that encodes precisely this information. In other words, we require
a model that extends the context of FIM-ℓ to longer time scales.

Since FIM-ℓ is trained to deal with normalized data, we first normalize each of the available sets,
and denote with sj the statistics containing information about the local scale (i.e. the norms) of the
jth set (see Appendix D for details). Let us now process each (normalized and available) set with
our pretrained encoding networks ϕθ2 ◦ ψθ

1 , to obtain the sequence

(uθ
1, s1), . . . , (u

θ
q−1, sq−1), (u

θ
q+1, sq+1), . . . , (u

θ
K , sK) with uθ

j = ϕθ2(ψ
θ
1(y1, τ1, . . . , ywj , τwj )),

where, for simplicity, we relabelled the sub-indices (of the jth set) on the right hand side as m ←∑j−1
i=1 wi +m, with m an integer between 1 and wj . Our second interpolation model FIM consists

of a sequence processing network ψφ
2 , with trainable parameter set φ, that computes

uφ
q = ψφ

2 ((u
θ
1, s1), . . . , (u

θ
q−1, sq−1), (u

θ
q+1, sq+1), . . . , (u

θ
K , sK)), (7)

i.e. the context vector for the missing (i.e. qth) set. At this point, we can use the pretrained ϕθ1, ϕ
θ
3, ϕ

θ
4

and ϕθ5 networks of FIM-ℓ to estimate the function f(t) and its variance along the gap. That is

f̂(t) = ϕθ4(h
φ(t)), logVar(f̂)(t) = ϕθ5(h

φ(t)), with hφ(t) = ϕθ3(u
φ
q , ϕ

θ
1(t, θ)). (8)

We optimize φ in a supervised manner — while keeping θ fixed — to maximize the likelihood of
f̂(t) along the missing set, with respect to our synthetic dataset of complex functions that feature
global, generic structures and temporal missing patterns. We refer the reader to Appendix D, where
we provide additional details and discuss about how to integrate f̂(t) to infer x̂(t) along the gap.

4 EXPERIMENTS

In this section, we test our methodology on widely different imputation tasks, which involve datasets
of varying complexity, different dimensionalities and noise signals of very varied nature. We use
FIM-ℓ and FIM to impute — in zero-shot mode — missing data featuring point-wise and temporal
missing patterns, respectively. To be precise, we apply our pretrained models directly to the test sets
of the target datasets, without any parameter fine-tuning. FIM-ℓ was pretrained to infer 2M ODE
solutions from time series with (Lmin, Lmax) set to (4, 128). FIM was pretrained to infer 500K local
ODE solutions from time series with observation gaps that amounted to one-third of the data. Addi-
tional information regarding model architecture and hyperparameters, training details and ablation
studies can all be found in Appendices C and D.

METRICS. Below we evaluate the performance of our models wrt. the mean-absolute error (MAE).
In the Appendix, we also report our results wrt. the root-mean-square error (RMSE) and, in some
cases, the R2 coefficient of determination and the mean-relative error (MRE). Formulas for these
metrics can be found in Appendix E.

BASELINES. Depending on the task, we compare our findings against the (symbolic) ODE-
Former (d’Ascoli et al., 2024) model; the LatentODE (Chen et al., 2018), NeuralODEPro-
cesses (Norcliffe et al., 2021) and BRITS (Cao et al., 2018) models; the GP-VAE (Fortuin et al.,
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Figure 3: Zero-shot imputation with FIM. Left and Center: Point-wise missing imputation in (one
dimension of) the Beijing and GuangZhou datasets, respectively. (Right): Temporal missing impu-
tation in single PCA dimension of the Motion Capture dataset.

2020) and the score-based CSDI (Tashiro et al., 2021) models; the (self-attention) SAITS (Du et al.,
2023) model; and the (Gaussian process) nPODE (Heinonen et al., 2018) model, among others.
Besides ODEFormer, all other baselines are trained on their target datasets.

4.1 PHASE PORTRAIT RECONSTRUCTION

Before testing our methodology in real-world imputation scenarios proper, we explore its ability
to accurately reconstruct the phase portrait of complex dynamical systems, using noisy and sparse
observations on only one of their coordinates.

Phase portraits are geometric representations of the trajectories of dynamical systems in phase space.
They help unveil attractor sets or limit circles and allow to determine, inter alia, how chaotic the sys-
tems in question might be (Benettin et al., 1976). In the seminal paper by Packard et al. (1980),
the authors demonstrated that one can obtain a faithful phase-portrait representation of any D-
dimensional dynamical system, through one of its coordinates, say x1(t), and all its time derivatives
(ẋ1(t), ẍ1(t), . . . ) up to order D − 1. Carrying out such a reconstruction from noisy and sparse
observations on x1(t) alone, not only entails interpolating the data, but also numerically computing
the time derivatives of the interpolating function. In this section, we empirically demonstrate that
one can use the hierarchical structure underlying FIM — which treats the time derivatives ẋ1(t)
(f(t) in our notation) as a latent variable — to reconstruct, in a zero-shot fashion, the phase portrait
of complex dynamical systems.

Suppose we simulate a dynamical system to obtain the solution x(t) over the interval [0, T ], rep-
resented on a fine-grid of L points. We then introduce two types of data corruption. The first is
multiplicative noise yij = (1 + ϵ)xij , with ϵ ∼ N (0, γ), where i = 1 . . . D and j = 1 . . . L. The
second is random subsampling, where a fraction ρ of the fine-grid is removed (and thus corresponds
to a point-wise missing data pattern). For concreteness, we set T = 10 and γ = 0.05. The task is to
reconstruct the phase portrait of the dynamical system from the 1D time series y11, . . . , y1l alone.

Let us start with the (nonlinear) Van der Pol oscillator, whose dynamics are given by the second-
order ODE ẍ1+µ(x21−1)ẋ1+x1 = 0. This system features a limit circle around |x1| = 1, which gets
distorted as one increases the strength of the nonlinear term µ. We set µ = 0.5, simulate the system
with 12 different initial conditions and record only the noisy position of the oscillator 128 times
per trajectory. The left panel of Figure 2 shows the 12 trajectories inferred by FIM-ℓ on (ẋ1, x1)
phase space, together with the ground-truth, on a plotting grid of 2048 points, which amounts to
an imputation of 1920 missing points. The agreement is good and the visible deviations are due
to small discrepancies in the estimation of the oscillator’s velocity, for some initial conditions. We
suspect that such rapidly changing functions are not well-represented by our synthetic distribution
of “simple” functions. Next we consider the Rössler system, which is a 3D dynamical system
that features a chaotic attractor, and record up to 2048 noisy observations on x1(t) in order to
discern its main features. The center panel of Figure 2 displays the trajectory inferred by FIM-ℓ in
(ẋ1, x1) space, on a plotting grid of 8192 points, which is in very good agreement with the ground-
truth. Similarly, the right panel of the same figure displays the inferred trajectory in (ẍ1, ẋ1) space,
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Table 2: MAE (at missing values) on 8 datasets featuring 50% point-wise missing patterns. Base-
lines scores for GuangZhou and Solar are extracted from Fang et al. (2024). The rest are extracted
from Du et al. (2024). See Appendix H for standard deviations and additional baselines.

Air quality Traffic Electricity
Method Beijing Italy GuangZhou PeMS Pedestrian Solar ETT h1 Electricity

BRITS 0.169 0.321 3.335 0.287 0.259 1.985 0.238 1.124
SAITS 0.194 0.285 3.391 0.302 0.205 1.827 0.223 1.399
GP-VAE 0.258 0.453 3.419 0.346 0.451 1.810 0.414 1.099
CSDI 0.144 0.958 3.202 0.288 0.351 0.804 0.318 0.798
BayOTIDE - - 2.687 - - 0.734 - -
FIM-ℓ 0.166 0.215 2.427 0.365 0.273 0.595 0.279 0.083

obtained by applying FIM-ℓ twice to the noisy observations on x1(t). Overall, the agreement is still
strong and FIM-ℓ only struggles to fit some very rapid changes in the acceleration function, which
likely lie out-of-distribution. We provide details of these computations and explore the systems
further in Appendices F.1 and F.2, respectively.

The discussion above yielded a qualitative picture of the inference capabilities of FIM-ℓ. To obtain
a more quantitative perspective, we now compare FIM-ℓ against the ODEFormer model of d’Ascoli
et al. (2024). ODEFormer is trained offline to infer the vector field f(x) of dynamical systems in
symbolic form. We estimate ẋ(t) with ODEFormer by first solving their inferred ODE, to obtain an
estimate of the ODE solution x(t), and then evaluating their inferred vector field along their esti-
mated x̂(t). As target dataset we analyse ODEBench, which was also introduced by d’Ascoli et al.
(2024). ODEBench consists of 63 autonomous ODEs of different dimensionalities (specifically, 23
1D, 28 2D, 10 3D and 2 4D equations) and their solutions. The latter are represented on a fine-grid
of 512 points. We set ρ = 0.5 (which defines point-wise missing patterns) and let γ be either 0 or
0.05. We then compute the MAE of ODEFormer and FIM-ℓ on the estimation of both ẋ(t) and x(t)
with respect to the ground-truth trajectories across all 63 target ODEs. Table 1 reports our results
averaged over all ODEs and shows that FIM-ℓ outperforms ODEFormer in every case.

Some final remarks are in order. First, d’Ascoli et al. (2024) originally report R2 scores in their
paper. We also report these per dimension in Table 9 of Appendix F.3. Our conclusions remain un-
changed. Second, these results also reveal that, despite being trained on additive noise only, FIM-ℓ
can handle multiplicative noise well. Third, we empirically demonstrate that FIM-ℓ is also superior
to LatentODE trained on the iconic Lorenz systems in Appendix F.4. Fourth, we also demonstrate
that FIM-ℓ outperforms the very recent NeuralODEProcesses model on low-data regimes in Ap-
pendix F.5. All together, these results reflect the capabilities of FIM-ℓ to not only impute point-
wise missing data in dynamical systems, but also accurately reconstruct their phase portraits, both
in zero-shot mode. Finally, Appendix I contains preliminary results on fine-tuning FIM.

4.2 IMPUTATION OF POINT-WISE MISSING PATTERNS

In this subsection we evaluate FIM-ℓ on 8 real-world, high-dimensional datasets featuring point-
wise missing patterns. Specifically, we study the Guangzhou dataset, which contains traffic speed
records with 214 channels and 500 observations, and the Solar dataset, which consists of solar-power
generation records with 137 channels and 52560 observations. We obtained the (preprocessed)
datasets from Fang et al. (2024). We also study two popular air quality datasets from Beijing and
Italy, which have 132 channels with 1458 observations, and 13 channels with 774 observations,
respectively; the Electricity and ETT-h1 datasets of electricity consumption, common in forecasting
studies, with 370 (1457) and 7 (358) channels (observations) each; and two additional traffic-related
datasets, namely the PeMS dataset of road occupancy with 862 channels and 727 observations, and
the single-channel Pedestrian dataset, which reports pedestrian activity in Australia and consists of
3633 observations. We obtained this second set of 6 (preprocessed) datasets from Du et al. (2024).

After being split into train, validation and test sets, fifty percent of these subsets is randomly re-
moved, defined as missing and set aside for evaluation. We only make use of the (available 50% of
the) test subsets with FIM-ℓ. Figure 3 illustrates the type of zero-shot ODE solutions inferred by
FIM-ℓ on the Beijing and Guangzhou datasets (left and center). The bottom panels portrait instead
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Table 3: MAE (at missing values) on Motion Capture (MC) and Navier-Stokes datasets featuring
temporal missing patterns of 20%. The large error bars in the MC dataset have been reported
before (Heinonen et al., 2018). (Cubic) spline(F) includes a Savgol filter.

Motion Capture Navier Stokes
Model PCA No PCA PCA No PCA

LatentODE 1.658 ± 0.989 - 0.076 ± 0.030 -
(Cubic) spline 3.362 ± 1.175 4.209 ± 1.436 0.085 ± 0.003 0.083 ± 0.003
(Cubic) spline(F) 2.897 ± 0.871 2.998 ± 0.881 0.084 ± 0.000 0.075 ± 0.002
FIM 1.765 ± 0.627 1.611 ± 0.453 0.063 ± 0.003 0.051 ± 0.002

the inferred (time) derivatives of the interpolating functions, together with the confidence of the
model, which increases in regions with high, local information. Table 2 reports the average MAE
at the missing values for all models. Remarkably, FIM-ℓ outperforms all baselines in 4 out of 8
datasets, comes second in one, and third in two, which suggests that there is indeed enough local
information to perform the data imputation with “simple” functions in these use cases. We close this
subsection by referring the reader to Appendix G, where we report the scores of additional, albeit
less common baselines, as well as our results on the data splits investigated by Du et al. (2023).

4.3 IMPUTATION OF TEMPORAL MISSING PATTERNS

In this subsection, we look into the harder problem of imputing time series data featuring temporal
missing patterns. Indeed, we explore the problem setup proposed by Heinonen et al. (2018), in
which (about) 20% of the data from the middle of the time series is missing completely. More
precisely, we consider their human Motion Capture dataset, which consists of 43 trajectories, each
with 50 channels and 100 observations. We also apply their setup to the Navier-Stokes simulation
of Course & Nair (2023), which instead contains 596602 channels. To be able to handle the (high)
dimensionality of the datasets, Heinonen et al. (2018) projects the data to latent space using PCA,
and trains their models to perform the imputation there (see Appendix H for details). We follow
their methodology and train a LatentODE model, to outperform the results reported by Heinonen
et al. (2018). Additionally, we compare against a naive spline interpolation.

Having set the stage, we leverage our pretrained FIM to infer the ODE solution that best imputes
the missing data in PCA space, and report the MAE at the missing values, after projecting back
to data space, in Table 3. Since FIM (and spline) can be applied to each channel independently,
we also report the MAE we obtain by imputing the data directly in high-dimensional (data) space.
Again, one and the same FIM performs comparably to (or even better than) LatentODE in the
Motion Capture dataset, and outperforms it on the Navier-Stokes case. Note that imputing the data
in high-dimensional space helps FIM avoid the errors introduced by the PCA projections. The right
panel of Figure 3 illustrates the class of zero-shot ODE solutions inferred by FIM in the Motion
Capture dataset, and demonstrates how FIM leverages the global, seasonal structures outside the
gap to impute the (locally simpler) missing data. The agreement is strong.

5 CONCLUSIONS

In this work, we introduced a novel methodology for zero-shot imputation of time series data, whose
underlying dynamics are assumed to be governed by ordinary differential equations (ODEs). We em-
pirically demonstrated that one and the same Foundation Inference Model (FIM) can impute datasets
of any dimensionality, featuring noise signals of very different nature, even in cases which do not
naturally admit a description in terms of ODEs. In fact, we showed that FIM often outperforms
SOTA models that are trained to the target distributions.

The main limitation of our methodology is clearly imposed by our synthetic distributions. Evaluating
FIM on empirical datasets whose distribution significantly deviates from our synthetic distribution
will inevitably yield poor estimates. The left panel of Figure 2 provides such an example. Indeed,
for some initial conditions, the velocity of the Van der Pol oscillator features rapid changes that are
not well represented by our pretraining distribution. Future work shall extend our decoupling of
local and global features of the imputation model to the problem of zero-shot forecasting.
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6 REPRODUCIBILITY STATEMENT

The Appendix includes all information required to reproduce our presented methods and results. Let
us therefore provide a short overview of its contents, focused on the parts related to reproducibility.

An important part of our methodology is our synthetically generated training dataset, which Ap-
pendix B is dedicated to. The generation and hyperparameter choices are described extensively in
Appendix B.1 (distributions over functions), Appendix B.2 (observation grids) and Appendix B.3
(noise processes). Appendix B.4 schematizes the whole generation algorithm.

Appendix C includes all details related to FIM-ℓ, our model for point-wise missing pattern impu-
tation. In particular, Appendix C.2 describes the complete model architecture, including hyperpa-
rameters of our single trained FIM-ℓ model, and model inputs and outputs. Its training procedure is
discussed in Appendix C.4, including hyperparameters for the optimizer and computing resources,
whereas Appendix C.3 states the training objective.

The details for FIM, our model for temporal missing pattern imputation, are given in Appendix D.
Appendix D.2 describes the complete model architecture, where we also include the hyperparame-
ters used for our single trained FIMmodel. The training details are given in Appendix D.4, including
hyperparameters of the optimizer and computing resources, and Appendix D.3 states the associated
training objective.

Equations of the evaluation metrics used for comparisons in our experiments, and remarks about
their usage in the different applications, are provided in Appendix E. Training details and com-
puting resources for LatentODE, one of our baselines, are stated (for each dataset individually) in
Appendices F.4.2, H.1.2 and H.2.2.

The datasets in our experiments are addressed individually in their own subsection in Appen-
dices F, G and H. Each subsection contains either generation hyperparameters or links to their
sources, and the applied pre-processing steps.

Finally, our pretrained model, repository and tutorials are available online6.
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A COMPARISON WITH OTHER META-LEARNING APPROACHES

[The discussion that follows took place during the rebuttal process].

Conditional neural network models such as the Neural Statistician (Edwards & Storkey, 2016; He-
witt et al., 2018), or members of the Neural Process family (Garnelo et al., 2018b;a; Kim et al.,
2019) and their later extensions to dynamical process (Singh et al., 2019; Wang et al., 2022; Jiang
et al., 2023), consider the problem of (meta)training a single model on a set of different, albeit
related datasets D1, . . . ,Dm, each of which is characterized by a corresponding (that is, shared)
context latent variable c1, . . . , cm.

Main difference with FIM:

1. The first and most important difference between all these approaches and ours is that they need
to be trained on datasets from their target domains, which makes both their inferred representa-
tions and optimized weights “problem specific”. Indeed, every one of these works focuses, by
construction, on meta-learning among similar systems (or datasets) only. To illustrate, let us con-
sider the work of Jiang et al. (2023). They first forecast bouncing ball simulations under different
gravity conditions. For them, each gravity corresponds to a different dataset, and their inferred
representations must encode their corresponding gravities (or at least some aspects of them).
Later, they consider forecasting turbulent flow dynamics under different buoyant forces and train
their model anew, in order to encode the forces characterizing each dataset. Thus, the parameters
of the neural network building of their model are not the same for the bouncing ball experiment
and the turbulent flow experiment. Similarly, the semantic content of the shared representations
inferred by their model is not the same for the bouncing ball experiment and the turbulent flow
experiment. In the former case it corresponds to gravity, whereas in the latter it corresponds to
buoyant force.
In sharp contrast, our proposal is not problem specific, because it entirely relies on the two gen-
eral assumptions (inductive biases, or prior knowledge) of Section 3. These simple assumptions
pertain to the nature of interpolating functions only, and are therefore independent of the actual
data generation mechanisms underlying our target datasets. Given that our model is only trained
on a synthetic dataset encoding these two assumptions, it can only recognize patterns that help
it reconstruct the best interpolating function given the available (context) data, regardless of the
underlying data generation mechanism. In other words, our method maintains the same network
parameters and representation semantics throughout all experiments. The representations consis-
tently correspond to the time derivative and initial conditions of the hidden interpolating function,
regardless of the target dataset.

2. A second important difference lies in how these works leverage their prior knowledge for transfer.
Specifically, they assume that their target domains allow for the collection of their different yet
related datasets D1, . . . ,Dm, on which to train their (meta)models.
We instead fully rely on our two assumptions of Section equation 3, and therefore on our synthetic
dataset which encodes them.

3. A third difference is that all these works assumed there is a shared latent variable cm encoding
the main features of the mth dataset Dm in their collection. Most of these works rely on neural
variational inference to optimize their encoder-decoder pairs, and infer their representations in
an unsupervised manner (see however Wang et al. (2022)).
In our proposal our latent variables are not shared, for each time series has associated to it a
single interpolating function. Transfer learning takes place because of the general assumptions
we encode into our synthetic dataset.

B SYNTHETIC DATA GENERATION MODEL: SPECIFICS

B.1 ON THE DISTRIBUTION OVER PARAMETRIC FUNCTIONS OF TIME

In this section we define two distributions over the space of parametric functions. We use the first one
to train our FIM for interpolation. We use the second one to train our extended FIM for imputation.
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B.1.1 DISTRIBUTION OVER “SIMPLE” INTERPOLATION FUNCTIONS

To train our model for point-wise missing patterns, we define p(f |ηf ) either via Gaussian processes
(GP) with Radial Basis Function (RBF) kernels (Williams & Rasmussen, 1995; Vert et al., 2004),
or as truncated Chebyshev expansions, whose coefficients and degree are both randomly sampled.
Each alternative has different ηf hyperparameters.

In the case of RBF kernels, there is a single free hyperparmeter, the lengthscale ηf , which controls
the scale at which variations take place. A small ηf results in parametric functions with short-range
fluctuations, whereas larger ηf produce smoother functions that capture broader trends. We define
p(ηf ) as a mixture of two Beta distributions, with equal mixing coefficients. To wit

p(ηf ) =
1

2
Beta(ηf |2, 10) +

1

2
Beta(ηf |2, 5). (9)

Here, the first component returns functions with faster change (i.e. higher frequency), whereas the
second component returns smoother functions.

In the case of (the M -order) truncated Chebyshev expansions, we write

f(t) =

M∑
m=1

amTm(t), (10)

where Tm(t) is the mth Chebyshev polynomial with (real) coefficient am. Now, in order to generate
a random parametric function with Eq. 10, we sample both the degree M and the set of coefficients
{a1, . . . , aM} from the prior p(ηf ). Intuition says one would like high-order polynomials to occur
rarely. It also says one would like the scale of their coefficients to be small (see also the work of
e.g. Chan et al. (2022)). We therefore (implicitly) define the distribution p(ηf ) over hyperparameters
as

(a1, . . . , aM ) ∼ N
(
0,

1

M

)
, with M ∼ Zipf(2). (11)

In practice, we generate a synthetic dataset of 2M parametric functions (200K for the test set), each
of which is evaluated on a fine grid of Lmax = 128 points. This fine grid is defined regularly on the
unit interval [0, 1]. Half of this dataset consists of random Chebyshev expansions. The other half
consists of parametric functions sampled via GPs.

B.1.2 DISTRIBUTION OVER IMPUTATION FUNCTIONS WITH GLOBAL PATTERNS

To train our model for temporal missing patterns, we require data with trends and seasonality, such
that our model learns to use these (global) patterns to impute the missing data. We hence define
p(f |ηf ) as again via GPs, but opt for Periodic kernels, which exhibit the required seasonality.

Periodic kernels are specified by two free hyperparameters: the lengthscale, denoted by ηlf , and
the period, denoted by ηpf . The lengthscale determines the local fluctuations of the function, as
described in Appendix B.1.1. The period determines the frequency of repetitions of the function,
i.e. the seasonality.

We sample both hyperparameters independently. In other words, our distribution over Periodic
kernel GPs p(ηf ) factorizes as p(ηf ) = p(ηlf , η

p
f ) = p(ηlf )p(η

p
f ). We define uniform distributions

for both hyperparameters:

p(ηlf ) = U(ηlf |[0.75, 1])
p(ηpf ) = U(η

p
f |[0.3, 0.5])

We generate a dataset of 500k parametric functions (50K for the test set). Each function is evaluated
on a regular fine grid of Lmax = 256 points on the unit interval [0, 1].

Note that we do not need to explicitly address trends in the parametric functions over time. A
sample from the defined GPs will (a.s.) have a non-zero mean. During data generation (see Ap-
pendix B.4), these deviations will accumulate over time, such that the corresponding ODE solutions
exhibit trends naturally. In combination with instance normalization during model input processing
(see Appendix D.1), this setup covers a variety of trends.
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B.2 ON THE DISTRIBUTION OVER OBSERVATION GRIDS

In this section we define two distributions over observation grids. We use the first one to train our
FIM for interpolation. We use the second one to train our extended FIM for imputation.

B.2.1 OBSERVATION GRIDS ENCODING POINT-WISE MISSING PATTERNS

We define the prior distribution over observation grids pgrid(τ1, . . . , τl, ηg) in a way that it allows
for both regular and irregular observation grid instances, each with at most Lmax and at least Lmin

observations. Note that the latter number defines the minimum number of context points needed for
FIM to function.

Let us recall that our parametric functions f(t) are evaluated on a fine grid of 128 points (see Ap-
pendix B.1 above) over the unit interval [0, 1]. This fine grid is subsequently subsampled randomly,
to define the random observation times τ1, . . . , τl. We employ two subsampling schemes — regular
and irregular — which occur with equal probability within our entire dataset.

Regular scheme. In this scheme the observation times are obtained from the fine grid by strides
of regular length, where the stride length is sampled from the Uniform([1, 2, . . . , 16]) distribution.
Note that this distribution defines p(ηg).

Irregular scheme. In this scheme the observation times are instead defined via Bernoulli masks,
whose survival probabilities (here denoted by ηg) are sampled from a categorical distribution p(ηg).
The latter is defined over the set {0.0625, 0.25, 0.5} with class probabilities {0.5, 0.25, 0.25}, re-
spectively.

Note that we ensure that there are at least Lmin = 8 observations in each time series, by rejecting
observation grid instances with less than eight points. In contrast, there are time series with at most
Lmax = 128 observations.

B.2.2 OBSERVATION GRIDS ENCODING TEMPORAL MISSING PATTERNS

To train our model for temporal missing patterns, the observation grids of our training data must
exhibit such patterns. We sample such grids in a two-step process.

In the point-wise step, as for the observation grids sampled in Appendix B.2.1, we only employ
point-wise subsampling schemes. These are required for our model can handle irregular grid time
series data of variable lengths.

In the temporal step we introduce the temporal missing patterns, by dropping a consecutive range
of observations. We train our model to impute these dropped values.

More formally, let τi denote times in the point-wise observation grid and τ̃i denote times in the
temporal missing pattern observation grid. Then their joint distribution depends on two hyperpa-
rameters, ηpoint

g and ηtemp
g , and factorizes as

pgrid(τ̃1, . . . ,τ̃k, τ1, . . . , τl, η
temp
g , ηpoint

g ) =

ptemp(τ̃1, . . . , τ̃k|τ1, . . . , τl, ηtemp
g )p(ηtemp

g )ppoint(τ1, . . . , τl|ηpoint
g )p(ηpoint

g ).

where {τ̃i}ki=1 ⊆ {τi}li=i .

Let us now report the specifics for both steps:

Point-wise step. One half of the observation grids are generated with a regular subsampling scheme,
sampling stride lengths from Uniform([1, 2, 3, 4]). The other half is generated with a irregular
subsampling scheme, sampling from a Bernoulli distribution with survival probability 0.5.

Temporal step. To generate a missing pattern in the time series, we first sample the position of
the missing pattern from a uniform distribution, specifically Uniform(1, 3), which determines the
window that will be masked. The length of the missing pattern is randomly sampled from a uniform
distribution in the range [10, 30]. The remaining part of the time series is then split into four equal
windows.
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B.3 ON THE DISTRIBUTION OVER NOISE PROCESSES

Let x : R+ → R be a time-dependent trajectory. We define the distribution over noise processes on
observations x(t) ∈ R of such trajectory to factorize, such that the noise process is fixed for each
trajectory. More formally, denoting the noise process by σ and the noisy trajectory by y, we assume

pnoise(y(t), x(t), σ(t)) = pnoise(y(t) | x(t), σ)p(σ) for all t ∈ R.
As outlined in Section 3.1, we use additive Gaussian noise

pnoise(y(t) | x(t), σ) = N (x(t), σ)

for our synthetic datasets. Here, the noise process is defined only by a single value: the standard
deviation σ of a Gaussian distribution. Hence, our choice of a distribution over noise processes
reduces to a choice of a suitable distribution for σ. We use p(σ) = N (0, λ) in our synthetic datasets,
interpreting negative samples for σ as their absolute value7.

The value of λ differs between our two synthetic datasets. In our dataset for point-wise missing
patterns, we use λ = 0.1 and in our dataset for temporal missing patterns, we use λ = 0.05. We
reduce λ for the temporal-missing patterns to retain more structure of the trajectory, such that the
model can learn to impute based on the structure of the time series.

B.4 ON THE GENERATION OF THE SYNTHETIC DATASET

In this subsection we schematize the data generation process. Underlying this process is a sampling
procedure of noisy time series data, based on samples of random functions, observation grids and
noise processes. The corresponding distributions are described in Appendices B.1-B.3.

To generate the jth instance of our synthetic datasets, we utilise these distributions in the following
generation steps:

1. Sample a function
fj ∼ p(f |ηf,j), where ηf,j ∼ p(ηf ),

and record its values {fj(ti)}Li=1 on the fine grid {ti}Li=1, the regular grid on the unit
interval [0, 1].

2. Sample a initial value x0j ∼ N (0, 1) that defines the ODE solution

xj(t) = x0j +

∫ t

0

fj(s)ds

and record its values {xj(ti)}Li=1 on the fine grid.
3. Sample a observation grid

τ1j , . . . , τlj ∼ pgrid(τ1, . . . , τl|ηg,j), where ηg,j ∼ p(ηg),
that defines a time series with (clean) observations {(xij = x(τij), τij)}li=1 of the ODE
solution.

4. Sample noisy observations

yij ∼ pnoise(y | xij , σj), where σj ∼ p(σ),
of the ODE solution that define the time series {(yij , τij)}li=1.

Note that each step consists of i.i.d. samples of their respective (hierarchical) distributions. Thus,
each instance of our synthetic datasets is also i.i.d..

C FIM FOR LOCAL INTERPOLATION: ADDITIONAL DETAILS

In this section, we begin with instance normalization – in section C.1 – as a pre-processing step
for handling times series of varying scales. We then outline the training objective in section C.3,
focusing on the loss function design. Next, we discuss methods for processing time series of any
length and dimensionality (section C.6).

7This distribution is also called a folded Gaussian distribution.
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C.1 INPUT PRE-PROCESSING AND OUTPUT POST-PROCESSING

To accommodate time series of all scales, we employ min-max-normalization for the observation
values and times per time series before processing them with FIM-ℓ and renormalize the model
outputs accordingly. To express this instance normalization in equations, let (y1, τ1), . . . , (yl, τl) be
a set of noisy observations, following the notation of Section 3.2.1 and denote

τmin = min
i=1,...,l

τi, τmax = max
i=1,...,l

τi, ymin = min
i=1,...,l

yi, ymax = max
i=1,...,l

yi . (12)

Before applying FIM-ℓ as described in Section 3.2.1, we replace the inputs by their normalized
values:

yi ←
yi − ymin

ymax − ymin
, τi ←

τi − τmin

τmax − τmin
(13)

Let f̂(t), logVar(f̂)(t), x̂0 and Var(x̂0) be the outputs of FIM-ℓ, following Equations 4 and 5 of
Section 3.2.1, given the normalized inputs. Under the renormalization maps

y ← (ymax − ymin)y + ymin, t← (τmax − τmin)t+ τmin (14)

the model outputs are transformed to the original time and value scale as follows:

f̂(t)← f̂(t)
ymax − ymin

τmax − τmin
(15)

logVar(f̂)(t)← logVar(f̂)(t) + 2 log
ymax − ymin

τmax − τmin
(16)

x̂0 ← x̂0(ymax − ymin) + ymin (17)
logVar(x̂0)← logVar(x̂0) + 2 log(ymax − ymin) (18)

While the transformations of x̂0 and logVar(x̂0) follow immediately from the value renormalization
map, the transformations of f̂(t) and Var(f̂)(t) follow from the linearity of the derivative (in case
of the value renormalization map) and the chain rule (in case of the time renormalization map).

This described instance normalization approach enables FIM-ℓ to be used in a range of (real-world)
applications, as we show in our experiments (Section 4). But there are also limitations, which we
will now address.

Firstly, some signal-to-noise ratio patterns are not accurately resolved because of this normalization.
For example, observations of (almost) constant functions with additive noise are not interpolated
very accurately, because the normalization parameters are mainly determined by the noise, not the
underlying signal.

Secondly, the internal embeddings of FIM-ℓ do not contain any information about the scale of
the input. Downstream tasks, like imputation of temporal missing patterns could benefit from this
information. In such scenarios, we opted for separate embeddings of statistics about the input data
scales, to reintroduce them alongside the FIM-ℓ embeddings (see Appendix D.2).

C.2 MODEL ARCHITECTURE

Let us provide more details about the interpolation model architecture, which was already outlined in
Section 3.2.1, and hyperparameters of the single FIM-ℓmodel all experimental results were derived
with. Note that we use SeLU (Klambauer et al., 2017) as activation for all feed-forward neural
networks and employ a dropout rate of 0.1.

In total, FIM-ℓ has roughly 20 million learnable parameters. The results of an ablation study on
architecture and hyperparameter choices are described in Appendix C.5.

Model inputs:

(i) A noisy time series (y1, τ1), . . . , (yl, τl) with observation values yi ∈ R and ordered, but
potentially irregular, observation times τi ∈ R+ with τ1 < · · · < τl.

(ii) A time t ∈ R+ at which to evaluate the functions f̂ and logVar(f̂) at.

Model architecture:
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(i) Temporal embedding. We use the learnable time embedding from Shukla & Marlin (2020)
with output in R512. Its ith dimension is defined as

ϕθ0(t)[i] =

{
w0t+ b0 if i = 0

sin(wit+ bi) otherwise

where wi and bi are learnable parameters.
(ii) Trunk net equivalent: We use the time embedding ϕθ0 in combination with a feed-forward

neural network ϕθ1, with 4x1024 hidden layers and output in R512, to encode the evaluation
time t. The composition ϕθ1 ◦ ϕθ0 can thus be understood as the Trunk net of DeepOnet. Let us
denote

tθ = (ϕθ1 ◦ ϕθ0)(t)
(iii) Individual observations embedding. Let us denote the ith element of the time series in our

input with
yθ
i = Concat(yi, ϕθ0(τi)).

(iv) Branch net equivalent. The embedded time series processing network, which can be under-
stood as the branch net of DeepONets, is a composition of a sequence processing network ψθ

1
and a feed-forward neural network ϕθ2. The sequence processing network ψθ

1 is defined as a
bi-directional LSTM with hidden states in R512. The feed-forward neural network ϕθ2 with
4x1024 hidden layers and outputs in R512. Let us denote

uθ = ϕθ2(ψ
θ
1(y

θ
1, . . . ,y

θ
l )).

(v) Time derivative projection. We combine the output of the trunk net and branch net equivalent
networks via a feed-forward neural network ϕθ3 with 4x1024 hidden layers and outputs in R512.
Let us denoted its output by

hθ(t) = ϕθ3(Concat(tθ,uθ)).

The Gaussian distribution over the values of the estimated time derivative is parameterized by
two linear projections from hθ(t) to R, denoted by

f̂(t) = ϕθ4(h
θ(t)) and logVar(f̂)(t) = ϕθ5(h

θ(t)).

(vi) Initial condition projection: Parameters of the Gaussian distribution for the initial condition

x̂0 = ϕθ6(u
θ) and logVar(x̂0) = ϕθ7(u

θ)

are modeled with feed-forward neural networks ϕθ6 and ϕθ7 each with 4x1024 hidden layers and
outputs in R.

Model outputs: To summarize, our model returns

(i) a time derivative f̂(t), with uncertainty estimate logVar(f̂)(t), for a time t ∈ R+ and
(ii) a initial value x̂0, with uncertainty estimate logVar(x̂0).

Combined, these outputs define a function x̂(τ) interpolating the noisy (input) time series
(y1, τ1), . . . , (yl, τl):

x̂(τ) = x̂0 +

∫ τ

0

f̂(s)ds

C.3 TRAINING OBJECTIVE

The parameter set θ of FIM-ℓ is trained in a supervised fashion, utilising the synthetic dataset for
point-wise missing patterns introduced in Appendix B.

Following the notation of Appendix B.4, let f be the sampled function from one instance in the
synthetic dataset, {f(ti)}Li=1 its values on the fine grid, x0 the initial value of the ODE solution,
recorded on the fine grid {x(ti)}Li=1, and {(yi, τi}li=1 the associated noisy time series. Using
{(yi, τi}li=1 as inputs for FIM-ℓ, we denote its outputs by f̂ , logVar(f̂), x̂0 and logVar(x̂0) as
in Appendix C.2.

The training objective of FIM-ℓ consists of three parts:
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(i) Maximizing the Gaussian log-likelihood logL(f(ti) | f̂(ti),Var(f̂)(ti)) of the time derivative
at all L points ti of the fine grid.

(ii) Minimizing the one-step-ahead reconstruction error |x(ti+1) − (x(ti) + f̂(ti)(ti+1 − ti))| of
the ODE solution at L− 1 points on the fine grid.

(iii) Maximizing the Gaussian log-likelihood logL(x0 | x̂0,Var(x̂0)) of the initial value.

Expressed as an equation, we train FIM-ℓ to minimize

L = E
f∼p(f,ηf )

{ L∑
i=1

(f(ti)− f̂(ti))2

2Var(f̂)(ti)
+

1

2
log(Var(f̂)(ti))

}
+ E

f∼p(f,ηf )
x0∼p(x0)

{ L−1∑
i=1

|x(ti+1)− (x(ti) + f̂(ti)(ti+1 − ti))|
}

+ E
x0∼p(x0)

{ (x0 − x̂0)2

2Var(x̂0)
+

1

2
log(Var(x̂0))

}
.

Note that the one-step-ahead reconstruction error is simply the absolute error of a single step of
the Euler method, when using the inferred time derivative f̂(ti), but the ground-truth starting point
x(ti). Such term is only viable in our supervised training regime on synthetically generated data,
where we have access to the ground-truth ODE solution x.

C.4 TRAINING PROCEDURE AND IMPLEMENTATION

The parameters θ of FIM − ℓ were optimized with AdamW (Loshchilov & Hutter, 2017), using a
learning rate of 1e−6 and weight decay 1e−4. Using a batch size of 1024, the loss on a validation
set converged after approximately 500 epochs.

We used four A100 80GB GPUs to train FIM-ℓ. The implementation is done in Jax8. Its code and
the trained model weights are provided in the supplementary material.

C.5 ABLATION STUDIES: ARCHITECTURE AND DATASET DESIGN

In this section, we present ablation studies of the design of the synthetic training dataset dataset for
and the architecture of FIM-ℓ. We evaluate the ablations by the R2-accuracy on the ODEBench
dataset, corrupted with ρ = 0.5, σ = 0.05 (see Appendix F.3 for more details). It is important to
note that these models are trained only on synthetic data, and not on the ODEBench dataset, in
accordance with our zero-shot approach.

First, we experiment with the size of our model (2M, 20M, 50M parameters) and the number of
trajectories in the the training dataset (2M, 8M trajectories) and summarize the results in Table
4. For 2M trajectories, increasing the number of parameters from 2M to 50M does increase the
performance by around 4%. For 8M trajectories, the trend persists with the 20M parameter model,
but reverts with the 50M parameter model, resulting in no significant improvement. The architecture
specifics for the models of different sizes follows :

(i) 2M parameters: MLP: 4x256, hidden-dim: 256;
(ii) 20M parameters: MLP: 4x1024, hidden-dim: 512;

(iii) 50M parameters: MLP: 3x2048, hidden-dim: 1024.

Next, we experiment with the architecture of the sequence processing network ψθ
1 , considering

BiLSTM and transformer networks. The architecture specifics in this case are:

(i) Transformer: MLP: 4x256, N-of-layers: 4, QKV-dim: 256, N-of-heads 8, output dim: 256,
total-parameter-count: 20M;

8https://jax.readthedocs.io/en/latest/index.html
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(ii) BiLSTM: MLP: 4x1024, hidden-dim: 512 (i.e. 256 per each directions), total-parameter-
count: 20M.

The results are presented in Table 5 and show that there is no significant difference in performance
when evaluated on the ODEBench dataset.

Table 4: R2 accuracy with standard devia-
tion, ablating parameter count and number of
time series in train set.

Parameters Time Series in Train Set
2M 8M

2M 82.6 ± 0.7 82.3 ± 0.9
20M 87.3 ± 1.3 86.2 ± 1.0
50M 87.7 ± 2.0 84.1 ± 1.3

Table 5: R2 Accuracy with standard devia-
tion, ablating the architecture of the sequence
processing network ψθ

1 .

ψθ
1 Architecture R2 Accuracy (%)

BiLSTM 87.30 ± 1.35
Transformer 87.38 ± 1.42

An additional study we conducted involves varying the size of the maximum and minimum training
contexts points in a time series of the synthetic train set, which we denote by Lmax and Lmin. The
results for ablating Lmax, presented in Table 6, indicate that, at least on the ODEBench dataset,
the model performs better with more context points. However, the results are within error bars.
Similarly, the results for ablating Lmin, shown in Table 7, reveal that the model performs better
when only trained on time series with more observations. Again, this result is only valid for the
ODEBench dataset, as other applications require small context windows, e.g. because there are too
few observations in the time series.

Table 6: R2 Accuracy with standard devia-
tion, ablating Lmax, the maximum number of
observations in a time series of the synthetic
train dataset.

Lmax R2 Accuracy (%)
128 87.3 ± 1.3
64 86.7 ± 1.2

Table 7: R2 accuracy with standard devia-
tion, ablating Lmin, the minimum number of
observations in a time series of the synthetic
train dataset.

Lmin R2 Accuracy (%)
8 87.3 ± 1.3

32 89.0 ± 1.0

C.6 PROCESSING TIME SERIES OF ANY LENGTH AND DIMENSIONALITY

As a zero-shot inference model, FIM-ℓ should be able to cope with dynamic phenomena of very
diverse nature. In particular, it should handle observations with different dimensionalities, lengths
and scales. Our approach to handle different scales with instance normalization was discussed in
Appendix C.1. Now we want to address our approach to the other two phenomena and offer some
limitation of these approaches.

C.6.1 COMPOSITION ACROSS DIMENSIONS

To handle different (in fact, arbitrary) dimensional observations, we process each feature of a time
series separately with our pretrained model FIM-ℓ. The synthetic training dataset only contains
1D time series (see Appendix B.1) and the model architecture only returns 1D time derivatives (see
Appendix C.2). Such channel independent strategy has been used previously, e.g. by Nie et al.
(2023) and Han et al. (2024).

Regarding the inference problem of the time derivative on a ODE solution path, this reduction to
1D systems is exact, not an approximation. Indeed, consider a vector field f : R+ ×RD → RD and
the solution x : R+ → RD to some initial value problem (x0, f). Then its time derivative, i.e. the
vector field along the solution path, f(t,x(t)) is a purely time-dependent function, which naturally
splits into D independent coordinate functions (f1(t,x(t)), . . . , fD(t,x(t)).

Coordinates of datasets generated from real-world scenarios, which we consider in our experiments,
might not be independent or uncorrelated. Still, we show that our approach can perform well in a va-
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riety of such scenarios. However, extreme cases like the PHYSIONET2012 dataset (Du et al., 2024),
with very sparse observations in some coordinates, are a natural limitation of channel independent
approaches like ours.

C.6.2 COMPOSITION ALONG TIME

Time series in the training set of FIM-ℓ are bounded in length by a fixed upper bound Lmax, as
described in Section 3.1. Therefore, FIM-ℓ can only (reasonably) process time series which lengths
do not exceed this upper bound. Similarly, FIM-ℓ can only (reasonably) infer time derivatives
approximately contained in the broad distributions over parametric functions of time, specified in
Appendix B.1.

Datasets from real-world scenarios will likely not adhere to these limitations derived from our syn-
thetic training dataset.

To adapt the pretrained FIM-ℓ to handle such scenarios, we employ a windowing scheme. Con-
cretely, we split the time series into successive, overlapping windows that are still processable by
the FIM-ℓ. Applying (instances of) FIM-ℓ to each window individually yields local estimates of
the solution x̂(t).

As windows are processed separately, instance normalization (see Appendix C.1) and corresponding
renormalization occurs individually at their respective scales.

To get a global estimate out of the local estimates, one can combine them on the overlaps with two
approaches.

1. Interpolating the ODE solutions. Consider two successive, overlapping time windows A
and B, defined on the intervals [tA0 , t

A
1 ] and [tB0 , t

B
1 ], respectively, so that

0 ≤ tA0 < tB0 < tA1 < tB1 .

Applying an instance of FIM-ℓ to each window yields local solutions x̂A(t) and x̂B(t) in
the respective windows. By defining

x̂(t) =


x̂A(t), if t < tB0
tA1 −t

tA1 −tB0
x̂A(t) +

t−tB0
tA1 −tB0

x̂B(t), if tB0 ≤ t ≤ tA1
x̂B(t), if t > tA1

(19)

for t ∈ [tA0 , t
B
1 ], we combine x̂A(t) and x̂B(t) to a global solution x̂(t) with linear inter-

polation on the overlap. The time derivative f̂ corresponding to x̂ can be found (a.e.) by
taking the derivative of equation 19.

2. Interpolating the time derivatives and solving the ODE. Alternatively we could interpolate
the estimated time derivatives f̂A(t) and f̂B(t) of the time windows A and B, just as
done in Eq. 19 but with x̂ replaced with f̂ . Once such an interpolated time derivative is
available one can integrate the ODE over the complete interval [tA0 , t

B
1 ]. However, this

second approach accumulates the errors of the ODE solutions of each interval.

In practice, and for all experiments described in Section 4 and the Appendix, we used the first
approach.

Notation. There are two methods for specifying the overlapping windows:

1. Windows specified by the number of windows that cover the observations. For m windows
we write FIM-ℓ(w.n. = m), identifying this method.

2. Windows specified by the number of observations they contain. For m observations per
windows, we write FIM-ℓ(o.n. = m), identifying this method.

Limitations. Our experiments in Section 4 show that our compositional approach along time can be
quite effective. Still, there are natural limitations, which we want address.

Firstly, although our distributions over parametric functions of time are broad, they do not cover
all local patterns exhibited by real-world time series. For example, FIM-ℓ struggles with high-
frequency time series with sparse observations. Many windows are required to accurately interpolate
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such patterns. Future work will explore the design of the synthetic training data distributions, to
cover more of these patterns with FIM-ℓ

Secondly, (subsequent) temporal missing patterns can not be accurately imputed with the window-
ing approach. As windows are processed individually, and their outputs merged manually on the
overlaps, no information is passed between them. Therefore, imputation that requires global, long
range patterns can not be resolved. We handle the temporal missing pattern imputation with an
additional imputation module in FIM (see Appendix D).

D FIM FOR INTERPOLATING TEMPORAL MISSING PATTERNS: ADDITIONAL
DETAILS

D.1 INPUT PREP-PROCESSING AND OUTPUT POST-PROCESSING

Analogous to the local interpolation model discussed in Appendix C, our zero-shot model for inter-
polating temporal missing patterns FIM should accommodate time series of all scales. Hence, we
again employ min-max-normalization for the observation values per time series, as described for
FIM-ℓ in Appendix C.1.

Our approach to the temporal missing pattern imputation task involves one more step of instance
normalization, which we want to address now. For this sake, let us briefly recall the notation in-
troduced in Section 3.2.3. A (ordered) time series with observations {(yi, τi)}li=0 is split into K
sequentially ordered sets

y1, . . . , yw1
∪ yw1+1, . . . , yw1+w2

∪ · · · ∪ yl−wl+1, . . . , yl,

where the qth set is empty, meaning it contains no observations, but defines a consecutive time range,
which we call the time gap. Our goal is to impute values in this gap.

Recall that one part of our model (described in Section 3.2.3 and Appendix D.2) applies a pretrained
FIM-ℓ to all sets, except the qth. Internally, FIM-ℓ normalizes each set locally, processes it and
renormalizes its outputs accordingly. In the crucial part of our approach, the model predicts an
embedding uq for the qth set, which is processe with FIM-ℓ, to return f̂ , logVar(f̂) and x̂0 inside
the gap.

It is only possible to locally renormalize these outputs wrt. the time range of the gap, because there
are no observation values. The global renormalization is not effected by this deficit, because on
this scale, the predicted output at the gap is renormalized with the global normalization parameters,
equivalent to the outputs at all other sets.

Because the model is subjected to this deficit during training, and inputs are instance normalized
globally, the model learns to adjust to these conditions.

D.2 MODEL ARCHITECTURE

Let us provide more details about the architecture of FIM, the imputation model for temporal miss-
ing patterns, which was already outlined in Section 3.2.3 and hyperparameters of the single FIM
model all experimental results were derived with. Following the model architecture of FIM-ℓ (see
Appendix C.2), we use SeLU (Klambauer et al., 2017) as activation for all feed-forward neural
networks and employ a dropout rate of 0.1.

FIM contains a pretrained FIM-ℓ model, which parameters θ are frozen. Additionally, FIM has
roughly 6M trainable pararameters, which we denote by φ.

Model inputs:

(i) A noisy time series (y1, τ1), . . . , (yl, τl) with observation values yi ∈ R and ordered, but
potentially irregular, observation times τi ∈ R+ with τ1 < · · · < τl.

(ii) An ordered splitting of the interval [τ1, τl] intoK = 5 sequentially ordered sets, which induces
a splitting of the observations into K sets

y1, . . . , yw1
∪ yw1+1, . . . , yw1+w2

∪ · · · ∪ yl−wl+1, . . . , yl,
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where the qth set only defines a consecutive time range (or imputation gap) and does not
contain any actual observations.

(iii) A time t ∈ R+ in the imputation gap at which to evaluate the functions f̂ and logVar(f̂) at.

Model architecture:

(i) Local scale statistics. Defining w0 = 0 and wprev
j =

∑j−1
k=0 wk for convenience, we set

ymin
j = min

i=1,...,wj

ywprev
j +i ymax

j = max
i=1,...,wj

ywprev
j +i yrange

j = ymax
j − ymin

j

yfirst
j = ywprev

j +1 ylast
j = ywprev

j +wj
ydiff
j = ylast

j − yfirst
j

τ first
j = τwprev

j +1 τ last
j = τwprev

j +wj
τ diff = τ last

j − τ first
j

and denote by

sj = [ymin
j , ymax

j , yrange
j , yfirst

j , ylast
j , ydiff

j , τ first
j , τ last

j , τ diff
j ] ∈ R9

the statistics about the position and local scale for the jth set, where j ̸= q.
(ii) Local scale embedding. A learnable linear layer ϕφ8 embedds the local scale statistics sj for all

j ̸= q. Let us denote
sφj = ϕφ8 (sj) ∈ R512.

As mentioned in Appendix D.1, we also have access to the boundary times of the imputation
gap: τ first

q , τ last
q and τ diff

q . We can thus locally time instance normalize t as t ← (t − τ first
q )/τ diff

q ,
such that it is on the correct scale to apply the Trunk net of the pretrained FIM-ℓ. Let us again
denote the output of the Trunk net as tθ = (ϕθ1 ◦ ϕθ0)(t).

(iii) FIM-ℓ embedding. We apply the temporal encoder ϕθ0 and the Branch net equivalent network
ϕθ2 ◦ψθ

1 of the underlying, pretrained FIM-ℓ model to all sets j ̸= q. Concretely, ϕθ0 yields the
individual observation embeddings

yθ
i = Concat(yi, ϕθ0(τi)) ∈ R513 for all i = 1, . . . , l ,

and ϕθ2 ◦ ψθ
1 yields

uθ
j = ϕθ2(ψ

θ
1(y

θ
w

prev
j +1

, . . . ,yθ
w

prev
j +wj

)) ∈ R512 for all j ̸= q .

(iv) Gap embedding estimation. A sequence processing network ψφ
2 , a transformer with 4 layers,

8 heads and (self) attention dimension 512, processes the sequence

(uθ
1, s

φ
1 ), . . . , (u

θ
q−1, s

φ
q−1), (u

θ
q+1, s

φ
q+1), . . . , (u

θ
K , s

φ
K)

and returns an embedding for the qth set, that is

uφ
q = ψφ

2 ((u
θ
1, s

φ
1 ), . . . , (u

θ
q−1, s

φ
q−1), (u

θ
q+1, s

φ
q+1), . . . , (u

θ
K , s

φ
K)) ∈ R512.

(v) FIM-ℓ time derivative projection. We apply feed-forward neural networks ϕθ3, ϕθ4 and ϕθ5 of
the underlying, pretrained FIM-ℓ model to the estimated embedding uφ

q and the time t in the
imputation gap. We write

f̂q(t) = ϕθ4(h
φ
q (t)), logVar(f̂q)(t) = ϕθ5(h

φ
q (t)), with hφ

q (t) = ϕ3(t
θ,uφ

q ).

Finally, we revert the local time instance normalization from (ii) inside the imputation gap,
with the formulas presented in Appendix C.1.

Model outputs: In conclusion, our model returns a time derivative f̂q(t), with uncertainty estimate
logVar(f̂q)(t), for a time t ∈ R+ in the evaluation gap.

Let us note in passing that the intermediate embeddings uθ
j for j ̸= q can be processed as usual with

the underlying FIM-ℓ. Therefore, the temporal missing pattern imputation model can also return
f̂j(t), logVar(f̂j)(t) and initial conditions for sets j ̸= q, via applications of the underlying FIM-ℓ.
In Appendix D.6 we discuss how to combine these outputs from all K sets to infer a continuous
interpolating path x̂(t) defined on [0, 1].
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D.3 TRAINING OBJECTIVE

The parameters φ of FIM are trained in a supervised fashion, utilising the synthetic dataset for
temporal missing patterns introduced in Appendix B.

We briefly recall the notation of Appendix B.4 for the data generated by the synthetic dataset. Let f
be the sampled function from one instance in the synthetic dataset, {f(ti)}Li=1 its values on the fine
grid, x0 the initial value of the ODE solution, recorded on the fine grid {x(ti)}Li=1, and {(yi, τi}li=1
the associated noisy time series.

The noisy time series is split into K sequentially ordered sets, as outlined in Appendix D.2. Follow-
ing the notation therein, we can identify the subset

{tqi }
M
i=1 = {ti | τ first

q ≤ ti ≤ τ last
q } ⊆ {ti}Li=1

of points on the fine grid contained in the imputation window.

Using {(yi, τi}li=1 as inputs for FIM, we denote its outputs evaluated on fine grid points contained
in the imputation window by f̂(tqi ) and logVar(f̂)(tqi ), as in Appendix D.2.

The training objective of FIM is then to maximize the Gaussian log-likelihood of the time derivative
logL(f(tqi ) | f̂(t

q
i ),Var(f̂)(tqi )) at all M points tqi of the fine grid contained in the imputation gap.

Expressed as an equation, we train FIM to minimize

L = E
f∼p(f,ηf )

{ M∑
i=1

(f(tqi )− f̂(t
q
i ))

2

2Var(f̂)(tqi )
+

1

2
log(Var(f̂)(tqi ))

}
.

D.4 TRAINING PROCEDURE

The parameters φ of FIMwere optimized with AdamW (Loshchilov & Hutter, 2017), using a weight
decay of 1e−3. We use a cosine annealing schedule as introduced by Loshchilov & Hutter (2016),
where the learning rate decays from 1e−4 to 1e−7 over 400 epochs. Note that we do not deploy
warm restarts. With a batch size of 1024, we trained FIM on a single A100 80GP GPU.

D.5 ABLATION STUDIES: DATASET DESIGN

The dataset is generated using a GP model with periodic kernels. The grid spans from 0 to 1 with a
resolution of 512 points. Each GP is created by combining kernels, and the parameters are sampled
from uniform distributions. The lengthscale ℓ is sampled from U(0.75, 1), while the period is sam-
pled from U(0.3, 0.5). The training dataset contains 500,000 samples and the test dataset contains
50,000 samples.

Our experimental datasets for the temporal missing pattern imputation (see Appendix H) contain
no significant trends. Moreover, the temporal size of the imputation gap is 20% for all samples in
the time series Yet our synthetic generated training data includes both: trends and variable window
sizes.

To assess the impact of the trend in our synthetic generated training data on the evaluation perfor-
mance, we train two sets of models: one with a trend in the training data and the other without a
trend. For both datasets, we train two models, varying the size of the imputation window. Specifi-
cally, the window size is sampled from either U(10, 30) or U(5, 50). In Table 8 we present the results
of the four different FIM models trained on the four different dataset. One can see that the model
trained on the dataset with smaller imputation window performs the best. Increasing the imputation
window size leads to worse performance on the Motion Capture dataset for both case (PCA and
no PCA). The performance of the FIM model also decreases when trend is included in the training
dataset.

D.6 CONTINUITY ALONG THE GAP

Similar to the windowing scheme of FIM-ℓ (see Appendix C.6.2), FIM processes a time series split
into K sets of sequentially ordered observations. Continuing the notation from Appendix D.2, we
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Table 8: Ablation study on the size of the imputation window size and the occurrence of trends in
the synthetic training data of FIM. We report RMSE in the imputation gap of the Motion Capture
dataset.

Motion Capture
Dataset PCA No PCA

No Trend - U(10, 30) 3.27 ± 1.12 2.97 ± 0.96
Trend - U(10, 30) 3.41 ± 1.17 3.16 ± 1.07
No Trend - U(5, 50) 3.59 ± 1.14 3.52 ± 1.18
Trend - U(5, 50) 3.67 ± 1.13 3.59 ± 1.19

now detail our approach to connecting these outputs, such that the combined interpolating path x̂(t)
is continuous in [0, 1].

We can group sets containing observations, i.e. j ̸= q outside of the imputation gap, into two disjoint
groups: sets 1 ≤ j < q to the left of the imputation window and sets q < j ≤ K to the right of
the imputation window. Model outputs for each group can be combined with the ideas from FIM-ℓ,
presented in Appendix C.6.2. Indeed, these sets are just windows that can be combined on some
predefined overlap.

Let x̂left and x̂right denote the inferred trajectories to the left and right of the imputation gap [τ first
q , τ last

q ],
which are designed to be continuous by the efforts described in Appendix C.6.2. To connect the two
trajectories to a continuous path inside the imputation gap, we first extend both of them individually
by integrating the time derivative f̂q inferred from FIM with initial values x̂left and x̂right respectively.

Expressed in equations, we define for t ∈ [τ first
q , τ last

q ] the following extensions:

x̂left(t) = x̂left(τ first
q ) +

∫ t

τfirst
q

f̂q(s)ds

x̂right(t) = x̂right(τ last
q )−

∫ τ last
q

t

f̂q(s)ds

These extensions are then combined via weighted temporal interpolation, where we define the com-
bined solution at a time t ∈ [0, 1] by

x̂(t) =


x̂left(t) for t < τ first

q
τ last
q −t

τ last
q −τfirst

q
x̂left(t) +

t−τfirst
q

τ last
q −τfirst

q
x̂right(t) for t ∈ [τ first

q , τ last
q ]

x̂right(t) for t > τ last
q .

(20)

Note that x̂ is continuous by design and its corresponding combined time derivative f̂ can be found
(a.e.) by taking the derivative of equation 20.

D.7 PROCESSING TIME SERIES OF ANY DIMENSIONALITY

FIM contains a pretrained FIM-ℓ model. In fact, FIM just extends that (frozen) model by two
networks: a linear layer ϕ8 to embed local scale statistics, and a sequence processing network ψ2,
processing a sequence of FIM-ℓ embeddings of sets of (consecutive) observations. Therefore, it
also only returns 1D time derivatives. To impute arbitrary dimensional time series data with FIM,
we process each component of a time series separately. The same channel independent strategy is
used for FIM-ℓ. In Appendix C.6.1 we discuss limitations of this approach, which are also valid for
the temporal missing pattern imputation model FIM.

E EVALUATION METRICS

Depending on the experiment and the baselines, we use one or more of the following evaluation
metrics for multi-dimensional time series.
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Following the notation of Du et al. (2024), consider a multi-dimensional target time series
x1, . . . , xL, with xi ∈ RD, and corresponding estimated time series x̂1, . . . , x̂L. Some baselines
only compute the metrics below on certain elements and components of each time series. Let
m1, . . . ,mL be an associated sequence of masks mi ∈ {0, 1}D, indicating which elements and
components are part of the metric calculation. Finally, denote by xdi , x̂di and md

i the dth component
of each vector.

We compute per trajectory the Mean Absolute Error (MAE), (Root) Mean Squared Error ((R)MSE),
Mean Relative Error (MRE) and the R2 score , defined as follows:

MAE(x, x̂,m) =

∑L
i=1

∑D
d=1

∣∣xdi − x̂di ∣∣ ·md
i∑L

i=1

∑D
d=1m

d
i

MSE(x, x̂,m) =

∑L
i=1

∑D
d=1(x

d
i − x̂di )2 ·md

i∑L
i=1

∑D
d=1m

d
i

RMSE(x, x̂,m) =
√

MSE(x, x̂,m)

MRE(x, x̂,m) =

∑L
i=1

∑D
d=1

∣∣xdi − x̂di ∣∣ ·md
i∑L

i=1

∑D
d=1

∣∣xdi ∣∣ ·md
i

R2(x, x̂) =
1

D

D∑
d=1

[
1−

∑L
i=1(x

d
i − x̂di )2∑L

i=1(x
d
i − x̄d)2

]
where x̄d = 1

L

∑L
i=1 x

d
i . Note that we only require the R2 score for the comparison on ODEBench,

where no targets are masked, so we do not add the mask in the formula above.

For the imputation task of point-wise missing patterns, we usually compute the metrics only at the
missing points, following the methodology of our baselines, e.g. (Du et al., 2024). One exception
is the ODEBench evaluation, where the baseline values are computed against the complete target
trajectory, including observed and missing time points. We adapt our computation to the baseline
methodology for a valid comparison.

For the imputation task of temporal missing patterns, metrics are only computed in the imputation
gap, in accordance with our baselines.

Usually, we report mean and standard deviation of the metrics calculated over all trajectories in a
dataset. The only exception is the R2-Accuracy, defined by d’Ascoli et al. (2024) as the percentage
of time series with R2 score larger than 0.9. Note that Du et al. (2024) and Fang et al. (2024) only
report metrics averaged over all missing values over all time series, not a standard deviation over
time series.

F PHASE PORTRAIT RECONSTRUCTION: ADDITIONAL RESULTS

F.1 VAN DER POLL OSCILLATOR

F.1.1 DATA DESCRIPTION AND PRE-PROCESSING

One particular (second-order) differential equation from the ODEBench dataset is the Van der Pol
oscillator:

dx = v

dv = µ(1− x2)v − x

We simulate the system in the time interval [0, 10] for a set of initial positions x(0), initial velocities
v(0) and parameters µ:

x(0) ∈ {−5,−3,−1, 1, 3, 5}
v(0) ∈ {−4.5, 4.5}
µ ∈ {0.1, 0.5, 1.5}
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Figure 4: Phase portraits of Van der Pol systems with parameters µ = 0.1, 0.5, 1.5. 128 noisy
observation (black circles) get interpolated by FIM-ℓ(w.n. = 4) (blue line). The inferred time
derivative matches (magenta line) matches the ground truth vector field at the solution path (black
dashed lines).
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Figure 5: Phase portraits of Van der Pol systems with parameters µ = 0.1, 0.5, 1.5. 32 noisy
observation (black circles) get interpolated byFIM-ℓ(w.n. = 4) (blue line). The inferred time
derivative matches (magenta line) matches the ground truth vector field at the solution path (black
dashed lines).

We generate 1D time series by observing the position x(t) only at a regular grid of either 128 or 32
points in the interval [0, 10] and corrupt them with multiplicative noise of level γ = 0.05 inspired
by the ODEBench setup (see Appendix F.3).

F.1.2 MODELLING AND RESULTS

We apply FIM-ℓ(w.n. = 4) and visualise the inferred path and the inferred time derivative by
means of phase portraits. Figure 4 contains the visualisation for 128 observations and Figure 5 for
32 observations. In each figure, the parameter µ ranges from µ = 0.1 in the left, to µ = 0.5 in the
middle and µ = 1.5 in the right subplot.

FIM-ℓ interpolates the observed path and the inferred time derivative f(t) matches the ground truth
vector field v(t) at the path closely. The accuracy of the (implied) estimation f(0) of the initial
velocity v(0) is not perfect and degrades with increasing µ. In other words, based purely on the
(limited) observations, the model can not infer the sharp change in velocity at the beginning of
a trajectory. The bottom, 1D subplots reveal that FIM-ℓ adjusts to a more accurate estimation
quickly.

Even with only 32 observations (considerably less than the roughy 256 observations in the
ODEBench), FIM-ℓ recovers the ground truth time derivative quite well, showcasing that FIM-ℓ
does not require many observations to approximate simpler regions of the dynamics.
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F.2 RÖSSLER ATTRACTOR

F.2.1 DATA DESCRIPTION AND PRE-PROCESSING

In Figure 2 we consider the Rössler attractor differential equation from the ODEBench in its chaotic
variation:

dx = −5(y + z)

dy = 5(0.2y + x)

dz = 5(0.2 + z(−5.7 + x))

Also following the ODEBench, we simulate the system in the time interval [0, 10] with initial value
(2.3, 1.1, 0.8). From 4096 observations on a regular time grid in [0, 10], we subsample a irregular
observation grid by dropping each observation (independently) with probability 0.5. The subsam-
pled data is then corrupted with multiplicative noise of level 0.05. This corruption scheme follows
one corruption scheme of ODEBench, which is described in see Appendix F.3.

F.2.2 MODELLING AND RESULTS

We apply FIM-ℓ(w.n. = 32) to recover the trajectory from the corrupted data. Our model also
returns the time derivative along the recovered trajectory, which is the velocity of the particle in the
Rössler attractor system. The centered plot in Figure 2 shows the ground-truth and model inference
by means of a phase portrait. It contains position and velocity for the first component, i.e. x and dx,
along the trajectory.

Our model can also approximate the acceleration of the particle. First, we discretize the inferred
velocity via a regular grid of size 8192 in the time interval [0, 10]. To this discretized function, we
apply FIM-ℓ(w.n. = 64) and recover an approximation of the acceleration of the particle. The
rightmost plot in Figure 2 shows the velocity and acceleration of the first component along the
observed trajectory, again by means of a phase portrait.

F.3 ODE BENCH

F.3.1 DATA DESCRIPTION AND PRE-PROCESSING

The ODEBench dataset (d’Ascoli et al., 2024) contains the solution of 63 ODEs with 2 initial con-
ditions each. The solutions are available on a regular grid of length 512 in the time interval [0, 10].

We follow the pre-processing of d’Ascoli et al. (2024), who corrupt both the observations values
and the observation grid. Let us recall their corruption scheme here for completeness.

The observation values are corrupted by multiplicative noise, yielding noisy observations yi of the
ground truth solution xi = x(ti) at some time ti via yi = (1 + ϵ)xi, where ϵ ∼ N (0, γ). The
observation grid is corrupted by dropping each observation (independently) with probability ρ.

All combinations of γ ∈ {0, 0.05} and ρ ∈ {0, 0.5} are considered.

F.3.2 BASELINES

We are interested in two tasks on this dataset:

(i) reconstruction of the underlying ODE solution (which is the task considered by d’Ascoli et al.
(2024)) and

(ii) inference of the vector field on the solution path, i.e. the time derivative.

Note that in the case of ρ = 0.5, this setup is very similar to the missing point imputation task
considered in other works.

While d’Ascoli et al. (2024) consider the first task (and we compare against their results below),
they do not report any results related to the second task. We therefore reevaluate ODEFormer on the
ODEBench, to gain access to the time derivative information needed for our comparison. We use
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the implementation and weights provided by the authors9, apply it to 10 samplings of the corruption
schemes (as we do for our own model) and average the results.

On the solution reconstruction task, our re-evaluation yields different results than reported by the
authors (see e.g. Table 9). We report both results, if they are available, and name the results from
our re-evaluation ODEFormer Re-ev..

Results of other well performing models on the ODEBench have been extracted from Figure 4 of
d’Ascoli et al. (2024).

F.3.3 MODELLING AND RESULTS

We apply FIM-ℓ to all equations of ODEBench and compare our results to the best performing
models from d’Ascoli et al. (2024), as well as our re-evaluation of ODEFormer outlined in Ap-
pendix F.3.2.

The authors of ODEBench compare several methods based on the reconstruction of the ground-
truth ODE solution at all 512 available points of each trajectory. This comparison is based on the
R2 accuracy - the percentage of predictions of which the R2 score exceeds 0.9. We compare our
zero-shot model FIM-ℓ with different numbers of windows to the best performing models from
d’Ascoli et al. (2024). We report our result wrt. the R2-accuracy (see Table 9), the RMSE (see
Table 10) and the MAE (see Table 11. For our models, and if available for ODEFormer, we provide
the metrics for equations grouped by their dimensionality, and average our results over 10 samplings
of the corruption schemes detailed above.

Averaged over all equations, FIM-ℓ improves the baselines on all corruption schemes, in particular
with larger number of windows. The optimal number of windows depends on the difficulty of the
underlying solution. More complex dynamics require a higher local resulution, thus more windows,
than easier dynamics, which benefit from the smooting effect of a low number of windows. Gener-
ally speaking, equations of the same dimensionality in the ODEBench are of similar complexity. We
therefore denote by FIM-ℓ(Weighted Sum) the average of the best performing number of windows
per equation, weighted by the number of equations of that dimension.

Noticeably, the performance drops for equations of dimension 3. Figure 6 shows the path recon-
struction for one initial value problem of each equation. Trajectories of 3D systems included in
ODEBench are inherently more complex than for all other dimensions. Still, FIM − ℓ(w.n. = 8),
used for Figure 6, infers suitable initial conditions and vector fields that approximate the ground-
truth solution well.

Let us now consider the accuracy of the inferred time derivative along the solution path. We provide
the results for our model and for our re-evaluation of ODEFormer on ODEBench. Similar to the
original ODEBench task, we compute the metrics against the time derivative along the solution path
of the ground-truth solution. To extract an estimation of the this time derivative from ODEFormer,
we can evaluate the inferred equation along two possible paths:

(i) the ground-truth solution of the ground-truth equation

(ii) the inferred trajectory from ODEFormer

While we report both evaluation approaches, we find that the second performs consistently better
than the first. We mark the results with ODEFormer (g.t. traj) and ODEFormer (inf. traj.) respec-
tively.

We report the results wrt. the RMSE (see Table 12) and the MAE (see Table 13). Our model
performs better than ODEFormer on both evaluation approaches. The inferred time derivative is
much closer to the ground-truth vector field along the solution path, especially when we use more
than 2 windows.

9https://github.com/sdascoli/odeformer
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Table 9: ODEBench R2 accuracy of FIM-ℓ for different numbers of window, split by dimensions.
The standard deviation is calculated across 10 samplings of the corruption schemes.

Dim. Model
ρ = 0

γ = 0

ρ = 0

γ = 0.05

ρ = 0.5

γ = 0

ρ = 0.5

γ = 0.05

All

ODEFormer 71.2 52.2 69.9 60.3
ODEFormer-opt 75.9 55.7 74.7 66.6
ODEFormer Re-ev. 64.3 ± 0.0 64.7 ± 2.1 62.9 ± 1.9 61.6 ± 3.0
PySR 82.3 63.2 77.0 38.2
FIM-ℓ(w.n. = 2) 69.0 ± 0.0 67.0 ± 0.8 77.5 ± 0.9 76.1 ± 1.3
FIM-ℓ(w.n. = 4) 86.5 ± 0.0 84.0 ± 0.7 86.6 ± 0.5 83.7 ± 0.7
FIM-ℓ(w.n. = 8) 91.3 ± 0.0 88.3 ± 0.5 91.6 ± 1.0 87.5 ± 1.0
FIM-ℓ(w.n. = 16) 100.0 ± 0.0 96.2 ± 0.5 97.2 ± 1.2 91.6 ± 1.9
FIM-ℓ (Weighted Sum) 100.0 ± 0.0 96.9 ± 0.4 97.2 ± 1.2 93.1 ± 1.2

1

ODEFormer Re-ev. 89.1 ± 0.0 87.8 ± 2.0 87.5 ± 2.5 84.5 ± 3.8
FIM-ℓ(w.n. = 2) 97.8 ± 0.0 93.5 ± 0.0 98.7 ± 1.1 93.9 ± 1.7
FIM-ℓ(w.n. = 4) 100.0 ± 0.0 95.4 ± 0.7 99.8 ± 0.7 95.2 ± 0.9
FIM-ℓ(w.n. = 8) 100.0 ± 0.0 95.4 ± 0.7 99.8 ± 0.7 93.5 ± 1.0
FIM-ℓ(w.n. = 16) 100.0 ± 0.0 93.7 ± 0.7 100.0 ± 0.0 91.7 ± 1.4

2

ODEFormer Re-ev. 62.5 ± 0.0 63.8 ± 3.5 61.4 ± 3.6 60.7 ± 4.6
FIM-ℓ(w.n. = 2) 62.5 ± 0.0 61.4 ± 1.2 80.0 ± 2.0 80.5 ± 2.7
FIM-ℓ(w.n. = 4) 94.6 ± 0.0 93.8 ± 1.3 95.0 ± 1.1 93.6 ± 0.9
FIM-ℓ(w.n. = 8) 100.0 ± 0.0 98.6 ± 0.8 99.3 ± 1.2 97.5 ± 0.9
FIM-ℓ(w.n. = 16) 100.0 ± 0.0 98.4 ± 0.6 99.5 ± 0.9 97.0 ± 1.5

3

ODEFormer Re-ev. 10.0 ± 0.0 13.1 ± 3.7 9.4 ± 3.2 12.5 ± 4.7
FIM-ℓ(w.n. = 2) 15.0 ± 0.0 15.0 ± 4.1 17.5 ± 2.6 18.0 ± 2.6
FIM-ℓ(w.n. = 4) 30.0 ± 0.0 27.0 ± 2.6 30.0 ± 0.0 26.5 ± 2.4
FIM-ℓ(w.n. = 8) 45.0 ± 0.0 40.5 ± 1.6 49.5 ± 6.0 43.0 ± 6.3
FIM-ℓ(w.n. = 16) 100.0 ± 0.0 95.0 ± 0.0 84.0 ± 6.1 74.5 ± 6.9

4

ODEFormer Re-ev. 75.0 ± 0.0 68.8 ± 11.6 68.8 ± 11.6 56.3 ± 17.7
FIM-ℓ(w.n. = 2) 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
FIM-ℓ(w.n. = 4) 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
FIM-ℓ(w.n. = 8) 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
FIM-ℓ(w.n. = 16) 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Table 10: ODEBench RMSE of FIM-ℓ for different numbers of windows, split by dimensions. The
standard deviation is calculated across 10 samplings of the corruption schemes.

Dim. Model
ρ = 0

γ = 0

ρ = 0

γ = 0.05

ρ = 0.5

γ = 0

ρ = 0.5

γ = 0.05

All

ODEFormer Re-ev. 1.45440 ± 0.0 1.49561 ± 0.28744 1.61460 ± 0.07631 1.55996 ± 0.06814
FIM-ℓ(w.n. = 2) 1.49276 ± 0.0 1.53191 ± 0.01379 1.11169 ± 0.02296 1.17046 ± 0.02488
FIM-ℓ(w.n. = 4) 0.89672 ± 0.0 0.97397 ± 0.00758 0.7747 ± 0.01644 0.86858 ± 0.01461
FIM-ℓ(w.n. = 8) 0.47344 ± 0.0 0.57404 ± 0.0068 0.4351 ± 0.00907 0.58163 ± 0.01079
FIM-ℓ(w.n. = 16) 0.14572 ± 0.0 0.30887 ± 0.0059 0.28492 ± 0.020 0.52077 ± 0.01884
FIM-ℓ (Weighted Sum) 0.14572 ± 0.0 0.25858 ± 0.0059 0.28492 ± 0.020 0.41192 ± 0.0205

1

ODEFormer Re-ev. 0.50954 ± 0.0 0.52900 ± 0.13294 0.58829 ± 0.04373 0.66961 ± 0.09289
FIM-ℓ(w.n. = 2) 0.47952 ± 0.0 0.54023 ± 0.01949 0.12225 ± 0.00566 0.26812 ± 0.01323
FIM-ℓ(w.n. = 4) 0.03913 ± 0.0 0.22905 ± 0.01549 0.04358 ± 0.00269 0.27359 ± 0.01662
FIM-ℓ(w.n. = 8) 0.02668 ± 0.0 0.27605 ± 0.01472 0.0215 ± 0.00217 0.36447 ± 0.01162
FIM-ℓ(w.n. = 16) 0.01135 ± 0.0 0.36661 ± 0.01394 0.01218 ± 0.00091 0.54251 ± 0.01067

2

ODEFormer Re-ev. 0.58488 ± 0.0 0.55307 ± 0.05853 0.87805 ± 0.12628 0.67336 ± 0.17509
FIM-ℓ(w.n. = 2) 0.48285 ± 0.0 0.4882 ± 0.003 0.33043 ± 0.019 0.3402 ± 0.02128
FIM-ℓ(w.n. = 4) 0.14509 ± 0.0 0.15864 ± 0.00224 0.13071 ± 0.01099 0.15387 ± 0.01138
FIM-ℓ(w.n. = 8) 0.04052 ± 0.0 0.06608 ± 0.00199 0.04881 ± 0.00897 0.09019 ± 0.00698
FIM-ℓ(w.n. = 16) 0.00857 ± 0.0 0.06297 ± 0.00327 0.03812 ± 0.01606 0.10932 ± 0.00977

3

ODEFormer Re-ev. 6.34598 ± 0.0 6.65072 ± 1.60730 6.35373 ± 0.32882 6.39117 ± 0.38931
FIM-ℓ(w.n. = 2) 6.94523 ± 0.0 7.03731 ± 0.07836 5.79548 ± 0.14598 5.80209 ± 0.14687
FIM-ℓ(w.n. = 4) 5.15268 ± 0.0 5.16363 ± 0.02147 4.41386 ± 0.0952 4.4104 ± 0.09807
FIM-ℓ(w.n. = 8) 2.8077 ± 0.0 2.79512 ± 0.01428 2.5547 ± 0.05278 2.57153 ± 0.06213
FIM-ℓ(w.n. = 16) 0.86784 ± 0.0 0.92454 ± 0.0055 1.65999 ± 0.13815 1.72432 ± 0.12407

4

ODEFormer Re-ev. 0.03579 ± 0.0 0.03170 ± 0.00393 0.03305 ± 0.00303 0.05530 ± 0.03747
FIM-ℓ(w.n. = 2) 0.02153 ± 0.0 0.0213 ± 0.00116 0.00883 ± 0.00169 0.01288 ± 0.00156
FIM-ℓ(w.n. = 4) 0.00213 ± 0.0 0.00696 ± 0.00064 0.00247 ± 0.0009 0.00786 ± 0.00079
FIM-ℓ(w.n. = 8) 0.00079 ± 0.0 0.00715 ± 0.00041 0.00147 ± 0.00065 0.00961 ± 0.00046
FIM-ℓ(w.n. = 16) 0.00046 ± 0.0 0.00917 ± 0.00033 0.00121 ± 0.00063 0.01318 ± 0.0007
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Table 11: ODEBench MAE of FIM-ℓ for different numbers of windows, split by dimensions. The
standard deviation is calculated across 10 samplings of the corruption schemes.

Dim. Model
ρ = 0

γ = 0

ρ = 0

γ = 0.05

ρ = 0.5

γ = 0

ρ = 0.5

γ = 0.05

All

ODEFormer Re-ev. 1.06575 ± 0.0 1.08829 ± 0.15297 1.17828 ± 0.05353 1.15633 ± 0.04795
FIM-ℓ(w.n. = 2) 1.13792 ± 0.0 1.16799 ± 0.00904 0.83951 ± 0.01965 0.88588 ± 0.01983
FIM-ℓ(w.n. = 4) 0.65753 ± 0.0 0.71483 ± 0.00482 0.57207 ± 0.01368 0.64132 ± 0.01129
FIM-ℓ(w.n. = 8) 0.33755 ± 0.0 0.41024 ± 0.00456 0.30721 ± 0.00521 0.41284 ± 0.00723
FIM-ℓ(w.n. = 16) 0.09628 ± 0.0 0.21383 ± 0.00345 0.17416 ± 0.01029 0.34229 ± 0.01006

1

ODEFormer Re-ev. 0.32923 ± 0.0 0.34722 ± 0.08502 0.39660 ± 0.04165 0.47208 ± 0.04834
FIM-ℓ(w.n. = 2) 0.38708 ± 0.0 0.43727 ± 0.01308 0.09335 ± 0.00506 0.20900 ± 0.01057
FIM-ℓ(w.n. = 4) 0.02499 ± 0.0 0.16663 ± 0.01033 0.03213 ± 0.00204 0.20268 ± 0.01535
FIM-ℓ(w.n. = 8) 0.02040 ± 0.0 0.20011 ± 0.01021 0.01403 ± 0.00093 0.26112 ± 0.01003
FIM-ℓ(w.n. = 16) 0.00801 ± 0.0 0.26645 ± 0.00826 0.00692 ± 0.00025 0.38727 ± 0.00971

2

ODEFormer Re-ev. 0.40630 ± 0.0 0.39648 ± 0.03423 0.60159 ± 0.07357 0.46471 ± 0.09784
FIM-ℓ(w.n. = 2) 0.33846 ± 0.0 0.34071 ± 0.00229 0.22632 ± 0.01166 0.23367 ± 0.01281
FIM-ℓ(w.n. = 4) 0.08653 ± 0.0 0.09716 ± 0.00135 0.07813 ± 0.00575 0.09487 ± 0.00607
FIM-ℓ(w.n. = 8) 0.02190 ± 0.0 0.03982 ± 0.00074 0.02557 ± 0.00285 0.05379 ± 0.00249
FIM-ℓ(w.n. = 16) 0.00485 ± 0.0 0.03821 ± 0.00141 0.01548 ± 0.00371 0.06106 ± 0.00213

3

ODEFormer Re-ev. 4.81377 ± 0.0 4.94279 ± 0.82914 4.82151 ± 0.18451 4.88917 ± 0.31551
FIM-ℓ(w.n. = 2) 5.32823 ± 0.0 5.39580 ± 0.05009 4.43940 ± 0.12939 4.44416 ± 0.12705
FIM-ℓ(w.n. = 4) 3.84243 ± 0.0 3.84711 ± 0.01762 3.31108 ± 0.08397 3.30732 ± 0.08331
FIM-ℓ(w.n. = 8) 2.01825 ± 0.0 2.01172 ± 0.01012 1.83143 ± 0.03501 1.84830 ± 0.04210
FIM-ℓ(w.n. = 16) 0.57452 ± 0.0 0.62605 ± 0.00421 1.03782 ± 0.07042 1.09290 ± 0.06818

4

ODEFormer Re-ev. 0.02798 ± 0.0 0.02361 ± 0.00258 0.02508 ± 0.00251 0.04356 ± 0.03045
FIM-ℓ(w.n. = 2) 0.01355 ± 0.0 0.01418 ± 0.00045 0.00539 ± 0.00113 0.00960 ± 0.00129
FIM-ℓ(w.n. = 4) 0.00132 ± 0.0 0.00531 ± 0.00054 0.00131 ± 0.00037 0.00588 ± 0.00061
FIM-ℓ(w.n. = 8) 0.00046 ± 0.0 0.00511 ± 0.00030 0.00066 ± 0.00020 0.00685 ± 0.00037
FIM-ℓ(w.n. = 16) 0.00027 ± 0.0 0.00650 ± 0.00017 0.00053 ± 0.00017 0.00933 ± 0.00041

Table 12: ODEBench RMSE of the inferred time derivative of FIM-ℓ for different number of win-
dow, split by dimensions. The standard deviation is calculated across 10 samplings of the corruption
schemes.

Dim. Model
ρ = 0

γ = 0

ρ = 0

γ = 0.05

ρ = 0.5

γ = 0

ρ = 0.5

γ = 0.05

All

ODEFormer (g.t. traj.) 30.49650 ± 0.0 71.30478 ± 131.29482 69.50647 ± 50.34435 93.24899 ± 105.60553
ODEFormer (inf. traj.) 16.50882 ± 0.0 13.10672 ± 2.30755 19.82354 ± 2.94507 17.77896 ± 4.61146
FIM-ℓ(w.n. = 2) 10.09833 ± 0.0 10.07751 ± 0.01023 9.80062 ± 0.00628 9.85593 ± 0.00853
FIM-ℓ(w.n. = 4) 8.92481 ± 0.0 9.01273 ± 0.01408 8.74446 ± 0.01624 8.89065 ± 0.01899
FIM-ℓ(w.n. = 8) 6.84601 ± 0.0 7.177 ± 0.03336 6.91584 ± 0.03868 7.46845 ± 0.04305
FIM-ℓ(w.n. = 16) 3.49679 ± 0.0 4.79098 ± 0.06319 4.46558 ± 0.13783 6.48983 ± 0.17314
FIM-ℓ (Weighted Sum) 3.49679 ± 0.0 3.78833 ± 0.0204 4.46558 ± 0.1321 4.78349 ± 0.136708

1

ODEFormer (g.t. traj.) 8.58175 ± 0.0 6.98587 ± 5.39939 23.63005 ± 18.09459 20.6331 ± 28.93572
ODEFormer (inf. traj.) 6.21711 ± 0.0 4.46383 ± 2.4357 11.4018 ± 5.99679 12.3632 ± 9.90603
FIM-ℓ(w.n. = 2) 0.57402 ± 0.0 0.53237 ± 0.02785 0.15242 ± 0.00725 0.29413 ± 0.02427
FIM-ℓ(w.n. = 4) 0.08764 ± 0.0 0.34632 ± 0.03219 0.08866 ± 0.00263 0.45892 ± 0.04078
FIM-ℓ(w.n. = 8) 0.06023 ± 0.0 0.87099 ± 0.08969 0.06783 ± 0.00391 1.34817 ± 0.10076
FIM-ℓ(w.n. = 16) 0.04306 ± 0.0 2.85851 ± 0.14102 0.05609 ± 0.00569 4.54185 ± 0.25996

2

ODEFormer (g.t. traj.) 9.48347 ± 0.0 115.23801 ± 298.68335 9.06534 ± 3.45804 100.57544 ± 239.8902
ODEFormer (inf. traj.) 1.29766 ± 0.0 1.94693 ± 2.33017 3.10378 ± 2.06017 3.8734 ± 3.27421
FIM-ℓ(w.n. = 2) 1.43282 ± 0.0 1.41955 ± 0.00186 1.21969 ± 0.01669 1.22876 ± 0.01812
FIM-ℓ(w.n. = 4) 0.70673 ± 0.0 0.73517 ± 0.00655 0.69129 ± 0.03759 0.7396 ± 0.03932
FIM-ℓ(w.n. = 8) 0.21854 ± 0.0 0.32851 ± 0.01379 0.30857 ± 0.04604 0.48065 ± 0.05582
FIM-ℓ(w.n. = 16) 0.09232 ± 0.0 0.51666 ± 0.03184 0.18537 ± 0.03789 0.8219 ± 0.06753

3

ODEFormer (g.t. traj.) 145.80444 ± 0.0 110.45746 ± 67.51671 358.12564 ± 284.26566 258.31259 ± 199.26659
ODEFormer (inf. traj.) 86.05997 ± 0.0 66.84346 ± 9.40672 89.96053 ± 10.58968 72.54148 ± 24.72853
FIM-ℓ(w.n. = 2) 58.27983 ± 0.0 58.28185 ± 0.00338 57.97466 ± 0.0192 57.97117 ± 0.01773
FIM-ℓ(w.n. = 4) 54.04507 ± 0.0 53.92284 ± 0.01039 52.94947 ± 0.05369 52.88163 ± 0.0522
FIM-ℓ(w.n. = 8) 42.37861 ± 0.0 42.28708 ± 0.03208 42.5487 ± 0.21984 42.59756 ± 0.22269
FIM-ℓ(w.n. = 16) 21.67166 ± 0.0 22.1478 ± 0.09837 27.48439 ± 0.82561 28.11654 ± 0.85931

4

ODEFormer (g.t. traj.) 0.15883 ± 0.0 0.14387 ± 0.05189 0.16521 ± 0.04465 0.44315 ± 0.47787
ODEFormer (inf. traj.) 0.0639 ± 0.0 0.05313 ± 0.01146 0.06529 ± 0.01458 0.92522 ± 2.12569
FIM-ℓ(w.n. = 2) 0.03748 ± 0.0 0.03646 ± 0.00119 0.01764 ± 0.00126 0.02066 ± 0.00155
FIM-ℓ(w.n. = 4) 0.00423 ± 0.0 0.0116 ± 0.00102 0.00546 ± 0.00084 0.01556 ± 0.00131
FIM-ℓ(w.n. = 8) 0.00385 ± 0.0 0.0245 ± 0.00234 0.00529 ± 0.00078 0.03523 ± 0.00243
FIM-ℓ(w.n. = 16) 0.00288 ± 0.0 0.0707 ± 0.00488 0.00366 ± 0.00053 0.10899 ± 0.00559
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Figure 6: Reconstruction from noisy observations (dots) of all equations in the ODEBench dataset,
using the first set of initial conditions, with corruptions ρ = 0.5 and γ = 0.05. FIM-ℓ (line) recovers
the ground truth path (dashed line) closely for (almost) all equations.
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Table 13: ODEBench MAE of the inferred time derivative of FIM-ℓ for different numbers of win-
dows, split by dimensions. The standard deviation is calculated across 10 samplings of the corrup-
tion schemes.

Dim. Model
ρ = 0

γ = 0

ρ = 0

γ = 0.05

ρ = 0.5

γ = 0

ρ = 0.5

γ = 0.05

All

ODEFormer (g.t. traj.) 9.98246 ± 0.0 10.3509 ± 5.12400 11.43592 ± 3.89992 14.56629 ± 5.62873
ODEFormer (inf. traj.) 7.47623 ± 0.0 7.59557 ± 0.80806 8.03686 ± 0.38837 7.87698 ± 0.61724
FIM-ℓ(w.n. = 2) 6.71538 ± 0.0 6.71455 ± 0.00866 6.47138 ± 0.00666 6.51303 ± 0.00678
FIM-ℓ(w.n. = 4) 5.86143 ± 0.0 5.92169 ± 0.00801 5.64520 ± 0.01431 5.74910 ± 0.01754
FIM-ℓ(w.n. = 8) 4.21719 ± 0.0 4.45152 ± 0.01683 4.21716 ± 0.01543 4.58770 ± 0.02492
FIM-ℓ(w.n. = 16) 1.90556 ± 0.0 2.75833 ± 0.03090 2.44375 ± 0.05500 3.79191 ± 0.04925

1

ODEFormer (g.t. traj.) 1.02333 ± 0.0 0.85939 ± 0.28399 1.93692 ± 0.79555 1.69855 ± 1.37894
ODEFormer (inf. traj.) 1.22521 ± 0.0 0.97085 ± 0.44759 1.79378 ± 0.60934 1.74534 ± 1.01677
FIM-ℓ(w.n. = 2) 0.35084 ± 0.0 0.35811 ± 0.02167 0.06987 ± 0.00370 0.17388 ± 0.01507
FIM-ℓ(w.n. = 4) 0.03440 ± 0.0 0.21994 ± 0.01723 0.02992 ± 0.00100 0.29445 ± 0.02783
FIM-ℓ(w.n. = 8) 0.01847 ± 0.0 0.57124 ± 0.04161 0.02071 ± 0.00083 0.85952 ± 0.04000
FIM-ℓ(w.n. = 16) 0.01120 ± 0.0 1.83930 ± 0.07291 0.01563 ± 0.00059 2.98943 ± 0.12402

2

ODEFormer (g.t. traj.) 1.11424 ± 0.0 4.60410 ± 9.66290 1.25932 ± 0.11240 4.67499 ± 7.50841
ODEFormer (inf. traj.) 0.55929 ± 0.0 0.62367 ± 0.29012 0.73061 ± 0.14608 0.80667 ± 0.31722
FIM-ℓ(w.n. = 2) 0.78924 ± 0.0 0.78135 ± 0.00215 0.59850 ± 0.00569 0.60812 ± 0.00550
FIM-ℓ(w.n. = 4) 0.33064 ± 0.0 0.35679 ± 0.00296 0.29782 ± 0.00601 0.33816 ± 0.00718
FIM-ℓ(w.n. = 8) 0.08201 ± 0.0 0.15581 ± 0.00496 0.10640 ± 0.00910 0.21536 ± 0.01454
FIM-ℓ(w.n. = 16) 0.02903 ± 0.0 0.26067 ± 0.01393 0.05549 ± 0.00629 0.41416 ± 0.01805

3

ODEFormer (g.t. traj.) 57.40099 ± 0.0 50.32888 ± 20.88564 64.04977 ± 24.41574 74.73737 ± 25.89933
ODEFormer (inf. traj.) 42.71272 ± 0.0 43.86978 ± 4.69668 44.45747 ± 2.04799 43.33972 ± 3.66024
FIM-ℓ(w.n. = 2) 39.28646 ± 0.0 39.28669 ± 0.00501 38.93203 ± 0.04304 38.92776 ± 0.04075
FIM-ℓ(w.n. = 4) 35.92175 ± 0.0 35.80043 ± 0.01442 34.66166 ± 0.08952 34.59348 ± 0.08569
FIM-ℓ(w.n. = 8) 26.29593 ± 0.0 26.29148 ± 0.01758 26.22219 ± 0.10493 26.31823 ± 0.09887
FIM-ℓ(w.n. = 16) 11.89775 ± 0.0 12.40848 ± 0.03408 15.20400 ± 0.34251 15.83980 ± 0.32635

4

ODEFormer (g.t. traj.) 0.07487 ± 0.0 0.0685 ± 0.02815 0.07772 ± 0.01916 0.16812 ± 0.1964
ODEFormer (inf. traj.) 0.01773 ± 0.0 0.01533 ± 0.00195 0.01658 ± 0.00155 0.06136 ± 0.09291
FIM-ℓ(w.n. = 2) 0.01824 ± 0.0 0.01785 ± 0.00047 0.00565 ± 0.0006 0.00828 ± 0.00107
FIM-ℓ(w.n. = 4) 0.00178 ± 0.0 0.00667 ± 0.00026 0.00179 ± 0.0001 0.00892 ± 0.00061
FIM-ℓ(w.n. = 8) 0.00135 ± 0.0 0.01492 ± 0.00074 0.00168 ± 0.00008 0.02200 ± 0.00134
FIM-ℓ(w.n. = 16) 0.00117 ± 0.0 0.04355 ± 0.00189 0.00143 ± 0.00005 0.06961 ± 0.00279

F.4 LORENZ SYSTEM AND LATENTODE

F.4.1 DATA DESCRIPTION AND PRE-PROCESSING

To compare our zero-shot model to a LatentODE, a specialised black-box model requiring training,
we consider the chaotic Lorenz system

dx = σ(y − x)
dy = ρx− y − xz
dz = xy − βz

with parameters (σ, β, ρ) = (10, 28, 83 ). We simulate the system in the time interval [0, 10], starting
with initial values sampled from N ([2.3, 8.1, 12.4], 1). Note that the Lorenz system with these
parameters and the mean initial value is part of the ODEBench dataset.

To generate a time series, we sample an initial value, simulate the system and observe it at the regular
grid on [0, 1] with 512 points. The observations are subsampled with a survival probability of 0.5
and corrupted with additive gaussian noise sampled from N (0, 0.05).

We generate 1024 time series for the training of LatentODE and additional 128 time series each for
validation and test.

F.4.2 TRAINING LATENTODE

We train LatentODE (Rubanova et al., 2019) on the standardised train set, selecting the model based
on the lowest loss on the validation set. The encoder is an LSTM, the emission model a diagonal
gaussian, fixing its standard deviation to 0.01. The target objective is the likelihood of the observa-
tions.
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Figure 7: Inference of FIM-ℓ(w.n. = 16) on a Lorenz system time series, split int their individual
dimensions. (Top) Noisy observations (black dots) of the system (black line) are interpolated by
FIM-ℓ (blue line). (Bottom) Inferred values of the time derivative (blue dashed line) match the
ground truth vector field values along the solution path (black dashed line) closely.

We train for 6000 epochs, with minibatches of size 32, using AdamW with learning rate 1e−3 and
weight decay 1e−2. To help the model learn, we slowly anneal the input time series length over the
initial 2000 epochs, starting at 25 observations.

We selected the model architecture by grid search. See Table 14 for the search grid and final param-
eters. The model trained roughly 9 hours on a A100 40GB GPU.

Table 14: Hyperparameters, including grid search range over some, for the LatentODE baseline on
all datasets. Selected hyperparameters, determined by the loss on the validation set, are underlined.
For simplicity, we set the dimension of the forward neural ODE to the hidden size of the encoder.

Hyperparameter Lorenz System Motion Capture Navier Stokes

Hidden size 64, 128, 256 32, 64, 128 64, 128, 256
NeuralODE hidden layers [64, 64], [128, 128] [64, 64] [128, 128]
Initial condition hidden layers [64, 64], [128, 128] [64, 64] [128, 128]
Emission model hidden layers [64, 64], [128, 128] [64, 64] [128, 128]

F.4.3 MODELLING AND RESULTS

Note that Latent ODE is notoriously difficult to train and we only managed to fit it to the data on a
64-dimensional hidden space (Dupont et al., 2019). The time derivative inference is therefore not
directly feasible with our trained Latent ODE. We nevertheless compare FIM-ℓ(w.n. = 16) against
said Latent ODE model on the reconstruction task, as well as against the Scipy10 implementation of
the cubic spline.

Table 15 displays our results in terms of RMSE calculated against the ground-truth, clean solution
path on all 512 of the regular grid. They averaged over the 128 trajectories in the test set for described
data corruption scenario. FIM-ℓ not only outperforms both baselines, but also perfectly infers the
hidden vector field along the solution path, as can be seen in Figure 7.

Table 15: Reconstruction task on the Lorenz system data. RMSE is calculated on the whole trajec-
tory.

Model Lorenz system

LatentODE 3.25 ± 0.99
Cubic spline 3.97 ± 5.8
FIM-ℓ 2.01 ± 0.33

10https://scipy.org/
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F.4.4 ABLATION STUDY: NUMBER OF WINDOWS

Additionally, we perform an ablation study on the numbers of windows processed by FIM-ℓ on the
Lorenz test set.

Figure 8 shows the RMSE as the number of windows increases from 1 to 32.

Initially, the RMSE is considerably higher than the LatentODE baseline, demonstrating that FIM-ℓ
on it own can not handle arbitrarily complex systems, because it has not been trained on such com-
plex data. With the addition of more windows, the RMSE decreases sharply. However, beyond
approximately 14 windows, the RMSE reduction tapers off, suggesting diminishing returns with
further increases in the number of windows.

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
# of Windows
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LatentODE

FIM-`

Figure 8: RMSE of LatentODE of FIM-ℓ(w.n. = m) for numbers of windows m between 1 and
32 on the Lorenz test set. The standard deviation across 128 time series is represented by the shaded
area for the LatentODE and by the whiskers for each FIM-ℓ(w.n. = m). The performance of
FIM-ℓ increases, as the number of windows increase.

F.5 COMPARISON AGAINST NEURAL ODE PROCESSES

F.5.1 DATA DESCRIPTION AND PRE-PROCESSING

Norcliffe et al. (2021) introduce four 1D synthetic datasets of different functional type, including
sines, exponentials, straight lines, and harmonic oscillators. Each task is defined by a parameterized
function, where the parameters are sampled from predefined uniform distributions. An example
trajectory is generated by sampling from these parameter distributions and then sampling from the
function at evenly spaced timestamps, t, over a fixed range to produce 100 data points (t, y). The
equations for these tasks, along with the ranges for their defining parameters, are provided in Ta-
ble 16.

10 random context points are selected out of all 100 points. They serve as the model inputs, where
the task is to reconstruct the original function at all 100 points.

Table 16: Description of functions considered by Norcliffe et al. (2021), including the mathematical
form, ranges for parameters a and b, range for t, and the number of test samples.

Task Form a b t # test

Sines y = a sin(t− b) (−1, 1) (−1/2, 1/2) (−π, π) 10
Exponentials y = a/60× exp(t− b) (−1, 1) (−1/2, 1/2) (−1, 4) 10
Straight lines y = at+ b (−1, 1) (−1/2, 1/2) (0, 5) 10
Oscillators y = a sin(t− b) exp(−t/2) (−1, 1) (−1/2, 1/2) (0, 5) 10
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Figure 9: Samples from the one dimensional regression dataset of Norcliffe et al. (2021). The
ground-truth path (black dashed lines) are observed at 10 irregular observation times (black dots).
FIM-ℓ interpolates (blue line) well and recovers the ground-truth dynamics.

F.5.2 MODELLING AND RESULTS

In Table 17, we present the performance results of our pre-trained model FIM-ℓ(w.n. = 1) on the
1D Regression Task proposed by Norcliffe et al. (2021). MSE, MAE R2 are calculated over all
the points (not just a subset of the target points) for 10 different samples from each function type.
The metrics from 10 samples per function type are averaged, and we report the mean and standard
deviation.

It is important to reiterate that our model has not been trained on this dataset. Still, our model
outperforms the baseline from Norcliffe et al. (2021) in three out of the four tasks. The Oscillator
set is the only one where our model underperforms. Its trajectories exhibit rapid changes at the edges
of the considered interval, which FIM-ℓ can not identify based solely on the sparse observations.

Figure 9 shows four samples from the test set and the corresponding inferences of our model.

Table 17: Results on the 1D regression dataset from Norcliffe et al. (2021). We report the mean and
standard deviation over 10 samples of each function class. The Neural ODE Processes baselines are
selected as the top performing model from Table 1 of Norcliffe et al. (2021).

Function Model R2↑ MAE×10−2↓ MSE×10−2↓

Exponentials Neural ODE Processes - - 0.25 ± 0.04
FIM-ℓ(w.n. = 1) 0.9656 ± 0.0079 1.11 ± 0.11 0.07 ± 0.02

Linear Neural ODE Processes - - 3.16 ± 0.76
FIM-ℓ(w.n. = 1) 0.9992 ± 0.0002 3.85 ± 0.47 0.34 ± 0.09

Oscillators Neural ODE Processes - - 0.55 ± 0.03
FIM-ℓ(w.n. = 1) 0.8822 ± 0.028 20.48 ± 2.54 22.62 ± 7.22

Sine Neural ODE Processes - - 2.09 ± 0.12
FIM-ℓ(w.n. = 1) 0.9679 ± 0.0042 4.84 ± 0.53 0.67 ± 0.16

G POINT-WISE MISSING PATTERN IMPUTATION: ADDITIONAL RESULTS

G.1 COMPARING AGAINST BAYOTIDE

G.1.1 DATA DESCRIPTION AND PRE-PROCESSING

For the point-wise missing pattern imputation model, we first consider two available datasets from
Fang et al. (2024), namely the Traffic-Guangzhou and the Solar dataset.

Traffic-Guangzhou is a single time series with 500 observations and 214 components. Solar is a
single time series with 52560 observations and 137 components.

For each of these datasets, the authors drop either 30% or 50% of the observed values. Importantly,
components are dropped independent from each other, such that at any given observation time,
components are (likely) only partially observed.
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For our experiments, we use the pre-processed datasets provided by the authors11, including the
sampled mask indicating dropped values.

G.1.2 MODELLING AND RESULTS

We apply FIM-ℓ(w.n. = m) with different number of windows m to both datasets and both obser-
vation ratios and compare our results to the baselines extracted from Tables 2 and 3 from Fang et al.
(2024).

Following the experimental setup of Fang et al. (2024), we compute the metrics RMSE and MAE
only at the missing values. Table 18 contains the results with an observation ratio of 50% and
Table 19 the results for an observation ratio of 70%.

The two datasets are of vastly different lengths. Still, with a suitable number of windows, FIM-ℓ
can impute the missing values well in both datasets. It even outperforms all available baselines, even
though they have been trained on the datasets.

The center plot of Figure 3 displays a partial time series of one component of the Traffic-Guangzhou
dataset, including the missing values and imputation by FIM-ℓ. We can see that FIM-ℓ captures
the local patterns well and uses them effectively to impute the missing values.

Table 18: Performance on two datasets from Fang et al. (2024) with observed ratio 50%. Baselines
have be extracted from Table 2 of Fang et al. (2024). We highlight the overall best model per dataset
in bold and underline our best-performing model.

Traffic-GuangZhou Solar-Power
Method RMSE MAE RMSE MAE

SimpleMean 9.852 7.791 3.213 2.212
BRITS 4.874 3.335 2.842 1.985
NAOMI 5.986 4.543 2.918 2.112
SAITS 4.839 3.391 2.791 1.827
TIDER 4.708 3.469 1.679 0.838
Multi-Task GP 4.887 3.530 2.847 1.706
GP-VAE 4.844 3.419 3.720 1.810
CSDI 4.813 3.202 2.276 0.804
CSBI 4.790 3.182 2.097 1.033
BayOTIDE-fix weight 11.032 9.294 5.245 2.153
BayOTIDE-trend only 4.188 2.875 1.789 0.791
BayOTIDE 3.820 2.687 1.699 0.734
FIM-ℓ(w.n. = 1) 10.614 8.113 - -
FIM-ℓ(w.n. = 2) 7.690 5.648 - -
FIM-ℓ(w.n. = 4) 5.377 3.861 - -
FIM-ℓ(w.n. = 8) 4.440 3.090 - -
FIM-ℓ(w.n. = 16) 3.741 2.562 - -
FIM-ℓ(w.n. = 32) 3.600 2.427 - -
FIM-ℓ(w.n. = 800) - - 2.044 1.188
FIM-ℓ(w.n. = 1600) - - 1.667 0.755
FIM-ℓ(w.n. = 3200) - - 1.550 0.595

G.2 COMPARING AGAINST SAITS

G.2.1 DATA DESCRIPTION AND PRE-PROCESSING

Du et al. (2023) collect four time series datasets (PhysioNet-2012, Air-Quality, Electricity and ETT)
and benchmark a range of imputation models, including their own, on several imputation tasks. For
detailed information about each of these datasets, including the sequence lengths and number of
samples, we refer the reader to Table 1 of Du et al. (2023).

11https://github.com/xuangu-fang/BayOTIDE
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Table 19: Performance on two datasets from Fang et al. (2024) with observed ratio 70%. Baselines
have be extracted from Table 3 of Fang et al. (2024). We highlight the overall best model per dataset
in bold and underline our best-performing model.

Traffic-GuangZhou Solar-Power
Method RMSE MAE RMSE MAE

SimpleMean 10.141 8.132 3.156 2.319
BRITS 4.416 3.003 2.617 1.861
NAOMI 5.173 4.013 2.702 2.003
SAITS 4.407 3.025 2.359 1.575
TIDER 4.168 3.098 1.676 0.874
Multi-Task GP 4.471 3.223 2.618 1.418
GP-VAE 4.373 3.156 3.561 1.723
CSDI 4.301 2.991 2.132 1.045
CSBI 4.201 2.955 1.987 0.926
BayOTIDE-fix weight 13.319 9.290 5.238 2.026
BayOTIDE-trend only 4.002 2.759 1.651 0.712
BayOTIDE 3.724 2.611 1.621 0.709
FIM-ℓ(w.n. = 1) 12.533 9.680 - -
FIM-ℓ(w.n. = 2) 9.020 6.810 - -
FIM-ℓ(w.n. = 4) 5.584 4.024 - -
FIM-ℓ(w.n. = 8) 4.401 3.084 - -
FIM-ℓ(w.n. = 16) 3.387 2.360 - -
FIM-ℓ(w.n. = 32) 3.087 2.148 - -
FIM-ℓ(w.n. = 800) - - 2.016 1.181
FIM-ℓ(w.n. = 1600) - - 1.470 0.655
FIM-ℓ(w.n. = 3200) - - 1.282 0.474

Here, we only consider one of their imputation tasks: point-wise imputation of 10% missing ob-
servations. The authors provide pre-processed datasets for this pattern12, which we use for the
following evaluation. Note that their pre-processed data includes pre-sampled masks for the missing
values, to enable a fair comparison to their results.

G.2.2 MODELLING AND RESULTS

Du et al. (2023) report MAE, RMSE and MRE for all datasets and a wide range of imputation models
and methods in their Table 2, which we include here for completeness. We apply FIM-ℓ(w.n. = m)
with different numbers of windows m and FIM-ℓ(o.n. = n) for different window lengths n to all
datasets and report our results, together with the baselines, in Table 20.

With the right number or size of windows, FIM-ℓ is competitive on three out of four datasets. The
PhysioNet-2012 dataset is naturally sparse, where some components of a time series only contain a
few observations. As a zero-shot approach that employs a channel independent strategy, FIM-ℓ does
not perform well in such situations. In other words, PhysioNet-2012 demonstrates the limitations of
FIM-ℓ outlined in Appendix C.6.

G.3 TSI-BENCH

G.3.1 DATA DESCRIPTION AND PRE-PROCESSING

TSI-Bench is a collection of eight time series imputation datasets from different application do-
mains: air-quality, traffic, energy and healthcare, assembled by Du et al. (2024). Its authors provide
pre-processed splits of each dataset13 for several imputation patterns.

Here, we consider their 10% and 50% point missing observation pattern. Note that the pre-processed
datasets include sampled masks for missing values, enabling a fair comparison to their results.

12https://github.com/WenjieDu/SAITS
13https://github.com/WenjieDu/Awesome_Imputation
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Table 20: Performance on datasets from Du et al. (2023) with 10% imputation data. Baselines have
be extracted from Table 2 of Du et al. (2023). We highlight the overall best model per dataset in
bold and underline our best-performing model.

PhysioNet-2012 Air-Quality Electricity ETT
Method MAE RMSE MRE MAE RMSE MRE MAE RMSE MRE MAE RMSE MRE

Median 0.726 0.988 103.5% 0.763 1.175 107.4% 2.056 2.732 110.1% 1.145 1.847 139.1%
Last 0.862 1.207 123.0% 0.967 1.408 136.3% 1.006 1.533 53.9% 1.007 1.365 96.4%
GRUI-GAN 0.765 1.040 109.1% 0.788 1.179 111.0% - - - 0.612 0.729 95.1%
E2GAN 0.702 0.964 100.1% 0.750 1.126 105.6% - - - 0.584 0.703 89.0%
M-RNN 0.533 0.776 76.0% 0.294 0.643 41.4% 1.244 1.867 66.6% 0.376 0.428 31.6%
GP-VAE 0.398 0.630 56.7% 0.268 0.614 37.7% 1.094 1.565 58.6% 0.274 0.307 15.5%
BRITS 0.256 0.767 36.5% 0.153 0.525 21.6% 0.847 1.322 45.3% 0.130 0.259 12.5%
Transformer 0.190 0.445 26.9% 0.158 0.521 22.3% 0.823 1.301 44.0% 0.114 0.173 10.9%
SAITS-base 0.192 0.439 27.3% 0.146 0.521 20.6% 0.822 1.221 44.0% 0.121 0.197 11.6%
SAITS 0.186 0.431 26.6% 0.137 0.518 19.3% 0.735 1.162 39.4% 0.092 0.139 8.8%
FIM-ℓ(w.n. = 1) 0.443 0.899 63.3% 0.167 0.433 23.6% 0.118 0.251 6.3% 0.108 0.178 10.5%
FIM-ℓ(w.n. = 2) 0.414 0.888 59.1% 0.146 0.414 20.7% 0.091 0.199 4.9% 0.105 0.176 10.2%
FIM-ℓ(w.n. = 4) 0.406 0.849 58.0% 0.143 0.461 20.2% 0.078 0.174 4.2% 0.108 0.186 10.5%
FIM-ℓ(w.n. = 8) 0.409 0.751 58.4% 0.186 0.541 26.0% 0.071 0.164 3.8% 0.134 0.252 13.0%
FIM-ℓ(w.n. = 16) 0.479 0.842 68.5% 0.394 0.747 55.7% 0.070 0.162 3.7% 0.489 0.912 47.5%
FIM-ℓ(w.n. = 32) - - - - - 0.074 0.179 3.9% - - -
FIM-ℓ(o.n. = 4) 0.364 0.784 52.0% 0.137 0.438 19.3% 0.069 0.160 3.7% 0.106 0.184 10.3%
FIM-ℓ(o.n. = 6) 0.483 1.047 69.0% 0.163 0.460 23.1% 0.126 0.329 6.6% 0.117 0.194 11.0%
FIM-ℓ(o.n. = 8) 0.478 1.083 68.2% 0.165 0.443 23.3% 0.118 0.312 6.3% 0.114 0.195 11.1%
FIM-ℓ(o.n. = 12) 0.461 1.048 65.8% 0.166 0.459 23.5% 0.114 0.288 6.1% 0.110 0.182 10.6%
FIM-ℓ(o.n. = 12) 0.457 1.016 65.4% 0.165 0.447 23.3% 0.112 0.285 6.0% 0.109 0.182 10.6%
FIM-ℓ(o.n. = 16) 0.453 0.987 64.7% 0.167 0.433 23.6% 0.111 0.271 6.0% 0.108 0.178 10.5%

For details about each individual time series dataset, including the pre-processing, we refer the
reader to Appendix A of (Du et al., 2024).

G.3.2 MODELLING AND RESULTS

We apply FIM-ℓ(w.n. = m) with different numbers of windows m and FIM-ℓ(o.n. = n) for
different window lengths n to all available datasets in both the 10% and 50% missingness patterns.
In accordance with Du et al. (2024), we compute the performance metrics only at the missing values.

Table 21 contains the MAE of all baseline models (extracted from Table 2 of (Du et al., 2024)) and
FIM-ℓ in the 10% missingness pattern. Table 22 contains the MAE and MSE of all baseline models
(extracted from Table 11 of (Du et al., 2024)) and FIM-ℓ in the 50% missingness pattern.

Because of the short, and sometimes very sparse data (in particular in the 50% missingness pattern),
we experimented with different application strategies for FIM-ℓ and report the corresponding results
in both tables.

Let us now compare the two window specifying methods, FIM-ℓ(w.n. = m) and FIM-ℓ(o.n. = n)
on the TSI-Bench datasets. Here, specifying the windows by their number of observations performs
better overall, in particular in the 50% missingness pattern of Table 22. In the 10% missingness
pattern, the (relative) difference between the two approaches is smaller, although still present.

With its windowing scheme, FIM-ℓ is not limited by the length of time series it can process. Some
datasets in the TSI-Bench are based on a single long time series, that is split up into smaller chunks
during pre-processing, to accommodate methods with such limitations. For these datasets, we ex-
perimented with reassembling the original time series via concatenation, before applying FIM-ℓ.
We denote these models by Long-FIM-ℓ(w.n. = m).

The reassembled time series could provide more context for our zero-shot method to better extract
the (local) patterns. Table 22 reveals that such strategy can indeed improve the performance, in
particular in terms of the MSE. However, it does not improve the performance in all datasets and for
all metrics.
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Table 21: MAE on datasets from Du et al. (2024) with 10% point missingness. Baselines have been extracted from Table 2 of Du et al. (2024). Parenthesis indicate
the standard deviation of five training rounds of neural models. We highlight the overall best model per dataset in bold and underline our best-performing model.

Method BeijingAir ItalyAir PeMS Pedestrian ETT h1 Electricity PhysioNet2012 PhysioNet2019

iTransformer 0.123 (0.005) 0.223 (0.014) 0.226 (0.001) 0.148 (0.005) 0.263 (0.004) 0.571 (0.178) 0.379 (0.002) 0.462 (0.006)
SAITS 0.155 (0.004) 0.185 (0.010) 0.287 (0.001) 0.131 (0.006) 0.144 (0.006) 1.377 (0.026) 0.257 (0.019) 0.352 (0.005)
Nonstationary 0.209 (0.002) 0.266 (0.007) 0.331 (0.017) 0.453 (0.024) 0.359 (0.013) 0.213 (0.014) 0.410 (0.002) 0.458 (0.001)
ETSformer 0.187 (0.002) 0.259 (0.004) 0.347 (0.006) 0.207 (0.011) 0.227 (0.007) 0.412 (0.005) 0.373 (0.003) 0.451 (0.005)
PatchTST 0.198 (0.011) 0.274 (0.026) 0.330 (0.013) 0.126 (0.003) 0.240 (0.013) 0.550 (0.039) 0.301 (0.011) 0.420 (0.007)
Crossformer 0.184 (0.004) 0.246 (0.011) 0.337 (0.007) 0.119 (0.005) 0.232 (0.008) 0.540 (0.034) 0.525 (0.202) 0.378 (0.007)
Informer 0.148 (0.002) 0.205 (0.008) 0.302 (0.003) 0.154 (0.010) 0.167 (0.006) 1.291 (0.031) 0.297 (0.003) 0.403 (0.002)
Autoformer 0.257 (0.012) 0.295 (0.008) 0.598 (0.074) 0.197 (0.008) 0.267 (0.008) 0.748 (0.027) 0.417 (0.009) 0.476 (0.002)
Pyraformer 0.178 (0.004) 0.217 (0.006) 0.285 (0.003) 0.153 (0.012) 0.182 (0.008) 1.096 (0.033) 0.294 (0.002) 0.387 (0.004)
Transformer 0.142 (0.001) 0.191 (0.010) 0.294 (0.002) 0.136 (0.009) 0.178 (0.015) 1.316 (0.036) 0.259 (0.006) 0.341 (0.002)
BRITS 0.127 (0.001) 0.235 (0.007) 0.271 (0.000) 0.149 (0.005) 0.145 (0.002) 0.971 (0.016) 0.297 (0.001) 0.355 (0.001)
MRNN 0.568 (0.002) 0.638 (0.003) 0.624 (0.000) 0.735 (0.001) 0.789 (0.019) 1.824 (0.005) 0.708 (0.029) 0.778 (0.015)
GRUD 0.233 (0.002) 0.368 (0.012) 0.355 (0.002) 0.204 (0.008) 0.325 (0.004) 0.976 (0.015) 0.450 (0.004) 0.471 (0.001)
TimesNet 0.230 (0.010) 0.280 (0.004) 0.312 (0.001) 0.157 (0.008) 0.254 (0.008) 1.011 (0.016) 0.353 (0.003) 0.394 (0.003)
MICN 0.203 (0.001) 0.283 (0.004) 0.281 (0.003) - 0.267 (0.010) 0.392 (0.006) 0.378 (0.013) 0.461 (0.007)
SCINet 0.191 (0.011) 0.288 (0.010) 0.487 (0.101) 0.149 (0.012) 0.246 (0.019) 0.581 (0.015) 0.341 (0.005) 0.427 (0.002)
StemGNN 0.161 (0.002) 0.260 (0.008) 0.493 (0.079) 0.127 (0.006) 0.248 (0.012) 1.360 (0.078) 0.331 (0.001) 0.416 (0.002)
FreTS 0.211 (0.008) 0.273 (0.008) 0.396 (0.027) 0.138 (0.004) 0.262 (0.029) 0.718 (0.043) 0.315 (0.008) 0.406 (0.017)
Koopa 0.363 (0.108) 0.307 (0.041) 0.532 (0.122) 0.173 (0.020) 0.435 (0.132) 1.309 (0.531) 0.413 (0.007) 0.451 (0.019)
DLinear 0.215 (0.016) 0.242 (0.009) 0.362 (0.009) 0.179 (0.004) 0.227 (0.006) 0.519 (0.008) 0.370 (0.000) 0.432 (0.001)
FiLM 0.318 (0.010) 0.340 (0.011) 0.784 (0.064) 0.413 (0.010) 0.583 (0.008) 0.834 (0.031) 0.458 (0.001) 0.494 (0.003)
CSDI 0.102 (0.010) 0.539 (0.418) 0.238 (0.047) 0.231 (0.064) 0.151 (0.008) 1.483 (0.459) 0.252 (0.002) 0.408 (0.019)
US-GAN 0.137 (0.002) 0.264 (0.012) 0.296 (0.001) 0.151 (0.016) 0.458 (0.590) 0.938 (0.009) 0.310 (0.003) 0.358 (0.002)
GP-VAE 0.240 (0.006) 0.369 (0.012) 0.341 (0.007) 0.319 (0.010) 0.329 (0.017) 1.152 (0.074) 0.445 (0.006) 0.562 (0.004)
Mean 0.721 0.574 0.798 0.728 0.737 0.422 0.708 0.762
Median 0.681 0.518 0.778 0.667 0.710 0.408 0.690 0.747
LOCF 0.188 0.233 0.375 0.257 0.315 0.104 0.449 0.478
Linear 0.112 0.135 0.211 0.167 0.197 0.065 0.366 0.387
FIM-ℓ(w.n. = 1) 0.148 0.162 0.317 0.234 0.344 0.105 0.489 0.448
FIM-ℓ(w.n. = 2) 0.131 0.150 0.247 0.194 0.263 0.088 0.460 0.434
FIM-ℓ(w.n. = 4) 0.127 0.196 0.227 0.170 0.234 0.078 0.444 0.436
FIM-ℓ(w.n. = 8) 0.165 0.416 0.311 0.245 0.234 0.072 0.445 0.464
FIM-ℓ(w.n. = 16) 0.401 - 0.484 0.449 0.291 0.071 0.521 0.538
FIM-ℓ(w.n. = 32) - - - - 0.501 0.105 0.580 0.612
FIM-ℓ(o.n. = 4) 0.122 0.144 0.208 0.171 0.220 0.069 0.402 0.418
FIM-ℓ(o.n. = 6) 0.145 0.154 0.277 0.177 0.295 0.119 0.536 0.499
FIM-ℓ(o.n. = 8) 0.145 0.162 0.301 0.184 0.302 0.117 0.532 0.487
FIM-ℓ(o.n. = 8) 0.144 0.162 0.307 0.186 0.308 0.114 0.523 0.481
FIM-ℓ(o.n. = 12) 0.147 0.162 0.272 0.200 0.295 0.111 0.512 0.469
FIM-ℓ(o.n. = 12) 0.146 0.162 0.274 0.200 0.295 0.110 0.507 0.463
FIM-ℓ(o.n. = 16) 0.148 0.162 0.317 0.234 0.318 0.110 0.502 0.461
Long-FIM-ℓ(w.n. = 16) - 0.425 - - - - - -
Long-FIM-ℓ(w.n. = 32) - 0.353 0.945 - 0.733 - - -
Long-FIM-ℓ(w.n. = 64) 0.397 0.235 0.705 - 0.495 - - -
Long-FIM-ℓ(w.n. = 128) 0.258 0.174 0.427 - 0.291 - - -
Long-FIM-ℓ(w.n. = 256) 0.167 0.145 0.273 - 0.240 0.172 - -
Long-FIM-ℓ(w.n. = 512) 0.133 - 0.217 - 0.225 0.101 - -
Long-FIM-ℓ(w.n. = 1024) 0.120 - - - - 0.081 - -
Long-FIM-ℓ(w.n. = 2048) - - - - - 0.072 - -
Long-FIM-ℓ(w.n. = 4096) - - - - - 0.070 - -
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Table 22: MAE and MSE on datasets from Du et al. (2024) with 50% point missingness. Baselines have been extracted from Table 11 of Du et al. (2024).
Parenthesis indicate the standard deviation of five training rounds of neural models. We highlight the overall best model per dataset in bold and underline our
best-performing model.

BeijingAir ItalyAir PeMS ETT h1 Electricity Pedestrian
Method MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

iTransformer 0.163 (0.003) 0.233 (0.004) 0.321 (0.007) 0.327 (0.011) 0.295 (0.007) 0.539 (0.016) 0.348 (0.002) 0.233 (0.003) 0.893 (0.085) 1.884 (0.160) 0.200 (0.006) 0.343 (0.006)
SAITS 0.194 (0.003) 0.193 (0.007) 0.285 (0.010) 0.236 (0.014) 0.302 (0.001) 0.595 (0.003) 0.223 (0.007) 0.107 (0.005) 1.399 (0.069) 3.837 (0.316) 0.205 (0.011) 0.392 (0.027)
Nonstationary 0.231 (0.001) 0.271 (0.007) 0.314 (0.005) 0.361 (0.010) 0.394 (0.013) 0.688 (0.016) 0.382 (0.004) 0.292 (0.006) 0.217 (0.031) 0.191 (0.048) 0.487 (0.033) 0.859 (0.098)
ETSformer 0.249 (0.004) 0.261 (0.009) 0.401 (0.007) 0.421 (0.011) 0.386 (0.007) 0.586 (0.009) 0.364 (0.013) 0.269 (0.022) 0.878 (0.008) 1.687 (0.024) 0.320 (0.004) 0.519 (0.010)
PatchTST 0.210 (0.009) 0.206 (0.007) 0.345 (0.011) 0.313 (0.010) 0.348 (0.006) 0.609 (0.008) 0.275 (0.023) 0.149 (0.017) 0.856 (0.044) 1.573 (0.141) 0.198 (0.003) 0.351 (0.005)
Crossformer 0.215 (0.007) 0.224 (0.004) 0.325 (0.009) 0.293 (0.009) 0.357 (0.003) 0.607 (0.008) 0.270 (0.021) 0.146 (0.017) 0.980 (0.344) 2.255 (1.656) 0.191 (0.008) 0.356 (0.014)
Informer 0.184 (0.005) 0.213 (0.003) 0.304 (0.007) 0.247 (0.015) 0.330 (0.005) 0.600 (0.009) 0.279 (0.008) 0.162 (0.007) 1.277 (0.028) 3.239 (0.080) 0.210 (0.006) 0.378 (0.021)
Autoformer 0.898 (0.001) 1.554 (0.003) 0.833 (0.017) 1.880 (0.044) 0.602 (0.068) 1.242 (0.173) 0.984 (0.008) 1.553 (0.025) 2.164 (0.001) 8.092 (0.010) 1.033 (0.015) 2.273 (0.082)
Pyraformer 0.198 (0.005) 0.223 (0.011) 0.312 (0.012) 0.254 (0.018) 0.305 (0.002) 0.580 (0.004) 0.291 (0.026) 0.167 (0.021) 1.131 (0.036) 2.711 (0.079) 0.202 (0.006) 0.381 (0.007)
Transformer 0.185 (0.003) 0.192 (0.005) 0.279 (0.011) 0.230 (0.017) 0.316 (0.004) 0.588 (0.005) 0.274 (0.012) 0.162 (0.017) 1.365 (0.034) 3.554 (0.085) 0.194 (0.014) 0.342 (0.033)
BRITS 0.169 (0.001) 0.194 (0.003) 0.321 (0.005) 0.283 (0.007) 0.287 (0.001) 0.561 (0.002) 0.238 (0.006) 0.127 (0.004) 1.124 (0.010) 2.828 (0.023) 0.259 (0.017) 0.433 (0.021)
MRNN 0.603 (0.006) 0.775 (0.006) 0.724 (0.001) 1.391 (0.006) 0.645 (0.001) 1.072 (0.003) 0.816 (0.006) 1.219 (0.004) 1.810 (0.004) 5.793 (0.011) 0.773 (0.001) 1.258 (0.003)
GRUD 0.279 (0.001) 0.303 (0.002) 0.476 (0.009) 0.539 (0.011) 0.372 (0.002) 0.619 (0.002) 0.417 (0.008) 0.337 (0.005) 1.087 (0.011) 2.458 (0.034) 0.307 (0.005) 0.507 (0.007)
TimesNet 0.265 (0.005) 0.233 (0.007) 0.370 (0.010) 0.323 (0.012) 0.348 (0.002) 0.567 (0.001) 0.339 (0.004) 0.210 (0.004) 1.131 (0.017) 2.644 (0.077) 0.269 (0.016) 0.392 (0.017)
MICN 0.456 (0.006) 0.553 (0.013) 0.548 (0.003) 0.852 (0.012) 0.392 (0.006) 0.608 (0.010) 0.606 (0.073) 0.688 (0.152) 0.965 (0.008) 2.018 (0.032) - -
SCINet 0.222 (0.012) 0.230 (0.036) 0.337 (0.008) 0.319 (0.006) 0.500 (0.093) 0.849 (0.193) 0.326 (0.014) 0.194 (0.013) 0.778 (0.023) 1.162 (0.115) 0.251 (0.005) 0.391 (0.015)
StemGNN 0.186 (0.004) 0.263 (0.005) 0.307 (0.014) 0.280 (0.019) 0.446 (0.021) 0.862 (0.064) 0.325 (0.019) 0.200 (0.025) 1.362 (0.187) 3.803 (0.920) 0.200 (0.009) 0.343 (0.014)
FreTS 0.235 (0.015) 0.246 (0.010) 0.349 (0.015) 0.345 (0.053) 0.422 (0.019) 0.686 (0.027) 0.319 (0.025) 0.195 (0.030) 0.871 (0.084) 1.320 (0.275) 0.224 (0.004) 0.314 (0.016)
Koopa 0.373 (0.079) 0.445 (0.119) 0.345 (0.032) 0.359 (0.056) 0.506 (0.114) 0.855 (0.184) 0.515 (0.159) 0.577 (0.351) 1.755 (0.250) 7.390 (1.677) 0.246 (0.017) 0.330 (0.030)
DLinear 0.245 (0.005) 0.242 (0.006) 0.340 (0.004) 0.337 (0.005) 0.389 (0.013) 0.604 (0.020) 0.311 (0.003) 0.186 (0.003) 0.734 (0.011) 0.988 (0.038) 0.310 (0.002) 0.455 (0.006)
FiLM 0.331 (0.009) 0.409 (0.009) 0.402 (0.018) 0.468 (0.052) 0.781 (0.059) 1.499 (0.124) 0.589 (0.005) 0.793 (0.003) 0.907 (0.024) 1.434 (0.078) 0.453 (0.007) 0.664 (0.008)
CSDI 0.144 (0.007) 0.472 (0.155) 0.958 (0.551) 29.266 (31.183) 0.288 (0.040) 0.651 (0.090) 0.318 (0.016) 0.207 (0.011) 0.798 (0.455) 21.850 (22.140) 0.351 (0.074) 1.117 (0.220)
US-GAN 0.192 (0.001) 0.187 (0.005) 0.357 (0.009) 0.278 (0.011) 0.330 (0.001) 0.566 (0.001) 0.755 (0.973) 2.119 (3.955) 1.119 (0.007) 2.610 (0.018) 0.233 (0.005) 0.328 (0.007)
GP-VAE 0.258 (0.004) 0.234 (0.008) 0.453 (0.014) 0.495 (0.022) 0.346 (0.015) 0.617 (0.015) 0.414 (0.013) 0.301 (0.011) 1.099 (0.032) 2.973 (0.040) 0.451 (0.022) 0.677 (0.031)
Mean 0.708 1.078 0.588 1.096 0.799 1.416 0.738 0.971 0.423 0.581 0.763 1.258
Median 0.677 1.143 0.533 1.116 0.777 1.476 0.708 1.022 0.408 0.627 0.705 1.386
LOCF 0.264 0.429 0.346 0.511 0.547 1.094 0.425 0.491 0.140 0.181 0.365 0.636
Linear 0.165 0.231 0.214 0.252 0.343 0.539 0.267 0.178 0.078 0.035 0.247 0.279
FIM-ℓ(w.n. = 1) 0.198 0.325 0.254 0.287 0.496 0.960 0.411 0.370 0.110 0.057 0.343 0.366
FIM-ℓ(w.n. = 2) 0.185 0.330 0.236 0.271 0.434 0.840 0.337 0.275 0.096 0.047 0.303 0.305
FIM-ℓ(w.n. = 4) 0.190 0.371 0.352 0.609 0.384 0.714 0.317 0.251 0.093 0.045 0.273 0.251
FIM-ℓ(w.n. = 8) 0.318 0.520 0.563 1.049 0.473 0.866 0.326 0.305 0.091 0.046 0.388 0.450
FIM-ℓ(w.n. = 16) 0.559 0.886 - - 0.626 1.136 0.445 0.508 0.122 0.140 0.574 0.763
FIM-ℓ(w.n. = 32) - - - - - - 0.650 0.911 0.533 1.499 - -
FIM-ℓ(o.n. = 4) 0.166 0.298 0.225 0.249 0.375 0.708 0.279 0.198 0.083 0.038 0.274 0.272
FIM-ℓ(o.n. = 6) 0.240 0.506 0.250 0.282 0.583 1.295 0.469 0.662 0.210 0.336 0.294 0.287
FIM-ℓ(o.n. = 8) 0.234 0.422 0.254 0.287 0.583 1.327 0.467 0.661 0.199 0.294 0.306 0.314
FIM-ℓ(o.n. = 8) 0.233 0.401 0.254 0.287 0.568 1.235 0.467 0.649 0.191 0.257 0.302 0.293
FIM-ℓ(o.n. = 12) 0.208 0.370 0.254 0.287 0.533 1.098 0.420 0.453 0.187 0.227 0.327 0.334
FIM-ℓ(o.n. = 12) 0.212 0.410 0.254 0.287 0.546 1.136 0.420 0.448 0.182 0.211 0.324 0.325
FIM-ℓ(o.n. = 16) 0.198 0.325 0.254 0.287 0.496 0.960 0.417 0.500 0.198 0.240 0.343 0.366
Long-FIM-ℓ(w.n. = 16) - - 0.414 0.458 - - - - - - - -
Long-FIM-ℓ(w.n. = 32) - - 0.358 0.383 0.905 1.692 0.693 1.084 - - - -
Long-FIM-ℓ(w.n. = 64) 0.360 0.512 0.283 0.282 0.709 1.193 0.495 0.576 - - - -
Long-FIM-ℓ(w.n. = 128) 0.266 0.397 0.238 0.245 0.516 0.848 0.362 0.303 - - - -
Long-FIM-ℓ(w.n. = 256) 0.201 0.279 0.215 0.231 0.417 0.721 0.328 0.281 0.157 0.103 - -
Long-FIM-ℓ(w.n. = 512) 0.177 0.265 - - 0.365 0.651 0.310 0.265 0.106 0.052 - -
Long-FIM-ℓ(w.n. = 1024) 0.171 0.279 - - - - - - 0.094 0.044 - -
Long-FIM-ℓ(w.n. = 2048) - - - - - - - - 0.089 0.043 - -
Long-FIM-ℓ(w.n. = 4096) - - - - - - - - 0.097 0.066 - -
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H TEMPORAL MISSING PATTERN IMPUTATION: ADDITIONAL RESULTS

H.1 MOTION CAPTURE

H.1.1 DATA DESCRIPTION AND PRE-PROCESSING

Let us now consider the imputation problem setup proposed by Heinonen et al. (2018) on a human
motion capture dataset, consisting of 50-dimensional pose measurements of walking subjects. We
take the data provided by Yildiz et al. (2019), which was pre-processed according to previous work
of Wang et al. (2007).

The dataset contains 43 trajectories of a maximal length of 125. Following Heinonen et al. (2018),
we remove 20% out of the center of each trajectory. To compare to Heinonen et al. (2018), we also
apply the provided PCA projection and consider the first 3 PCA components. In the following, we
call this the PCA setup.

Because FIM can be applied to arbitrary dimensional data, due to our channel independent strategy
(see Appendix D.7), we also consider the 50 dimensional data directly. In the following, we call this
the No PCA setup.

H.1.2 TRAINING LATENTODE

To obtain another baseline model, we train LatentODE (Rubanova et al., 2019) on the first 3 PCA
components on the likelihood outside of the interpolation window, i.e. it has never seen and is not
trained on the (missing) data inside the imputation window. We train and test on all 43 trajectories,
selecting the model based on the performance on all trajectories. This approach is similar to the
approach of models trained in Heinonen et al. (2018).

The training data is standardised for training. We use a LSTM as as the encoder and a diagonal
gaussian emission model, fixing its standard deviation to 0.01. We train for 120.000 gradient descent
iterations over the whole dataset, using AdamW with learning rate 1e−3 and weight decay 1e−2. To
help the model learn, we slowly anneal the input time series length over the initial 60.000 epochs,
starting at 25 observations.

We did ablation over the hidden size of the model. See Table 14 for the final hyperparameters. The
model trained roughly 3.5 hours on a A100 40GB GPU.

H.1.3 MODELLING AND RESULTS

In accordance with Heinonen et al. (2018), we compute the performance metrics in 50 dimensional
space and only on the missing points inside the imputation gap. We evaluate FIM, LatentODE and
also a cubic spline composed with Savitzky–Golay filters (Savitzky & Golay, 1964) in the PCA
setup. Table 23 reports the RMSE, including baselines extracted from Heinonen et al. (2018), while
Table 24 reports the MAE.

FIM performs almost as well as the specialized LatentODE model, especially when considering
the large standard deviation for both approaches. These results indicate that a zero-shot imputation
approach is indeed viable.

PCA dimensionality reduction induces some level of intrinsic error. In contrast to our baseline
models, FIM is not restricted by dimensionality of the data. By applying our model to the 50
dimensional data without PCA projection, we can, in principle, avoid this error.

We report the results of this No PCA setup in Tables 23 and 24. Indeed, our model is performing
better without the PCA projection, showcasing the strengths of our flexible, zero-shot methodology
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Table 23: RMSE of imputation in the Motion Capture and Navier Stokes datasets. The RMSE is
calculated only in the imputation window, in accordance with Heinonen et al. (2018).

Motion Capture Navier Stokes
Model Filter PCA No PCA PCA No PCA

LatentODE - 3.066 ± 1.767 - 0.133 ± 0.053 -
Cubic spline - 7.333 ± 2.49 8.95 ± 2.78 0.174 ± 0.003 0.186 ± 0.004
Cubic spline Savgol(15, 3) 6.317 ± 1.813 6.752 ± 1.676 0.151 ± 0.003 0.143 ± 0.002
Cubic spline Savgol( 8, 3) 7.078 ± 2.147 8.271 ± 2.282 0.148 ± 0.003 0.147 ± 0.003
Cubic spline Savgol( 4, 3) 7.251 ± 2.184 8.783 ± 2.508 0.171 ± 0.003 0.18 ± 0.004
npODE - 3.94 ± 3.50 - - -
GPDM - 5.31 ± 3.39 - - -
VGPLVM - 3.91 ± 1.89 - - -
FIM - 3.271 ± 1.22 2.977 ± 0.96 0.103 ± 0.004 0.971 ± 0.005

Table 24: MAE of imputation in the Motion Capture and Navier Stokes datasets. The MAE is
calculated only in the imputation window, in accordance with Heinonen et al. (2018).

Motion Capture Navier Stokes
Model Filter PCA No PCA PCA No PCA

LatentODE - 1.658 ± 0.989 - 0.076 ± 0.03 -
Cubic spline - 3.362 ± 1.175 4.209 ± 1.436 0.085 ± 0.003 0.083 ± 0.003
Cubic spline Savgol(15, 3) 2.897 ± 0.871 2.998 ± 0.881 0.084 ± 0.00 0.075 ± 0.002
Cubic spline Savgol( 8, 3) 3.229 ± 1.029 3.695 ± 1.22 0.081 ± 0.003 0.072 ± 0.002
Cubic spline Savgol( 4, 3) 3.298 ± 1.035 4.061 ± 1.354 0.085 ± 0.003 0.082 ± 0.003
FIM - 1.765 ± 0.627 1.611 ± 0.453 0.062 ± 0.003 0.051 ± 0.002

H.2 NAVIER STOKES

H.2.1 DATA DESCRIPTION AND PRE-PROCESSING

As an application of FIM to high-dimensional data, we consider the simulation of a two-dimensional,
incompressible Navier-Stokes equation from (Course & Nair, 2023)14. The equation is simulated on
a two-dimensional grid of size 199× 1499 for a total of 596, 602 states. Following (Course & Nair,
2023), we remove the first 20% of the trajectory for warmup and are left with 2441 simulation steps.

We use this preprocessed simulation to create another imputation dataset, with a similar setup as in
the motion capture dataset. We drop the last observation and cut the remaining trajectory into 61
time series of length 40. Then we remove the central 20% of each time series, creating a temporal
missing pattern imputation task.

While our model can handle this high-dimensional data, as we will show below, we need to apply
PCA dimensionality reduction to train a (specialized) baseline model. Following (Course & Nair,
2023), we project the data to 38 dimensional space with randomised PCA, which already captures
the high dimensional dynamics well.

In the following, we will again refer to these two setups as PCA and No PCA respectively.

H.2.2 TRAINING LATENTODE

As a baseline, we train LatentODE (Rubanova et al., 2019) in the PCA setup on the likelihood
outside of the imputation window, with the same reasoning as for the motion capture imputation
problem in Section H.1.2.

LatentODE is trained on all 61 (standardised) time series, uses a LSTM as the encoder and a diag-
onal gaussian emission model with fixed standard deviation of 0.01. We train for 300.000 gradient
descent iterations over the whole dataset, using AdamW with learning rate 1e−3 and weight decay

14https://github.com/coursekevin/svise
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Table 25: Performance comparison of different models across window counts.

Window count Pre-trained Fine-tuned on noisy obs Fine-tuned on clean obs
1 10.32± 1.478 8.983± 0.932 9.001± 0.945
4 7.136± 0.697 5.936± 0.432 5.947± 0.433
8 2.860± 0.237 2.708± 0.176 2.704± 0.175

12 1.956± 0.161 1.913± 0.144 1.911± 0.143
16 1.652± 0.126 1.702± 0.127 1.703± 0.126
20 1.526± 0.125 1.586± 0.112 1.588± 0.112
24 1.504± 0.138 1.532± 0.108 1.534± 0.108
28 1.516± 0.133 1.505± 0.098 1.506± 0.098
32 1.561± 0.142 1.500± 0.118 1.501± 0.118

1e−2. We slowly anneal the input time series length over the initial 60.000 epochs, starting at just 5
observations.

We studied some ablation over the hidden size. The search grid, including the final hyperparameters,
is shown in Table Table 14. The model trained roughly 7 hours on a A100 40GB GPU.

H.2.3 MODELLING AND RESULTS

Let us first consider the PCA setup where we trained the LatentODE baseline. For both FIM and
LatentODE we report the RMSE, in Table 23, and MAE, in Table 24, inside the imputation gap. In
this particular task, FIM was again able to match the performance of LatentODE.

As FIM can be applied to data of any dimensionality, we also experimented with the No PCA setup,
imputing the missing data in 596, 602 dimensional space directly. As in the Motion Capture dataset,
FIM performs even better without the errors induced by the PCA projection.

Finally, we report the computational load of inference in dataset, as it is considerably larger than in
all other experiments, because of its high dimensionality. The application of FIM took roughly 9
hours on a A100 40GB GPU. As a comparison, the application of a cubic spline on the same data
took roughly 1.1 hours on 32 CPU cores.

I ON FINE-TUNING FIM

Although outside the scope of the present work, fine-tuning FIM to specific applications would be
of great interest and value.

In practice, one does not have access to any ground-truth initial condition, nor to any time derivative
(of the hidden interpolating function). However, the model can still be optimized to reconstruct the
available data. To illustrate the plausibility of this approach in a controlled setting, we have fine-
tuned FIM-ℓ to reconstruct the Lorentz system data we studied in Appendix F.4. The details of this
dataset can be found in that Appendix.

Setting up the fine-tuning:

1. FIM-ℓ takes as input the noisy observations along one path and returns (its best guess of) the
interpolation function, which can be evaluated at any time. We fine-tune FIM-ℓ in two settings,
namely
(a) to reconstruct the noisy input data, and
(b) to reconstruct the ground-truth, clean values of the Lorentz system’s solution, at the input

observation times.
Clearly, case (a) is the realistic setting. We consider case (b) as a control case, because FIM-ℓ
was pretrained to reconstruct the clean path.

2. As we described in Subsection 3.2.2 of the main text, FIM-ℓ can be used to process either sets
of up to Lmax observations simultaneously, or subsets (or windows) with fewer observations, fol-
lowed by a combination of the local window estimates. This trick is what allows us to interpolate
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time series of any length and handle interpolation functions which lie outside our distribution of
“simple” functions.
The number of windows into which we split the target dataset is a hyperparameter of the model,
as it is clearly problem dependent. Indeed, Figure 8 of Appendix F.4.4 demonstrates the effect of
modifying it on the Lorentz system data. To fine-tune FIM-ℓ, we therefore need to specify the
number of windows hyperparameter. That is, we need to specify the temporal scale at which we
want to fine-tune the model. In our simple experiment below we chose to fine-tune FIM-ℓ on
four (4) windows.

3. Other details: We fine-tuned FIM-ℓ with a learning rate of 1e-6, which was the learning rate at
which we stopped pretraining. We fine-tuned it for two epochs only, on all components of the
Lorenz systems (i.e. channel independence strategy).

Table 25 (which expands on Fig. 8) contains our results.

The first thing we notice is that the performance of FIM-ℓ clearly improves at the time scale (i.e.
at the window count) on which it was fine-tuned. Indeed, we fine-tuned it on 4 windows. Very
importantly, the fine-tuning process does not negatively perturb the interpolation performance at
different time scales (i.e. at fewer or larger window counts). Therefore, there is no catastrophic
forgetting. This observation alone demonstrates the plausibility of fine-tuning with FIM-ℓ.

The second thing we notice is that fine-tuning on the noisy and clean data had a similar effect. The
continuous nature of the interpolation function appears to make the fine-tuning robust to noise in
the target data. However, we have also observed that if one fine-tunes FIM-ℓ on the noisy data for
many more epochs, or simply with a larger learning rate, its performance at different time scales
does deteriorate. This occurs because the model starts fitting the noise. Therefore, to properly
address fine-tuning within our framework, we would need to define an emission model that handles
the noise.

One could picture an emission model, (pre-)trained on our synthetic dataset, which would take as
input both the interpolation function x(t) — represented on some sensor grid, like in DeepONets —
and the noisy data y1, . . . , yl. The emission model would then output the probability of observing
the noisy value yi at any desire time τi, that is p(yi|x(τi)).
Coupling FIM-ℓ together with this emission model would allow to finetune FIM-ℓ (or the emission
model, or both) to any target dataset. We plan to pursue this general direction in the near future.
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