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1 Overview
In the appendix, we first provide detailed proof of the previous
Lemma, Theorem, and Corollary in Section 2. Then we provide
more experiment results and analysis in Section 3. In Section 4, we
show the details and network architecture. Finally, we present more
visual results in Section 5.

2 The detailed proof.
2.1 Proof for Lemma 1
Lemma 1. Consider a regularWasserstein gradient flow, as defined
in Equation 3 in the manuscript, initiating from a data distribution
∗This work was done during Tianyi Zheng’s internship at vivo.
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𝜇0 and converging to a normal Gaussian distribution 𝜇𝑇 = N(0, 𝑰 ).
With the selection of 𝑓 = 𝛽𝑡𝑥 and𝑔𝑡 =

√︁
2𝛽𝑡 , the family of measures

{𝜇𝑡 }𝑇𝑡=0 derived from the Fokker-Planck equation Equation 4 in the
manuscript is equivalent to the family of measures corresponding
to this gradient flow.

Proof of Lemma 1. The Fokker-Planck Equation in the manuscript
is

𝜕𝜇𝑡

𝜕𝑡
= −∇ · (𝜇𝑡 𝑓 ) +

1
2
∇ ·

(
∇
(
𝑔2𝑡 𝜇𝑡

))
. (1)

This Equation is equivalent to the following:
𝜕𝜇𝑡

𝜕𝑡
= − ∇ · (𝜇𝑡 𝑓 ) + ∇ · 1

2
𝜇𝑡𝑔

2
𝑡∇𝑙𝑜𝑔(𝜇𝑡 )

= − ∇ · (𝜇𝑡 (𝑓 −
1
2
𝑔2𝑡∇𝑙𝑜𝑔(𝜇𝑡 ))) .

(2)

We recall that the regular Wasserstein gradient flow [4] in the
manuscript is

𝜕𝜇𝑡

𝜕𝑡
= ∇ ·

[
𝜇𝑡 𝛽𝑡∇𝑊2F

]
. (3)

Since the functional on the Wasserstein space is defined by F (𝜇) =
KL(.∥𝜋), therefore, we have:

∇𝑊2KL(.∥𝜋) = ∇ log
( 𝜇
𝜋

)
.

Then, the Equation 3 can written as:
𝜕𝜇𝑡

𝜕𝑡
= ∇ · [𝜇𝑡 (𝛽𝑡∇ log(𝜋) − 𝛽𝑡∇ log(𝜇𝑡 ))] . (4)

Since 𝜋 = 𝜇𝑇 = N(0, 𝑰 ) = 𝑒𝑥𝑝 (− | |𝑥 | |2
2 )/𝑍 , When we set 𝑓 = −𝛽𝑡𝑥

and and 𝑔𝑡 =
√︁
2𝛽𝑡 . The Equation 2 is the same as Equation 4.

Therefore, the family of measures {𝜇𝑡 }𝑇𝑡=0 derived from the Fokker-
Planck equation [18] Equation 4 in the manuscript is equivalent to
the family of measures corresponding to this gradient flow. Mean-
while, the corresponding stochastic differential equation (SDE) of
the Fokker-Planck Equation is:

𝑑𝑥 = −𝛽𝑡𝑥d𝑡 +
√︁
2𝛽𝑡d𝑤. (5)
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This SDE is exactly the forward diffusion process of the diffusion
model [6, 20].

2.2 Proof for Theorem 1
We first introduce the Grönwall’s lemma [5].

Lemma 2. Let 𝐼 denote an interval of the real line of the form [𝑎,∞)
or [𝑎, 𝑏] or [𝑎, 𝑏) with 𝑎 < 𝑏. Let 𝛽 and 𝑢 be real-valued continuous
functions defined on 𝐼 . If 𝑢 is differentiable in the interior 𝐼◦ of 𝐼
(the interval 𝐼 without the end points a and possibly b) and satisfies
the differential inequality

𝑢′ (𝑡) ≤ 𝛽 (𝑡)𝑢 (𝑡), 𝑡 ∈ 𝐼◦ (6)

then 𝑢 is bounded by the solution of the corresponding differential
equation 𝑣 ′ (𝑡) = 𝛽 (𝑡)𝑣 (𝑡)

𝑢 (𝑡) ≤ 𝑢 (𝑎) exp
(∫ 𝑡

𝑎

𝛽 (𝑠)d𝑠
)
. (7)

for all 𝑡 ∈ 𝐼 .

Proof of Lemma 2. Define the function

𝑣 (𝑡) = exp
(∫ 𝑡

𝑎

𝛽 (𝑠)d𝑠
)
, 𝑡 ∈ 𝐼 . (8)

Note that 𝑣 satisfies

𝑣 ′ (𝑡) = 𝛽 (𝑡)𝑣 (𝑡), 𝑡 ∈ 𝐼◦ . (9)

with 𝑣 (𝑎) = 1 and 𝑣 (𝑡) > 0 for all 𝑡 ∈ 𝐼◦. By the quotient rule

𝑑

𝑑𝑡

𝑢 (𝑡)
𝑣 (𝑡) =

𝑢′ (𝑡)𝑣 (𝑡) − 𝑣 ′ (𝑡)𝑢 (𝑡)
𝑣2 (𝑡)

=
𝑢′ (𝑡)𝑣 (𝑡) − 𝛽 (𝑡)𝑣 (𝑡)𝑢 (𝑡)

𝑣2 (𝑡)
≤ 0, 𝑡 ∈ 𝐼◦ .

(10)

Thus the derivative of the function 𝑢 (𝑡)/𝑣 (𝑡) is non-positive and
the function is bounded above by its value at the initial point 𝑎 of
the interval 𝐼 .

𝑢 (𝑡)
𝑣 (𝑡) ≤ 𝑢 (𝑎)

𝑣 (𝑎) = 𝑢 (𝑎), 𝑡 ∈ 𝐼 . (11)

which is Grönwall’s lemma.

Theorem 1. Consider two distinct initial distributions 𝜇0 and 𝜇0 on
the data manifold𝑀 , which is equipped with a reference measure
𝜈 = 𝑒−𝑉 vol, satisfying 𝐻𝑒𝑠𝑠𝜇 ≥ 𝐾 . Let 𝜇𝑡 and 𝜇𝑡 represent the
distributions at time 𝑡 in the forward diffusion process, originating
from 𝜇0 and 𝜇0 respectively. For all 𝑡 > 0, the following inequality
holds

𝑊2 (𝜇𝑡 , 𝜇𝑡 ) ≤ 𝑒−𝐾𝑡𝑊2 (𝜇0, 𝜇0) , (12)

Proof of Theorem 1. Based on previous analyze,𝜇𝑡 and 𝜇𝑡 are two
gradient flow. For fixed 𝑡 , assume 𝜇𝑠𝑡 is a geodesic in P2 (𝑀) joining
𝜇0𝑡 = 𝜇𝑡 and 𝜇

1
𝑡 = 𝜇𝑡 . Using Taylor’s theorem with the integral form

of remainder.

𝑈𝜈

(
𝜇1𝑡

)
−𝑈𝜈

(
𝜇0𝑡

)
= 𝑈 ′

𝜈

(
𝜇0𝑡

)
+
∫ 1

0
(1 − 𝑠)𝑈 ′′

𝜈

(
𝜇𝑠𝑡
)
𝑑𝑠. (13)

Then according to the identity that Hess𝜇𝑡 𝑈𝜈 ( ¤𝜇𝑡 ) =
𝑑2𝑈𝜈 (𝜇𝑠𝑡 )

𝑑𝑠2
(be

cautious that ¤𝜇𝑡 is with respect to s), and the assumption of Hess
𝜇𝑡 ≥ 𝐾 ,

𝑈𝜈

(
𝜇1𝑡

)
−𝑈𝜈

(
𝜇0𝑡

)
≥ 𝑈 ′

𝜈

(
𝜇0𝑡

)
+ 𝐾

∫ 1

0
(1 − 𝑠)



 ¤𝜇𝑠𝑡 

2𝜇𝑠𝑡 𝑑𝑠
=
〈
grad𝑈𝜈

(
𝜇𝑠𝑡
)
, ¤𝜇𝑠𝑡

〉
𝑠=0 + 𝐾

∫ 1

0
(1 − 𝑠)



 ¤𝜇𝑠𝑡 

2𝜇𝑠𝑡 𝑑𝑠
=
〈
grad𝑈𝜈

(
𝜇𝑠𝑡
)
, ¤𝜇𝑠𝑡

〉
𝑠=0 +

𝐾

2
𝑊 2

2

(
𝜇0𝑡 , 𝜇

1
𝑡

)
,

(14)

since 𝜇𝑠𝑡 is a geodesic. Similarly, we have:

𝑈𝜈

(
𝜇0𝑡

)
−𝑈𝜈

(
𝜇1𝑡

)
≥ −

〈
grad𝑈𝜈

(
𝜇𝑠𝑡
)
, ¤𝜇𝑠𝑡

〉
𝑠=1+

𝐾

2
𝑊 2

2

(
𝜇0𝑡 , 𝜇

1
𝑡

)
. (15)

Then by adding these inequalities,

〈
grad𝑈𝜈

(
𝜇𝑠𝑡
)
, ¤𝜇𝑠𝑡

〉��1
0 ≥ 𝐾𝑊 2

2

(
𝜇0𝑡 , 𝜇

1
𝑡

)
(16)

Now we calculate:

𝑑

𝑑𝑡
𝑊 2

2 (𝜇𝑡 , 𝜇𝑡 ) =
𝑑

𝑑𝑡

∫ 1

0
∥ ¤𝜇𝑠𝑡 | |𝑑𝑠

=

∫ 1

0

𝑑

𝑑𝑡

〈
𝜕

𝜕𝑠
𝜇𝑠𝑡 ,

𝜕

𝜕𝑠
𝜇𝑠𝑡

〉
𝑑𝑠

= 2
∫ 1

0

〈
𝐷

𝜕𝑡

𝜕

𝜕𝑠
𝜇𝑠𝑡 ,

𝜕

𝜕𝑠
𝜇𝑠𝑡

〉
𝑑𝑠

= 2
∫ 1

0

〈
𝐷

𝜕𝑠

𝜕

𝜕𝑡
𝜇𝑠𝑡 ,

𝜕

𝜕𝑠
𝜇𝑠𝑡

〉
𝑑𝑠

= 2
∫ 1

0

[
𝑑

𝑑𝑠

〈
𝜕

𝜕𝑡
𝜇𝑠𝑡 ,

𝜕

𝜕𝑠
𝜇𝑠𝑡

〉
−
〈
𝜕

𝜕𝑡
𝜇𝑠𝑡 ,

𝐷

𝜕𝑠

𝜕

𝜕𝑠
𝜇𝑠𝑡

〉]
𝑑𝑠

= 2
∫ 1

0

𝑑

𝑑𝑠

〈
𝜕

𝜕𝑡
𝜇𝑠𝑡 ,

𝜕

𝜕𝑠
𝜇𝑠𝑡

〉
𝑑𝑠

= 2
〈
𝜕

𝜕𝑡
𝜇𝑠𝑡 ,

𝜕

𝜕𝑠
𝜇𝑠𝑡

〉����1
0

= − 2
〈
grad𝑈𝜈

(
𝜇𝑠𝑡
)
, ¤𝜇𝑠𝑡

〉��1
0

≤ −2𝐾𝑊 2
2 (𝜇𝑡 , 𝜇𝑡 ) .

(17)
Then we finish the proof by using Grönwall’s lemma.

2.3 Proof for Proposition 3
Proposition 3. During the training stage, let 𝑋𝑛 be a random
variable representing a sample at time 𝑡𝑛 in the timestep series
{𝑡1, 𝑡2, . . . , 𝑡𝛿 , . . . , 𝑡𝑇 }. Specifically, 𝑃𝑟 [𝑋𝑛 = 1] denotes the proba-
bility of sampling within the significant intervals at time n. The
probability of having exactly 𝑘 samples in the significant inter-
vals, denoted by 𝑃𝑟 [𝑆𝑛 = 𝑘], is given by the binomial formula(𝑛
𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘 , consistent with a Bernoulli distribution.
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Proof of Proposition 3. In the training stage of the diffusion model,
each time is sampled from an independent and identically dis-
tributed (i.i.d.) The moment generating function of 𝑆𝑛 is:

𝐸

[
𝑒𝑡𝑆𝑛

]
= 𝐸

[
𝑒𝑡 (𝑋1+···+𝑋𝑛 )

]
=

𝑛∏
𝑗=1

𝐸

[
𝑒𝑡𝑋 𝑗

]
=
(
𝑝𝑒𝑡 + (1 − 𝑝)

)𝑛
=

𝑛∑︁
𝑘=0

[(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝) (𝑛−𝑘 )

]
𝑒𝑡𝑘

(18)
Since all moments of 𝑆𝑛 exist (𝐸

[���𝑆𝑘𝑛 ���] ≤ 𝑛𝑘 < ∞) and����� ∞∑︁
𝑘=0

𝑡𝑘

𝑘!
𝐸

[
𝑆𝑘𝑛

] ����� ≤ ∞∑︁
𝑘=0

|𝑡 |𝑘
𝑘!

𝐸

[
|𝑆𝑛 |𝑘

]
≤

∞∑︁
𝑘=0

|𝑡 |𝑘
𝑘!
𝑛𝑘

=

∞∑︁
𝑘=0

|𝑡𝑛 |𝑘
𝑘!

= 𝑒 |𝑡𝑛 | < ∞

(19)

Therefore, by Theorem 30.1 in [1], the distribution of 𝑆𝑛 shall
equal

Pr [𝑆𝑛 = 𝑘] =
(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘 . (20)

3 Additional results and analysis
3.1 Comparison with previous state-of-the-art

methods.
Table 1 in the manuscript compares the best performance of differ-
ent methods. In this section, we compare the training acceleration
effect of each previous state-of-the-art method in Figure 1, from
which we can see that various re-weight methods accelerate the
training speed and improve the generation quality, but our method
achieves better acceleration effect and best generation quality. This
further underscores the effectiveness of our ADM-BS approach.

100 150 200 250 300 350 400
Training iterations (K)

16

18

20

22

24

FI
D

ADM (Baseline)
P2
ADM-BS
Min-SNR
Debias

Figure 1: FID scores concerning the number of training itera-
tions on AFHQ-D. All experimental configurations remain
consistent with the previous settings.

2×

Figure 2: sFID scores concerning the number of training iter-
ations on CIFAR-10 dataset.

1.85×

Figure 3: sFID scores concerning the number of training iter-
ations on CelebA dataset.

3.2 More Quantitative Comparison.
sFID. sFID [14] is also a widely used metric to evaluate the sample
quality.We compare our ADM-BS and ADMof this metric on CIFAR
and CelebA datasets. The results, presented in Figure 2 and Figure
3, show that ADM-BS achieves a 2× faster attainment of the sFID
score on CIFAR and a 1.85× faster rate on CelebA. Also, we note that
ADM-BS consistently outperforms ADM in sFID on both datasets.
Precision and Recall.We conduct a comparison using both Im-
proved Precision and Recall metrics [11] to evaluate sample fidelity
and diversity separately. Sample fidelity is quantified as the fraction
of model samples that fall within the data manifold (precision),
while diversity is measured as the fraction of data samples that
fall within the sample manifold (recall). The result in Table 1 indi-
cates that ADM-BS gets better results than ADM on all datasets.
This observation suggests that the data generated by the ADM-BS
model exhibits higher quality and greater alignment with the real
data. Meanwhile, ADM-BS is also more proficient in capturing and
reproducing a broader range of features or samples present in the
training data. This illustrates the effectiveness of our Bernoulli
Distribution-Based Sampling method in enhancing the generative
quality of the model.
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Table 1: Quantitative Comparison. Comparing Precision and Recall of ADM and ADM-BS on the five datasets.

Model CIFAR 32×32 CelebA 64×64 FFHQ 128×128 Stanford Cars 128×128 ADHQ-D 256×256
Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

ADM 0.682 0.600 0.703 0.534 0.702 0.444 0.732 0.529 0.772 0.520
ADM-BS 0.689 0.605 0.726 0.547 0.731 0.485 0.759 0.546 0.799 0.573

Table 2: Quantitative Comparison. Comparing the LPIPS for ADM and ADM-BS on the seven datasets.

LPIPS ↓ CIFAR ImageNet CelebA Stanford Cars FFHQ CelebAHQ AFHQ-D

ADM 0.454 0.462 0.431 0.860 0.816 0.793 0.736

ADM-BS 0.312 0.324 0.376 0.643 0.674 0.606 0.653

LPIPS.We compare the Learned Perceptual Image Patch Similarity
distances (LPIPS) [21] metric on different four datasets. The LPIPS
distances align closely with human perception and are extensively
used for evaluating generative models, offering an effective mea-
sure that mirrors human visual assessment. In our experiments, we
averaged the LPIPS distances measured with 10𝐾 random samples.
The result is shown in Table 2, we notice that ADM-BS outper-
forms the ADM significantly in all four datasets, demonstrating the
effectiveness of ADM-BS.
More discussion about 𝑝.we also try combinations of 𝑝 = 0.9 and
𝑝 = 1 in the CIFAR-10 datasets. The results in Figure 4 indicates that
𝑝 = 0.9 yields performance better than the baseline but not as good
as 𝑝 = 0.8. However, 𝑝 = 1 performs very poor (FID=7.96). This
indicates that the diffusion model need to be trained on timesteps
greater than 0.8𝑇 . In the inference stage, we start from Gaussian
distribution. Although the different distributions become similar
after 0.8𝑇 , this stage still differs from the initial sampling point.
Therefore, this timestep stage of training should not be overlooked.

200 250 300 350 400 450 500 550
Training iterations (K)

3.0

3.2

3.4

3.6

3.8

FI
D

ADM (Baseline)
ADM-BS (p=0.80)
ADM-BS (p=0.90)

Figure 4: FID scores concerning the number of training it-
erations on ADM-IP and ADM-IP-BS on FFHQ dataset. All
settings follow ADM-IP.

3.3 Integrating with input perturbation method.
Recently, ADM-IP [16] finds that the long sampling chain of the
diffusion model leads to an error accumulation bias. To reduce

this bias, ADM-IP proposes an input perturbation method in the
training stage of the diffusion model. Since this method also uses
uniform timestep sampling in the training stage, we combine our
method with ADM-IP on CIFAR-10 and FFHQ datasets. The results
on in Table 3 and Table 4 indicate that our method significantly
improves the performance of ADM-IP. Meanwhile, we also compare
the training iterations and FID scores on Figure 5 and Figure 6. ADM-
IP-BS also enhances training speed by a factor of 1.6 × on CIFAR-10
and 2.78 × on FFHQ. This further illustrates the generalizability of
our non-uniform timestep sampling methods.

Table 3: Combine with ADM-IP. Each FID and sFID score is
computed using 𝑇 ′ = 100 inference steps on CIFAR-10.

Method ADM ADM-BS ADM-IP ADM-IP-BS
FID 3.47 3.30 2.70 2.35
sFID 5.73 4.80 4.51 3.99

Table 4: Combine with ADM-IP. Each FID and sFID score is
computed using 𝑇 ′ = 100 inference steps on FFHQ.

Method ADM ADM-BS ADM-IP ADM-IP-BS
FID 14.07 10.73 7.07 6.24
sFID 13.14 11.75 8.35 7.98

3.4 Other distribution-based method.
In addition to the Bernoulli distribution-based time sampling, an-
other possible timestep sampling method is based on the exponen-
tial distribution. Since the upper bound of the Wasserstein distance
between different initial distributions is exponentially decreasing,
we change the uniform timestep sampling to time sampling based
on the exponential distribution (i.e., ADM-E), and the results of
the experiments are shown in Figure 7. It can be seen that better
FID and training speedups are achieved by ADM-E compared to
ADM, but the performance is not as good as that of ADM-BS. How-
ever, this still shows that designing non-uniform timestep sampling
methods focusing on significant intervals can be beneficial for the
acceleration of diffusion model training and the improvement of
generation quality.
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×1.6

Figure 5: FID scores concerning the number of training itera-
tions on ADM-IP and ADM-IP-BS on CIFAR-10 dataset. All
settings follow ADM-IP.

×2.78

Figure 6: FID scores concerning the number of training it-
erations on ADM-IP and ADM-IP-BS on FFHQ dataset. All
settings follow ADM-IP.

AFHQ-D-210K AFHQ-D-400K
10

12

14

16

18

20

FI
D

19.69
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Figure 7: Comparing FID of different time sampling methods
on AFHQ-D in various training iterations.

3.5 More Diffusion-based Model.
We also conduct large-scale experiments using the DiT-S/8 architec-
ture [17], a prevalent multimodal backbone, with the ImageNet-256
dataset. The results in Figure 8 demonstrate that our non-uniform

timestep sampling method also benefits the DiT architecture, un-
derscoring its importance in the fundamental diffusion model.

×1.35

Figure 8: FID scores concerning the number of training itera-
tions on ImageNet.

To further verify the generalizability of ADM-BS across different
diffusion framework, we performed additional comparative analy-
ses on the AFHQ-D dataset. In these experiments, we employ the
log-normal noise distribution as proposed by EDM [8]. The results
in Table 5 demonstrate that our non-uniform timestep sampling
method is also beneficial to EDM noise distribution.

Table 5: More comparisons of different noise distribution.

FID ADM ADM-BS
Linear Schedule 17.21 14.08

Log-normal Schedule 15.42 12.56

4 Hyper-parameter
In this section, we provide detailed information about the architec-
ture and training parameters of our ADM-BS method, as outlined
in Table 6. During the training stage, we employ the AdamW opti-
mizer, setting the hyperparameters (𝛽1; 𝛽2) to (0.9; 0.999) across all
models. Given that our method is compatible with existing infer-
ence techniques, we maintain standard parameter settings during
the inference stage, consistent with those described in previous
methods [3, 13, 15, 19].

5 Visual Results on Different Datasets
In this section, we present additional results generated using our
ADM-BS method on different datasets. Figure 9 displays samples
generated on the CelebA dataset [12], while Figures 10, 11, 12 and 13
show the results on the Stanford Cars [10], FFHQ [9], CelebAHQ [7]
and AFHQ-D [2] datasets, respectively. For each dataset, we use the
best number of training iteration and inference steps as indicated
in the manuscript.
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Figure 9: More visual results on CelebA datasets.
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Figure 10: More visual results on Stanford Cars datasets.



Non-uniform Timestep Sampling: Towards Faster Diffusion Model Training Supplementary Materials MM ’24, October 28–November 1, 2024, Melbourne, VIC, Australia.

Figure 11: More visual results on FFHQ datasets.
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Figure 12: More visual results on CelebAHQ datasets.
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Figure 13: More visual results on AFHQ-D datasets.
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