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A APPENDIX / SUPPLEMENTAL MATERIAL

The Python implementation of our proposed framework and baseline methods is available at the
following Github Repository.

A.1 CELL CULTURE

Approximately 106 cells were plated on each Multielectrode Array. Neuronal cells were cultured
either from the cortices of E15.5 mouse embryos or differentiated from human induced pluripotent
stem cells via a dual SMAD inhibition (DSI) protocol or through a lentivirus-based NGN2 direct
differentiation protocols as previously described (6). Cells were cultured until plating. For primary
mouse neurons, this occurred at day-in-vitro (DIV) 0, for DSI cultures this occurred at between DIV
30 - 33 depending on culture development, for NGN2 cultures this occurred at DIV 3.

A.2 MEA SETUP AND PLATING

MaxOne Multielectrode Arrays (MEA; Maxwell Biosystems, AG, Switzerland) was used and is a high-
resolution electrophysiology platform featuring 26,000 platinum electrodes arranged over an 8 mm2.
The MaxOne system is based on complementary meta-oxide-semiconductor (CMOS) technology
and allows recording from up to 1024 channels. MEAs were coated with either polyethylenimine
(PEI) in borate buffer for primary culture cells or Poly-D-Lysine for cells from an iPSC background
before being coated with either 10 µg/ml mouse laminin or 10 µg/ml human 521 Laminin (Stemcell
Technologies Australia, Melbourne, Australia) respectively to facilitate cell adhesion. Approximately
106 cells were plated on MEA after preparation as per (6). Cells were allowed approximately one
hour to adhere to MEA surface before the well was flooded. The day after plating, cell culture media
was changed for all culture types to BrainPhys™ Neuronal Medium (Stemcell Technologies Australia,
Melbourne, Australia) supplemented with 1% penicillin-streptomycin. Cultures were maintained in a
low O2 incubator kept at 5% CO2, 5% O2, 36°C and 80% relative humidity. Every two days, half the
media from each well was removed and replaced with free media. Media changes always occurred
after all recording sessions.

A.3 DISHBRAIN PLATFORM AND ELECTRODE CONFIGURATION

The current DishBrain platform is configured as a low-latency, real-time MEA control system with
on-line spike detection and recording software. The DishBrain platform provides on-line spike
detection and recording configured as a low-latency, real-time MEA control. The DishBrain software
runs at 20 kHz and allows recording at an incredibly fine timescale. This setup captured neuronal
electrical activity and provided long-term, safe external electrical stimulation through biphasic pulses
that elicited action potentials in neurons, as detailed in previous studies (34). There is the option
of recording spikes in binary files, and regardless of recording, they are counted throughout 10
milliseconds (200 samples), at which point the game environment is provided with how many spikes
are detected in each electrode in each predefined motor region as described below. Based on which
motor region the spikes occurred in, they are interpreted as motor activity, moving the ‘paddle’ up
or down in the virtual space. As the ball moves around the play area at a fixed speed and bounces
off the edge of the play area and the paddle, the pong game is also updated at every 10ms interval.
Once the ball hits the edge of the play area behind the paddle, one rally of pong has come to an
end. The game environment will instead determine which type of feedback to apply at the end of the
rally: random, silent, or none. Feedback is also provided when the ball contacts the paddle under
the standard stimulus condition. A ‘stimulation sequencer’ module tracks the location of the ball
relative to the paddle during each rally and encodes it as stimulation to one of eight stimulation
sites. Each time a sample is received from the MEA, the stimulation sequencer is updated 20,000
times a second, and after the previous lot of MEA commands has completed, it constructs a new
sequence of MEA commands based on the information it has been configured to transmit based on
both place codes and rate codes. The stimulations take the form of a short square bi-phasic pulse that
is a positive voltage, then a negative voltage. This pulse sequence is read and applied to the electrode
by a Digital to Analog Converter (or DAC) on the MEA. A real-time interactive version of the game
visualiser is available at https://spikestream.corticallabs.com/. Alternatively, cells
could be recorded at ‘Rest’ in a Gameplay environment where activity was recorded to move the
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paddle but no stimulation was delivered, with corresponding outcomes still recorded. Using this
spontaneous activity alone as a baseline, the Gameplay characteristics of a culture were determined.
Low level code for interacting with Maxwell API was written in C to minimize processing latencies-so
packet processing latency was typically <50 µs. High-level code was written in Python, including
configuration setups and general instructions for game settings. A 5 ms spike-to-stim latency was
achieved, which was substantially due to MaxOne’s inflexible hardware buffering. Fig. S1 illustrates
a schematic view of Software components and data flow in the DishBrain closed loop system.

2
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Figure S1: a, b) Schematics of software used for DishBrain. a) Software components and data flow
in the DishBrain closed loop system. Voltage samples flow from the MEA to the ‘Pong’ environment,
and sensory information flows from the ‘Pong’ environment back to the MEA, forming a closed loop.
The blue rectangles mark proprietary pieces of hardware from MaxWell, including the MEA well
which may contain a live culture of neurons. The green MXWServer is a piece of software provided
by MaxWell which is used to configure the MEA and Hub, using a private API directly over the
network. The red rectangles mark components of the ‘DishServer’ program, a high-performance
program consisting of four components designed to run asynchronously, despite being run on a
single CPU thread. The ‘LAN Interface’ component stores network state, for talking to the Hub, and
produces arrays of voltage values for processing. Voltage values are passed to the ‘Spike Detection’
component, which stores feedback values and spike counts, and passes recalibration commands back
to the LAN Interface. When the pong environment is ready to run, it updates the state of the paddle
based on the spike counts, updates the state of the ball based on its velocity and collision conditions,
and reconfigures the stimulation sequencer based on the relative position of the ball and current
state of the game. The stimulation sequencer stores and updates indices and countdowns relating
to the stimulations it must produce and converts these into commands each time the corresponding
countdown reaches zero, which are finally passed back to the LAN Interface, to send to the MEA
system, closing the loop. The procedures associated with each component are run one after the
other in a simple loop control flow, but the ‘Pong’ environment only moves forward every 200th
update, short-circuiting otherwise. Additionally, up to three worker processes are launched in parallel,
depending on which parts of the system need to be recorded. They receive data from the main
thread via shared memory and write it to file, allowing the main thread to continue processing data
without having to hand control to the operating system and back again. b) Numeric operations in
the real-time spike detection component of the DishBrain closed loop system, including multiple
IIR filters. Running a virtual environment in a closed loop imposes strict performance requirements,
and digital signal processing is the main bottleneck of this system, with close to 42 MB of data to
process every second. Simple sequences of IIR digital filters is applied to incoming data, storing
multiple arrays of 1024 feedback values in between each sample. First, spikes on the incoming data
are detected by applying a high pass filter to determine the deviation of the activity, and comparing
that to the MAD, which is itself calculated with a subsequent low pass filter. Then, a low pass filter
is applied to the original data to determine whether the MEA hardware needs to be re-calibrated,
affecting future samples. This system was able to keep up with the incoming data on a single thread
of an Intel Core i7-8809G. Figures adapted from (6).

3
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A.4 ADDITIONAL RESULTS

In this section, we present the learned representations of the three best performing windows in terms
of the culture’s hit/miss ratios during Gameplay for two additional cultures in Figs. S2 and S3.
The figures repeatedly demonstrate TAVRNN’s outperformance over the other baseline methods in
identifying clusters of channels that belong to the same region on the HD-MEA.
Additionally, Fig. S4 represents t-SNE visualization of the learned representations of the three best and
three worst windows based on hit/miss ratios (High

1,2,3 and Low
1,2,3) during Gameplay and Rest,

as modeled by TAVRNN for all aggregated trials of an additional sample culture. These visualizations
reveal an absence of distinguishable clusters during the rest state or during low-performing periods of
gameplay. However, as we progress to time windows associated with higher performance levels in
the game, distinct clustering patterns emerge. Notably, channels from the motor regions associated
with Up and Down movements form distinct, cohesive clusters, despite the spatial separation of
these channels (within each of the Up or Down subregions) on the HD-MEA. Similarly, channels
from the Sens region group together into a separate cluster.

Figure S2: t-SNE visualization of the channels in the embedding space for High
1,2,3 windows of

Gameplay using TAVRNN and all baseline methods for aggregated trials of an additional sample
culture. Each channel is color-coded based on the predefined subregion it belongs to as shown in Fig.
1c.

4



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure S3: t-SNE visualization of the channels in the embedding space for High
1,2,3 windows of

Gameplay using TAVRNN and all baseline methods for aggregated trials of another sample culture.
Each channel is color-coded based on the predefined subregion it belongs to as shown in Fig. 1c.

Figure S4: t-SNE visualization of the channels in the embedding space using TAVRNN during the top
and bottom three windows (High

1,2,3 and Low
1,2,3) in terms of hit-miss-ratio during Gameplay and

Rest for aggregated trials of a sample culture. Each channel is color-coded based on the predefined
subregion it belongs to as shown in Fig. 1c.
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A.5 CONNECTIVITY INFERENCE MECHANISMS

Methods for inferring connectivity are broadly categorized into two types: model-free and model-

based approaches. Model-free methods rely on descriptive statistics and do not presuppose any
specific underlying data generation mechanism, making them versatile for initial analyses. In contrast,
model-based methods involve hypothesizing a mathematical model to elucidate the underlying
biological processes by estimating its parameters and structure. Typically, these methods analyze
time-series data, such as spike trains from individual neurons. However, recent advances have enabled
studies to integrate spike inference with connectivity analysis directly from time-series data (35). In
this work, we focus on utilizing the model-free methods.

Model-free methods do not presuppose any specific mechanisms underlying the observed data,
offering a simpler alternative to model-based approaches. However, these methods do not facilitate the
generation of activity data crucial for model validation or predictive analysis. Model-free techniques
are primarily divided into two categories: those employing descriptive statistics such as Pearson
correlation coefficient (PC) and cross-correlation (CC) and those utilizing information-theoretic
measures such as Mutual information (MI), and Transfer entropy (TE) (35; 36; 37; 38; 39; 40; 41).

A.5.1 GRAPH KERNELS

In light of the diversity of connectivity inference methods discussed previously, each method can
generate distinct graph representations from identical datasets. To extract meaningful insights from
these varied representations, it is essential to employ a comparison methodology. However, graph
comparison is computationally challenging. Ideally, one would verify if two graphs are exactly
identical, a problem known as graph isomorphism, which is NP-complete (42). This complexity
renders the task computationally prohibitive for large graphs.

To circumvent these difficulties, kernel methods offer a viable alternative. Kernels are functions
designed to measure the similarity between pairs, enabling the transformation of objects into a
high-dimensional space conducive to linear analysis methods. Graph kernels, specifically, facilitate
the comparison of graphs by evaluating their structure, topology, and other attributes, thus proving
instrumental in machine learning applications for graph data, such as clustering and classification
(43; 44; 45).

Graph kernels vary in their approach to measuring similarity. Some rely on neighborhood aggregation,
which consolidates information from adjacent nodes to form local feature vectors (46; 47; 48), while
others utilize assignment and matching techniques to establish correspondences between nodes in
different graphs (49). Additionally, some kernels identify and compare subgraph patterns (50), and
others analyze walks and paths to capture structural nuances (51).

Here we concentrate on neighborhood aggregation methods, particularly pertinent for analyzing
connectivity graphs derived from neuronal recordings, typically involving fewer than 1000 nodes
without definitive node labels. These methods are also foundational for the graph neural network
models. We exemplify this approach with the 1-dimensional Weisfeiler-Lehman (1-WL) algorithm
(46), illustrating its application and effectiveness.

Weisfeiler-Lehman Algorithm The Weisfeiler-Lehman (WL) graph kernel is a sophisticated approach
for computing graph similarities, which leverages an iterative relabeling scheme based on the
Weisfeiler-Lehman isomorphism test. This method extends the basic graph kernel framework by
incorporating local neighborhood information into the graph representation, making it particularly
effective for graph classification tasks.

Consider a graph G = (V,E, `), where V is the set of vertices, E is the set of edges, and ` : V ! ⌃
is a labeling function that maps each vertex to a label from a finite alphabet ⌃. Initially, each vertex
is assigned a label based on its original label or degree.

Define `
0 = `. At each iteration i, a new labeling `

i is computed as follows:
`
i+1(v) = HASH

�
`
i(v), {{`i(u) | u 2 N(v)}}

�

where N(v) denotes the set of neighbors of vertex v and {{·}} denotes a multiset, ensuring that the
labels of neighboring vertices are considered without regard to their order. The function HASH maps
the concatenated labels to a new, unique label. The algorithm continues iteratively, relabeling vertices
until the labels converge or no new labels are produced (Fig. S5).
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Figure S5: Illustration of the 1-dimensional Weisfeiler-Lehman (1-WL) algorithm. This diagram
demonstrates how the 1-WL algorithm initially encounters overlapping node labels and, through one
iteration, assigns unique labels to each node based on their positions within the graph.

After each iteration i, compute a feature vector �i(G) as the histogram of the labels across all vertices:
�
i(G) =

�
#{v 2 V | `

i(v) = k}
�
k2K

where K is the set of all possible labels at iteration i.

The WL kernel between two graphs G and G
0 is defined as the sum of base kernel evaluations on the

corresponding histograms at each iteration:

K(G,G
0) =

hX

i=0

Kbase
�
�
i(G),�i(G0)

�

where Kbase is typically chosen to be the linear kernel Kbase(�,�0) = � · �
0, and h is a predefined

number of iterations, determining the depth of neighborhood aggregation.

In this study, we analyzed 437 recording sessions, comprising 262 Gameplay and 175 Rest sessions,
to construct functional connectivity graphs. These graphs were derived using four distinct network
inference algorithms: Zero-lag Pearson Correlations (PC), Cross-Correlation (CC), Mutual Informa-
tion (MI), and Transfer Entropy (TE). For the PC analysis, connectivity matrices were thresholded at
varying levels t 2 {0, 20, 40, 60, 80}%, retaining only the strongest connections as determined by
their absolute correlation values. For both CC and TE, we explored delay values d 2 {1, 2, 3, 4}.
Each method produced 437 distinct networks.

Subsequently, a Weisfeiler-Lehman (WL) graph kernel with depth h = 4 was utilized to compute
the kernel matrix K, which was then employed in a Support Vector Machine (SVM) classifier to
distinguish between Gameplay and Rest sessions. Classification effectiveness was evaluated through
a 5-fold cross-validation on the DishBrain dataset, achieving the results summarized in Table S1.
Notably, classification performance for CC and TE improved with increasing delay values, reflecting
enhanced discriminative power of the graph kernels with longer embedding lengths. However,
this increase in delay also introduced greater computational complexity, presenting challenges in
scalability and traceability.

A.6 MARCHENKO-PASTUR DISTRIBUTION AND SHUFFLING PROCEDURE

In random matrix theory, the Marchenko-Pastur (MP) distribution describes the asymptotic behavior
of the eigenvalues of large-dimensional sample covariance matrices. Consider a random matrix
A 2 Rp⇥n, where p represents the number of variables (e.g., neurons or channels) and n represents
the number of observations (e.g., time points). The sample covariance matrix is defined as:

C =
1

n
A

T
A

As both p and n grow large, while the ratio ⌘ = p

n
remains constant, the empirical distribution of the

eigenvalues of C converges to the Marchenko-Pastur distribution (28):

7
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Table S1: Network inference method performance on DishBrain dataset
Network inference method Avg. accuracy Std. dev.

PC (t = 0%) 0.672 0.062
PC (t = 20%) 0.735 0.073
PC (t = 40%) 0.831 0.034

PC (t = 60%) 0.552 0.019
PC (t = 80%) 0.464 0.047
CC (d=1) 0.432 0.126
CC (d=2) 0.546 0.082
CC (d=3) 0.698 0.092
CC (d=4) 0.763 0.103
MI 0.722 0.057
TE (d=1) 0.657 0.073
TE (d=2) 0.688 0.112
TE (d=3) 0.731 0.028
TE (d=4) 0.794 0.063

⇢(�) =

p
(�+ � �)(�� ��)

2⇡�2�⌘

for � 2 [��,�+], where � is the variance of the entries of matrix A and:

�± = �
2 (1±

p
⌘)2

In the case where ⌘ > 1, which holds for our data (p is large relative to n), the MP distribution
suggests that most of the eigenvalues will be close to zero. As a result, the sample covariance matrix
is likely to be ill-conditioned, and hence unreliable for further analysis.

A.6.1 SHUFFLING PROCEDURE FOR CORRELATION ANALYSIS

To account for potential spurious correlations due to ill-conditioning of the sample covariance matrix,
we perform a shuffling control procedure:

1. Shuffle Time Points: The time points of each channel are independently shuffled while
maintaining the channel identity. This process destroys any temporal correlation, ensuring
that the correlation between channels is not influenced by the original time structure.

2. Multiple Iterations: The shuffling procedure is repeated multiple times (e.g., we chose
1000 iterations) to build a null distribution of correlations for each pair of channels.

3. Confidence Intervals: Based on the null distribution obtained from the shuffled data, we
compute confidence intervals for each pair of channels. Correlation values from the original
data that lie outside of the 95% confidence interval are considered statistically significant.

This approach provides a robust method for identifying significant correlations in the presence of
potential ill-conditioning of the sample covariance matrix.

A.7 UNSUPERVISED SEQUENTIAL VFE (SVFE) LOSS

In a Variational Graph Auto Encoder (VGAE), an encoder network is responsible for learning the
latent embeddings {Zt}

T

t=0, which capture the representation of nodes in a reduced-dimensional
space. The probablity of an edge between nodes i and j in the reconstructed graph is determined
by the inner product of their respective latent embeddings, Zt,i and Zt,j . This process is usually
accompanied by a sigmoid activation function to constrain the output values between 0 and 1:

ât,ij = �(Zt,i · Z
T

t,j
). (S1)
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In this context, � represents the sigmoid function, Zt,i refers to the ith row of the matrix Zt, and ât,ij

corresponds to the (i, j)th element of the matrix Ât, indicating the predicted probability of an edge
between nodes i and j at time t.

Considering that ât,ij indicates the probability of an edge, the likelihood of the observed adjacency
matrix At based on the embeddings can be independently modeled for each edge using a Bernoulli
distribution:

p✓(At|Zt,X<t,A<t) =
NY

i,j=1

â
at,ij

t,ij
(1� ât,ij)

1�at,ij . (S2)

In this case, at,ij represents the actual entry in the adjacency matrix At, signifying the presence,
absence, or weight (for weighted graphs) of an edge between nodes i and j.

The log-likelihood of the adjacency matrix, log p✓(At|Zt,X<t,A<t), can be expressed as the
negative binary cross entropy (BCE):

L
BCE(✓,�) =

NX

i,j=1

h
at,ij log ât,ij + (1� at,ij) log(1� ât,ij)

i
. (S3)

We approximate the first expectation term in the sequential VFE (sVFE) using Monte Carlo integration
as follows:

Eq�(zt|xt) [log p✓(At|Zt,X<t,A<t)] =
1

M

MX

k=1

L
BCE(Zk

t
). (S4)

Here, k represents the particle index, and M refers to the number of particles, which may be set to 1
when the mini-batch size is sufficiently large (52).

Latent particles Zk

t
are sampled from q�(Zt|Xt,At,Z<t) as described by Eq. (7b), utilizing the

reparameterization trick Z
k

t
= µ

enc
t

+ �
enc
t

� ✏
k

t
, where ✏

k

t
is drawn from N (0, I) and � represents

the Hadamard (element-wise) product. Recurrent state particles Hk

t
are derived using Eq. (9), based

on Z
k

t�1 and the previous time-step’s state H
k

t�1.

Additionally, an analytical solution for the Kullback-Leibler divergence DKL in the sequential VFE
Eq. (4) can be derived in closed form as:

DKL(✓,�) =
1

2

N,DX

i,j=1

"
�

enc2
t,ij

�
prior2
t,ij

� log
�

enc2
t,ij

�
prior2
t,ij

+
(µenc

t,ij
� µ

prior
t,ij

)2

�
prior2
t,ij

� 1

#
(S5)

This KLD loss is deterministic, thereby eliminating the need for Monte Carlo approximation. It
quantifies the statistical distance between the conditional prior as specified in Eq. (7a) and the
approximate posterior in Eq. (7b). Optimizing this measure strengthens the causality within the
latent space, as the prior Eq. (8a) focuses on the influence of preceding graphs and embeddings
{X < t,A < t,Z < t}.

By integrating Eq. (S4) and Eq. (S5) into Eq. (4), we formulate an unsupervised sVFE loss that
forms the foundation of the proposed TAVRNN framework:
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L
TAVRNN(✓,�) = L

BCE(✓,�) +D
KL(✓,�)

=
1

M

TX

t=0

MX

k=1

NX

i,j=1

h
at,ij log �

⇣
Z

k

t
⇥ Z

k
T

t

⌘
+ (1� at,ij) log

⇣
1� �
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(S6)

A.8 TEMPORAL ATTENTION MECHANISM

The goal of this section is to present the mathematical details of the temporal attention mechanism
for computing Ht for Ĥt and Ht�1, Ht�2, . . . Ht�w. Let the dh dimensional row vector si present
the global state of the graph at time step i. 1 Also let S be a (w + 1)⇥ (w + 1) matrix that its i-th
row is equal to st�w�1+i. We compute the query vector q and the key matrix K as follows:

q = st ⇥Wq + bq (S7)

K = S⇥Wk + bk (S8)
Here, the dh ⇥ dk matrices Wq and Wk, and also the dk dimensional row vectors bq and bk are
learnable parameters of our model. Then, the attention vector ↵, which is a w + 1 dimensional row
vector, will be defined as:

↵ = softmax
✓
q ⇥K

T

p
dk

◆
. (S9)

Let us define the value matrices as follows:
Vi = Ht�w�1+i ⇥Wv + bv 81  i  w , (S10)

and
Vw+1 = Ĥt ⇥Wv + bv , (S11)

where the dh⇥dh matrix Wv and the dh dimensional row vector bv are the other learnable parameters
of our model.

Finally, the state matrix Ht will be computed as follows:

Ht =
wX

i=1

↵i ⇥Vi . (S12)

A.9 TAVRNN MODEL TRAINING HYPERPARAMETERS

All the experiments were run on a 2.3 GHz Quad-Core Intel Core i5. PyTorch 1.8.1 was used to build
neural network blocks.

We configured our TAVRNN model by employing graph-structured GRU-Attention with a single
recurrent hidden layer consisting of 32 units. The window size w in the attention mechanism is set to
the maximum possible for every time step, allowing the model to attend to all previous time steps,
including the very first one. The functions 'x

✓
and '

z
✓

in Eqs. (8b) and (9) are implemented using
a 32-dimensional fully-connected layer. For the function '

prior
✓

in Eq. (8a), we use two 32 and 8
dimensional fully-connected layers. To model µenc

t
and ⌃

enc
t

we employ a 2-layer GCN with 32 and
8 layers, respectively. Our model is initialized using Glorot initialization (53). The learning rate for
training is set to 0.01. Training is performed over 1000 epochs using the Adam SGD optimizer (54).

The implementation of our proposed model is available at the following Github Repository.
1For i < t, si is equal to that row of Hi which corresponds to the hypothetical node that is connected to all

other nodes. Also, st is equal to the corresponding row of Ĥt.
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A.10 TIME COMPLEXITY ANALYSIS

In this section, we will compute the time complexity for each method. This analysis provides insights
into the computational cost and efficiency of different methods for representation learning of temporal
graph data. More specifically, we compute the time complexity of a forward pass on the entire set of
the graph nodes in one snapshot for each method.

A.10.1 GRAPHERT:

GraphERT is a Transformer-based model for temporal graphs. It uses multiple random walks with
different transition parameters p and q to capture the neighborhood structure around each node at
specific time steps. These random walks are fed into a Transformer, which learns node-to-node
interactions and their temporal relevance using multi-head attention.

Random Walks Generation:

For each graph snapshot, the algorithm generates � ⇥ n⇥ |p|⇥ |q| random walks, where:

• � is the number of random walks starting from each node for each pair of values assigned to
p and q.

• n is the number of nodes in the graph.
• |p| and |q| are the number of different values for the hyperparameters p and q.

The time complexity for generating the random walks is:

O(� ⇥ n⇥ |p|⇥ |q|⇥ L)

where L is the length of each random walk.

Transformer Processing:

Each random walk is processed by the Transformer. The time complexity of the Transformer is
dominated by the self-attention mechanism, which scales quadratically with the sequence length and
linearly with the number of attention heads.

For each random walk, the time complexity is:

O(L2
⇥ hmax ⇥H ⇥ k)

where:

• L is the random walk length.
• hmax is the maximum dimensionality of the representation vectors used in different trans-

former layers. In the original implementation of GraphERT we have hmax = d, but in
general it can take any value larger than or equal to d.

• H is the number of attention heads.
• k is the number of layers in the Transformer.

Total Time Complexity:

The total number of random walks is � ⇥ n⇥ |p|⇥ |q|. Combining the time complexity for random
walk generation and Transformer processing, the total time complexity for processing a single graph
snapshot is:

O
�
n · � · |p| · |q| · (L+ L

2
· hmax ·H · k)

�
2 O

�
n · � · |p| · |q| · (L2

· hmax ·H · k)
�

We can assume that �, |p|, q, H and k are constant values, because they can be fixed values,
independent of the graph size (n) and the intended dimensionality of the final representations (d).

11
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Therefore, we can simplify the total complexity as follows:

O
�
(� · |p| · |q| ·H · k) · n · L

2
· hmax

�
2 O

�
n · L

2
· hmax

�

However, it is worth noting that the constant value of this running time is large enough to make
practical issues in real experiments. That is why GraphERT shows the most time complexity in Figure
3. Look at Table S2 for more details about the used values for the hyperparameters of this method.

Method Hyperparameter Description / Value

GraphERT

p (Return parameter) Bias for random walks to return to previous node
2 [0.25, 0.5, 1, 2, 4]

q (In-out parameter) Bias for random walks to explore outward 2

[0.25, 0.5, 1, 2, 4]
Random Walk Length (L) Length of each random walk (32)
Number of Random Walks (�) Number of random walks per node (10)
Embedding Dimension (d) Size of node embeddings (8)
Attention Heads (H) Number of attention heads (4)
Transformer Layers (k) Number of Transformer layers (6)
Learning Rate Learning rate for the Adam optimizer (1e-4)

Table S2: Hyperparameters for GraphERT

A.10.2 VGAE:

To compute the time complexity of a Variational Graph Autoencoder (VGAE) with n nodes, e edges,
k Graph Convolutional Network (GCN) layers, and hidden dimensions h1, h2, . . . , hk, where the
final latent representation dimension is d, we need to analyze the time complexity at each layer of the
GCN. This will account for both node-wise and edge-wise operations.

Step 1: GCN Layer Operations

A GCN layer applies a linear transformation followed by neighborhood aggregation. The complexity
of a single GCN layer is typically determined by:

• Node-wise operations: These involve multiplying the node features by a weight matrix.
This has a time complexity of O(n · hin · hout), where hin is the input dimension of the layer
and hout is the output dimension.

• Edge-wise operations: These involve aggregating the features of neighboring nodes through
a message-passing operation over edges. This has a time complexity of O(e · hout).

Step 2: Time Complexity of Each GCN Layer

For the i-th GCN layer:

• Let the input feature dimension be hi�1 and the output feature dimension be hi.

• Node-wise multiplication has complexity O(n · hi�1 · hi).

• Edge-wise aggregation has complexity O(e · hi).

Thus, the total time complexity of the i-th layer is:

O(n · hi�1 · hi + e · hi)

Step 3: Summing Over All GCN Layers

We have k GCN layers with dimensions h0, h1, . . . , hk, where h0 = n is the input feature dimension
and hk = d is the output dimension. Therefore, the total time complexity for all layers is:

12
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TGCN =
kX

i=1

(O(n · hi�1 · hi + e · hi))

Step 4: VGAE Encoder and Decoder

• Encoder: The encoder, which maps node features to a latent representation space (mean
and variance for the latent variables), has the same complexity as the GCN layers, so its
complexity is TGCN.

• Decoder: In VGAE, the decoder typically involves reconstructing the adjacency matrix
from the latent space. The reconstruction (e.g., using a dot product between latent vectors)
has a time complexity of O(n2

· d), as it involves calculating pairwise similarities between
all node pairs.

Step 5: Total Time Complexity of VGAE

Summing up the time complexity of the GCN-based encoder and the decoder, we get the overall time
complexity:

TVGAE = TGCN +O(n2
· d)

This expands to:

TVGAE =
kX

i=1

(O(n · hi�1 · hi + e · hi)) +O(n2
· d)

Conclusion

Let us denote k

max
i=1

hi by hmax. We know that n = h0 � h1 � . . . � hk = d. So, hmax = h1 and the
time complexity of the VGAE is:

TVGAE = O

 
kX

i=1

(n · hi�1 · hi + e · hi) + n
2
· d

!
2 O

�
n
2
· hmax

�

s.t. h0 = n, hk = d

This reflects the complexities of both the encoder (GCN layers) and the decoder (adjacency matrix
reconstruction). The most significant term depends on the number of nodes, and the dimensions of
the latent space. Hyperparameters of the VGAE model and the values assigned to them in the original
paper are listed in Table S2.

Method Hyperparameter Description / Value

VGAE

Latent Dimension (d) Size of the latent space (dimension of node
embeddings) (8)

Graph Convolutional Layers (GCN) Number of convolution layers to capture graph
structure (2 layers)

Learning Rate Learning rate for the Adam optimizer (1e-2)
Hidden Dimension (h) Number of hidden units in the encoder GCN

layers (32)

Table S3: Hyperparameters for Variational Graph Autoencoder (VGAE)

13
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A.10.3 DYNGEM:

DynGEM uses a Multi-Layer Perceptron (MLP) autoencoder to generate low-dimensional embed-
dings for dynamic graphs at each snapshot. At time step t = 1, the model is trained on the first
snapshot of the graph using a randomly initialized deep autoencoder. For subsequent time steps,
embeddings and network parameters are initialized from the previous time step.

Given n nodes, k hidden layers with sizes h1, h2, . . . , hk, and the latent representation dimension d,
the time complexity of processing the input graph for each snapshot is:

O(n · (n · h1 + h1 · h2 + · · ·+ hk�1 · hk + hk · d))

Conclusion

Let us denote k+1
max
i=1

hi by hmax. We know that n = h0 � h1 � . . . � hk+1 = d. So, hmax = h1 and
the time complexity of the DynGEM is:

TDynGem = O

 
k+1X

i=1

(n · hi�1 · hi)

!
2 O

�
n
2
· hmax

�

s.t. h0 = n, hk+1 = d

Hyperparameters of this method and the assigned values to them can be found in Table S4.

Method Hyperparameter Description / Value

DynGEM

Latent Dimension (d) Size of the latent space (dimension of
node embeddings) (8)

Number of layers in the encoder/decoder Autoencoder has 3 layers
Layer Sizes (h1, h2) Size of each layer in the autoencoder

(500,300)
L1 regularization coefficient (⌫1) Encourages sparsity in the model’s

weights (1e� 6)
L2 regularization coefficient (⌫2) Encouraging weight values to remain

small (1e� 6)
Learning Rate Learning rate (1e� 4)
Reconstruction Loss Weight (�) Weight for adjacency matrix recon-

struction (5)

Table S4: Hyperparameters for DynGEM

A.10.4 DYNAE:

DynAE extends a static MLP autoencoder to handle temporal graphs. It uses l look-back adjacency
matrices from past snapshots and feeds them into a deep autoencoder to reconstruct the current graph
based on previous graphs.

Given an input size of n · l (where n is the number of nodes and l is the number of leook-back
snapshots), and k layers in the autoencoder, with the latent representation dimension d, the time
complexity for the encoder is:

O(n · (n · l · h1 + h1 · h2 + · · ·+ hk · d)

Conclusion

Let us denote k+1
max
i=1

hi by hmax. We know that n.l = h0 � h1 � . . . � hk+1 = d. So, hmax = h1. In
addition, l can be considered as a constant number, and the time complexity of the DynAE is:

14
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TDynAE = O

 
k+1X

i=1

(n · hi�1 · hi)

!
2 O

�
n
2
· hmax

�

s.t. h0 = n · l, hk+1 = d

Hyperparameters of this method and the assigned values to them can be found in Table S5.

Method Hyperparameter Description / Value

DynAE

Look-back (l) Number of previous snapshots used (2)
Latent Dimension (d) Size of the latent space (dimension of

node embeddings) (8)
Number of layers in the encoder/decoder Autoencoder has 3 layers
Layer Sizes (h1, h2) Size of each autoencoder layer (500,300)
L1 regularization coefficient (⌫1) Encourages sparsity in the model’s

weights (1e� 6)
L2 regularization coefficient (⌫2) Encouraging weight values to remain

small (1e� 6)
Learning Rate Learning rate (1e� 4)
Reconstruction Loss Weight (�) Weight for adjacency matrix reconstruc-

tion (5)

Table S5: Hyperparameters for DynAE

A.10.5 DYNRNN:

DynRNN is similar to DynAE, but it uses Recurrent Neural Networks (RNNs), specifically Long
Short-Term Memory (LSTM) networks, to capture temporal dependencies across snapshots. Each
node’s neighborhood at each snapshot is passed into the LSTM.

The time complexity for LSTM step i on one node is:

O(hi�1LSTM · hiLSTM + h
2
iLSTM

)

Given n nodes, kLSTM LSTM layers with sizes h1LSTM , h2LSTM , . . . , hkLSTM and l snapshots, the
total time complexity for one snapshot is:

O
�
n·(n·l·h1LSTM+h1LSTM ·h2LSTM+· · ·+hk�1LSTM ·hkLSTM+hkLSTM ·d+h

2
1LSTM

+· · ·+h
2
kLSTM

+d
2)
�

Conclusion

Let us denote k+1
max
i=1

hiLSTM by hmax. We know that n · l = h0LSTM � h1LSTM � . . . � hk+1LSTM =

d. So, hmax = h1LSTM . Is addition, l can be considered as a constant number, the time complexity of
the DynRNN is:

TDynRNN = O

 
k+1X

i=1

(n · (hi�1LSTM · hiLSTM + h
2
iLSTM

))

!
2 O

�
n
2
· hmax

�

s.t. h0LSTM = n · l, hk+1LSTM = d

Hyperparameters of this method and the assigned values to them can be found in Table S6.
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Method Hyperparameter Description / Value

DynRNN

Look-back (l) Number of previous snapshots used (2)
Latent Dimension (d) Size of the latent space (dimension of node

embeddings) (8)
Number of RNN Layers Number of stacked LSTM layers (3)
Hidden State Size Number of hidden units in LSTM (500,300)
L1 regularization coefficient (⌫1) Encourages sparsity in the model’s weights

(1e� 6)
L2 regularization coefficient (⌫2) Encouraging weight values to remain small

(1e� 6)
Learning Rate Learning rate (1e� 4)
Reconstruction Loss Weight (�) Weight for adjacency matrix reconstruction (5)

Table S6: Hyperparameters for DynRNN

A.10.6 DYNAERNN:

DynAERNN combines the autoencoder from DynAE with the LSTM-based RNN from DynRNN.
The encoder compresses the neighborhood vectors of l snapshots into a low-dimensional space, which
the LSTM processes across time to capture temporal dependencies.

The total time complexity for DynAERNN is the sum of the autoencoder and LSTM complexities:

O(n · (n · l · h1 + h1 · h2 + · · ·+ hk�1 · hk)+

O
�
n·(hk·h1LSTM+h1LSTM ·h2LSTM+· · ·+hk�1LSTM ·hkLSTM+hkLSTM ·d+h

2
1LSTM

+· · ·+h
2
kLSTM

+d
2)
�

Conclusion

Let us denote max(
k

max
i=1

hi,
k+1
max
i=1

hiLSTM ) by hmax. We know that n · l = h0 � h1 � . . . � hk =

h0LSTM � h1LSTM � . . . � hk+1LSTM = d. So, hmax = h1. In addition, l can be considered as a
constant number time complexity of the DynRNN is:

TDynAERNN = O

 
kX

i=1

(n · hi�1 · hi) +
k+1X

i=1

(n · (hi�1LSTM · hiLSTM + h
2
iLSTM

))

!
2 O

�
n
2
· h
�

s.t. h0 = n · l, h0LSTM = hk, hk+1LSTM = d

Hyperparameters of this method and the assigned values to them can be found in Table S7.

A.10.7 TAVRNN:

The time complexity of the TAVRNN framework is driven by several components, including GNN
layers, GRU operations, and an attention mechanism. Below, we break down the total complexity
into the time complexity of each component.

1. GNN and GRU Layers:

At each time step t, the model processes the graph using a combination of GNN layers and a
GRU-based RNN. The time complexity for these operations can be broken down as follows:

• Low-dimensional Embedding: first of all, each n-dimensional neighborhood vector is
mapped to a hGRU -dimensional embedding using a one layer feed forward network. The
time complexity of this part will be:

O(n2
· hGPU )
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Method Hyperparameter Description / Value

DynAERNN

Look-back (l) Number of previous snapshots used (2)
Latent Dimension (d) Size of the latent space (dimension of node

embeddings) (8)
Autoencoder Layer Sizes Size of each autoencoder layer (500,300)
Number of RNN Layers Number of stacked LSTM layers (3)
LSTM Hidden State Size Number of hidden units in LSTM (500,300)
L1 regularization coefficient (⌫1) Encourages sparsity in the model’s weights

(1e� 6)
L2 regularization coefficient (⌫2) Encouraging weight values to remain small

(1e� 6)
Learning Rate Learning rate (1e� 4)
Reconstruction Loss Weight (�) Weight for adjacency matrix reconstruction

(5)

Table S7: Hyperparameters for DynAERNN

• Graph Convolution (GNN): Similar to the VGAE mentioned above , the time complexity
of the GNN layer is:

TGNN =
kX

i=1

(O(n · hi�1 · hi + e · hi))

• GRU Operation: Since the inner functions of our GPU cell is implemented by GCN layers,
the dominant term in the time complexity of the GPU cell in each time step is equal to:

O(n · h
2
GRU

+ e · hGRU )

2. Temporal Attention Mechanism:

The attention mechanism aggregates past hidden states over a window of size w. The attention of the
model into the last w snapshots is computed in:

O(w · h)

where w is the attention window size and h is the hidden dimension. The time complexity of
computing the weighted average vectors for all the n node according to these computed attentions is:

O(n · w · h)

3. Reconstruction: Similar to VGAE, the reconstruction process in TAVRNN is through computing
the inner product of the final representation of each pair of the nodes, and its time complexity is:

O(n2
· d)

4. Overall Time Complexity for Each Time Step:

The overall time complexity at each time step is a combination of the initial projection to a low-
dimensional space using a feedforward layer, GNN and GRU computations, attention mechanism,
and reconstruction:

O(n ·(h1+h1 ·h2+ · · ·+hk ·d)+e ·(h1+ · · ·+hk)+n ·h
2
GRU

+e ·hGRU +(n+1) ·w ·h+n
2
·d)

Conclusion

Let us denote max(
k+1
max
i=1

hi, hGRU, h) by hmax. We know that n · l = h0 � h1 � . . . � hk + 1 = d.
So, hmax = h1. We can infer that the time complexity of TAVRNN is:
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TTAVRNN = O

⇣P
k+1
i=1 (n · hi�1 · hi + e · hi) + n · h

2
GRU

+ e · hGRU + n · w · h+ n
2
· d

⌘
2 O

�
n
2
· hmax + n · w · h

�

s.t. h0 = 1, hk+1 = d

The summary of the time complexities for different methods is shown in Table S8.

Table S8: One forward pass time complexity for one time window (i.e. snapshot).
Method Complexity

VGAE O

⇣Pk
i=1(n · hi�1 · hi + e · hi) + n

2
· d

⌘
2 O

�
n
2
· hmax

�

DynGEM O

⇣Pk+1
i=1 (n · hi�1 · hi)

⌘
2 O

�
n
2
· hmax

�

DynAE O

⇣Pk+1
i=1 (n · hi�1 · hi)

⌘
2 O

�
n
2
· hmax

�

DynRNN O

⇣Pk+1
i=1 (n · (hi�1LSTM · hiLSTM + h

2
iLSTM

))
⌘

2 O
�
n
2
· hmax

�

DynAERNN O

⇣Pk
i=1(n · hi�1 · hi) +

Pk+1
i=1 (n · (hi�1LSTM · hiLSTM + h

2
iLSTM

))
⌘

2 O
�
n
2
· hmax

�

GraphERT O
�
(� · |p| · |q| · H · k) · n · L

2
· hmax

�
2 O

�
n · L

2
· hmax

�

TAVRNN O

⇣Pk+1
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