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APPENDIX

A ALGORITHMS AND EXPERIMENT HYPERPARAMETERS

Each algorithm in A cited in the ‘Related Work’ section can be defined as F (θ) = θ − αG(θ) for
some continuous G : Rd → Rd. We have already seen that simultaneous GD is given by GGD = ξ.
The only examples in this paper are two-player games, for which AGD is given by

GAGD =

(
ξ1(θ1, θ2)

ξ2(θ1 − αξ1, θ2)

)
The other algorithms are given by

GEG = ξ ◦ (id− αξ) GOMD = 2ξ(θk)− ξ(θk−1)

GSGA = (I + λAT )ξ GCO = (I + γHT )ξ

GCGD = (I + αHo)
−1ξ GLA = (I − αHo)ξ

GLOLA = (I − αHo)ξ − α diag(HT
o ∇L) GSOS = (I − αHo)ξ − pα diag(HT

o ∇L) .

For OMD, the previous iterate can be uniquely recovered as θk−1 = (id − αξ)−1(θk) using the
proximal point algorithm if ‖H‖ ≤ L and α < 1/L, giving

GOMD = 2ξ − ξ ◦ (id− αξ)−1 .

In all experiments we initialise θ0 following a standard normal distribution and use a learning rate
α = 0.01, with γ = 0.01 for CO. Learning rates αi could be chosen to be different for each player
i, but we set them to be equal throughout this paper for simplicity. Claims regarding the behavior of
each algorithm for sufficiently small αmean that all αi should be sufficiently small. The λ parameter
for SGA is obtained by the alignment criterion introduced in the original paper,

λ = sign
(
〈ξ,HT ξ〉〈AT ξ,HT ξ〉

)
.

Similarly, the p parameter for SOS is given by a two-part criterion which need not be described here.

Accompanying code for all experiments will be submitted with this paper.

B PROOF OF PROPOSITION 1

We first prove a lemma and state a standard optimization result.
Lemma 0. Let G ∈ C1(U,Rd) for an open set U . If G is L-Lipschitz then supθ∈U ‖∇G(θ)‖ ≤ L.

The proof is an adaptation of (Panageas & Piliouras, 2017, Lemma 7) for non-convex sets.

Proof. Fix any θ ∈ U and ε > 0. Since U is open, the ball Br(θ) of radius r centered at θ is
contained in U for some r > 0. By Taylor expansion, for any unit vector θ′,

‖G(θ + rθ′)−G(θ)‖ ≥ r ‖∇G(θ)θ′‖ − o(r) ≥ r ‖∇G(θ)θ′‖ − εr
for r sufficiently small. Since G is L-Lipschitz, we obtain

r ‖∇G(θ)θ′‖ ≤ ‖G(θ + rθ′)−G(θ)‖+ rε ≤ r(L+ ε) .

Since ε was arbitrary, ‖∇G(θ)θ′‖ ≤ L for any unit θ′. By definition of the norm, we obtain

‖∇G(θ)‖ = sup
‖θ′‖=1

‖∇G(θ)θ′‖ ≤ L

for all θ ∈ U and hence supθ∈U ‖∇G(θ)‖ ≤ L.

Proposition ((Lange, 2013, Prop. 12.4.4) and (Absil et al., 2005, Th. 4.1)). Assume f has L-
Lipschitz gradient and is either analytic or has isolated critical points. Then for any 0 < α < 2/L
and θ0 ∈ Rd we have

lim
k
‖θk‖ =∞ or lim

k
θk = θ̄

for some critical point θ̄. If f moreover has compact sublevel sets then the latter holds, limk θk = θ̄.
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We can now prove Proposition 1, which avoids requiring Lipschitz continuity by proving that iterates
are contained in the sublevel set given by θ0 for appropriate learning rate α.

Proposition 1. Assume f ∈ C2 has compact sublevel sets and is either analytic or has isolated
critical points. For any θ0 ∈ Rd, define U0 = {f(θ) ≤ f(θ0)} and let L < ∞ be a Lipschitz
constant for ∇f in U0. Then for any 0 < α < 2/L we have limk θk = θ̄ for some critical point θ̄.

Proof. Note that ∇f ∈ C1, so f has L-Lipschitz gradient inside any compact set U for some finite
L, and supθ∈U‖∇2f(θ)‖ ≤ L by Lemma 0. Now define Uα = {θ − tα∇f(θ) | t ∈ [0, 1], θ ∈ U0}
and the continuous function L(α) = supθ∈Uα

∥∥∇2f(θ)
∥∥. Notice that U0 ⊂ Uα′ for all α. We prove

that αL(α) < 2 implies Uα = U0 and in particular, L(α) = L(0). By Taylor expansion,

f(θ − tα∇f) = f(θ)− α ‖∇f(θ)‖2 +
t2α2

2
∇f(θ)T∇2f(θ − t′α∇f)f(θ)

for some t′ ∈ [0, t] ⊂ [0, 1]. Since θ − t′α∇f ∈ Uα, it follows that

f(θ − tα∇f) ≤ f(θ)− α ‖∇f(θ)‖2 (1− αL(α)/2) ≤ f(θ)

for all αL(α) < 2. In particular, θ− tα∇f ∈ U0 and hence Uα = U0. We conclude that αL(α) < 2
implies L(α) = L(0), implying in turn αL(0) < 2. We now claim the converse, namely that
αL(0) < 2 implies αL(α) < 2. For contradiction, assume otherwise that there exists α′L(0) < 2
with α′L(α′) ≥ 2. Since αL(α) is continuous and 0L(0) = 0 < 2, there exists ᾱ ≤ α′ such that
ᾱL(0) < 2 and ᾱL(ᾱ) = 2. This is in contradiction with continuity:

2 = ᾱL(ᾱ) = lim
α→ᾱ−

αL(α) = lim
α→ᾱ−

αL(0) = ᾱL(0) .

Finally we conclude that Uα = U0 for all αL(0) < 2, and in particular, for all αL < 2. Finally,
θk ∈ U0 implies θk+1 ∈ Uα = U0 and hence θk ∈ U0 by induction. The result now follows by
applying the previous proposition to f |U0

.

C PROOF OF PROPOSITION 2

Proposition 2. Write λ(A) = Re(Spec(A)) for real parts of the eigenvalues of a matrix A. We
have the following implications, and none of them are equivalences.

maxλ(H) < 0 minλ(H) < 0

H ≺ 0 minλ(S) < 0

maxλ(Hd) < 0 minλ(Hd) < 0

The top row is dynamics-based, governed by the collective Hessian, while the bottom row is game-
theoretic wherebyHd =

⊕
∇iiLi decomposes into agentwise Hessians. The left and right triangles

collide respectively to strict maxima and saddles for single losses, since H = S = Hd = ∇2L.

Proof. First note that H ≺ 0 ⇐⇒ S ≺ 0 ⇐⇒ maxλ(S) < 0, so the leftmost term can be
replaced by maxλ(S) < 0.

We begin with the leftmost implications. If maxλ(S) < 0 then S ≺ 0 by symmetry of S, implying
both H ≺ 0 since uTHu = uTSu for all u ∈ Rd, and negative definite diagonal blocks∇2Lii ≺ 0;
finally Hd ≺ 0. In particular this implies maxλ(H) < 0 and maxλ(Hd) ≺ 0 since real parts of
eigenvalues of a negative definite matrix are negative.

The rightmost implications follow as above by contraposition: if minλ(S) ≥ 0 then S � 0, which
implies H � 0 and Hd � 0 and hence minλ(H) ≥ 0, minλ(Hd) ≥ 0.

The top and bottom implications are trivial.
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The diagonal implications hold by a trace argument:∑
i

λi(H) = Tr(H) = Tr(Hd) =
∑
i

λi(Hd) ,

hence maxλ(H) < 0 implies the LHS is negative and thus
∑
i λi(Hd) < 0. It follows that

λi(Hd) < 0 for some i and finally minλ(Hd) < 0. The other diagonal holds identically.

We now prove that no implication is an equivalence. For the leftmost implications,

H =

(
−1 2
2 −1

)
has maxλ(Hd) = −1 < 0 while maxλ(S) = 3 > 0, and

H =

(
2 4
−4 −4

)
has maxλ(H) = −1 < 0 while maxλ(S) = 2 > 0. This also proves the diagonal implications:
the first matrix has minλ(Hd) = −1 < 0 but maxλ(H) = 3 > 0, and the second matrix has
minλ(H) = −1 < 0 but maxλ(Hd) = 2 > 0.

For the rightmost implications, swap the sign of the diagonal elements for the two matrices above.

The top and bottom implications are trivially not equivalences:

H = Hd =

(
1 0
0 −1

)
has minλ(H) = minλ(Hd) = −1 < 0 but maxλ(H) = maxλ(Hd) = 1 > 0.

D PROOF OF THEOREM 1

The variable changes

(x′, y′) = (y,−x) , (x′, y′) = (−y, x) , (x′, y′) = (−x,−y) (†)

will be useful, taking the positive quadrant x, y ≥ 0 to the other three.
Theorem 1. There is a coercive, nondegenerate, analytic two-player marketM whose only critical
point is a strict maximum. In particular, algorithms only have four possible outcomes inM:

1. Iterates are unbounded, and all players diverge to infinite loss. [Not global]

2. Iterates are bounded and converge to the strict maximum. [Not reasonable]

3. Iterates are bounded and converge to a non-critical point. [Not reasonable]

4. Iterates are bounded but do not converge (cycle). [Not global]

For intuition purposes, M was constructed by noticing that there is no necessary reason for the
local minima of two coercive losses to coincide: the gradients of each loss may only simultaneously
vanish at a local maximum in each player’s respective coordinate. The highest-order terms (first
and last) provide coercivity in both coordinates while still having zero-sum interactions. The −x2

and −y2 terms yield a strict local maximum at the origin, while the ±xy terms provide opposite
incentives around the origin, preventing any other simultaneous critical point to arise.

Proof. Write θ = (x, y) and consider the analytic marketM given by

L1 = x6/6− x2/2 + xy +
1

4

(
y4

1 + x2
− x4

1 + y2

)
L2 = y6/6− y2/2− xy − 1

4

(
y4

1 + x2
− x4

1 + y2

)
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with simultaneous gradient

ξ =

x5 − x+ y − y4x
2(1+x2)2 −

x3

1+y2

y5 − y − x− x4y
2(1+y2)2 −

y3

1+x2

 .

We prove ‘by hand’ that the origin θ̄ = 0 is the only critical point (solution to ξ = 0). See further
down for an easier approach based on Sturm’s theorem, computer-assisted though equally rigorous.

We can assume x, y ≥ 0 since any other solution can be obtained by a quadrant variable change (†).
Now assume for contradiction that ξ = 0 with y 6= 0.

1. We first show that y > 1. Indeed,

0 = ξ2 = y5 − y − x− x4y

2(1 + y2)2
− y3

1 + x2
< y5 − y = y(y4 − 1)

implies y > 1 since y ≥ 0.

2. We now show that y < 1.5. First assume for contradiction that x ≥ y, then

ξ1 = y − x+ x5 − xy4

2(1 + x2)2
− x3

1 + y2
> 1− x+ x5 − x5/8− x3/2 := h(x) .

Now
h′(x) =

35

8
x4 − 3

2
x2 − 1

has unique positive root

x0 =

√
6 + 2

√
79

35

and h(x)→∞ as x→∞, hence h attains its minimum at x0 and plugging x0 yields a contradiction

ξ1 > h(x0) > 0 .

We conclude that x < y, but combining this with x ≥ 0 yields

ξ2 > −2y + y5 − y5/8− y3 = y(7y4/8− y2 − 2) > 7y4/8− y2 − 2 > 0

for all y ≥ 1.5, since the rightmost polynomial is positive at y = 1.5 and has positive derivative

7y3/2− 2y = y(7y2/2− 2) ≥ 7(1.5)2/2− 2 > 0 .

We must therefore have y < 1.5 as required.

3. It remains only to show that ξ1 > 0 for all 1 < y < 1.5. First notice that fx(y) = ξ1(x, y) is
concave in y for any fixed x ≥ 0 since

f ′x(y) = 1− 2y3x

(1 + x2)2
+ 2x3 y

(1 + y2)2

and so

f ′′x (y) = − 6y2x

(1 + x2)2
+ 2x3 1 + y2 − 4y2

(1 + y2)3
= − 6y2x

(1 + x2)2
− 2x3 3y2 − 1

(1 + y2)3
≤ 0

for y > 1. It follows that fx attains its infimum on the boundary y ∈ {1, 1.5}, so it suffices to check
that ξ1(x, 1) > 0 and ξ1(x, 1.5) > 0 for all x ≥ 0. First notice that

g(x) :=
x

2(1 + x2)2

satisfies

g′(x) =
1 + x2 − 4x2

2(1 + x2)2
=

1− 3x2

2(1 + x2)2
,
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which has a unique positive root at x0 = 1/
√

3. This critical point of g must be a maximum since
g(x) > 0 for x > 0 and g(x)→ 0 as x→∞. It follows that

g(x) ≤ g(x0) =
1

2
√

3(1 + 1/3)2
= 3
√

3/32 .

We now obtain
ξ1(x, 1) ≥ x5 − x3/2− x+ 1− 3

√
3/32 := p(x)

and
ξ1(x, 1.5) ≥ x5 − 4x3/13− x+ 1.5− (1.5)43

√
3/32 := q(x) .

Notice that
p′(x) = 5x4 − 3x2/2− 1

has unique positive root

x0 =

√
3 +
√

89

20

and p(x)→∞ as x→∞, hence p attains its minimum at x0 and plugging x0 yields

ξ1(x, 1) ≥ p(x0) > 0 .

Similarly for q we have
q′(x) = 5x4 − 12x2/13− 1

has unique positive root

x0 =

√
6 +
√

881

65

and plugging x0 yields
ξ1(x, 1.5) ≥ q(x0) > 0 .

We conclude that
ξ1(x, y) ≥ min(ξ1(x, 1), ξ1(x, 1.5)) > 0

and the contradiction is complete, hence y = 0. Finally ξ2 = 0 = x, so θ̄ = 0 is the unique critical
point as required. Now the Hessian at θ̄ is

H(θ̄) =

(
−1 1
−1 −1

)
,

which is negative definite since S(θ̄) = −I ≺ 0, so θ̄ is a nondegenerate strict maximum and
M is nondegenerate. It remains only to prove coercivity of M, namely coercivity of L1 and L2.
Coercivity of L1 follows by noticing that the dominant terms are x6/6 and y4/(1 + x2). Formally,
first note that x4

1+y2 ≤ x
4, hence

L1 ≥ x6/6− x4/4− x2/2 + xy +
1

4

(
y4

1 + x2

)
.

Now xy ≥ −|xy| ≥ −(2x2 + y2/8) by Young’s inequality, hence

L1 ≥ x6/6− x4/4− 5x2/2− y2/8 +
1

4

(
y4

1 + x2

)
.

For any sequence ‖θ‖ → ∞, either |x| → ∞ or |x| is bounded above by some k ∈ R and |y| → ∞.
In the latter case, we have

lim
‖θ‖→∞

L1 ≥ lim
|y|→∞

−k4/4− 5k2/2− y2/8 +
y4

4(1 + k2)
=∞

since the leading term y4 is of even degree and has positive coefficient, so we are done. Otherwise,
for |x| → ∞, we pursue the previous inequality to obtain

L1 ≥ x6/6− x4/4− 5x2/2 +
y2

8

(
2y2

1 + x2
− 1

)
.
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Now notice that y2 ≥ x2 ≥ 1 implies

L1 ≥ x6/6− x4/4− 5x2/2 +
x2

8

(
x2 − 1

1 + x2

)
≥ x6/6− x4/4− 5x2/2− x2/8 .

On the other hand, x2 ≥ y2 also implies

L1 ≥ x6/6− x4/4− 5x2/2− x2/8

by discarding the first (positive) term in the brackets. Both cases lead to the same inequality and
hence, for any sequence with |x| → ∞,

lim
‖θ‖→∞

L1 ≥ lim
|x|→∞

x6/6− x4/4− 5x2/2− x2/8 =∞

since the leading term x6 has even degree and positive coefficient. Hence L1 is coercive, and the
same argument holds for L2 by swapping x and y. As required we have constructed a coercive,
nondegenerate, analytic two-player marketM whose only critical point is a strict maximum.

In particular, any algorithm either has unbounded iterates with infinite losses or bounded iterates. If
they are bounded, they either fail to converge or converge. If they converge, they either converge to
a non-critical point or a critical point, which can only be the strict maximum.

[For an alternative proof that θ̄ = 0 is the only critical point, we may take advantage of computer
algebra systems to find the exact number of real roots using the resultant matrix and Sturm’s theorem.
Singular (Decker et al., 2019) is one such free and open-source system for polynomial computations,
backed by published computer algebra references. In particular, the rootsur library used below is
based on the book by Basu et al. (2006). First convert the equations into polynomials:{

2(1 + x2)2(1 + y2)(x5 − x+ y)− y4x(1 + y2)− 2x3(1 + x2)2 = 0

2(1 + y2)2(1 + x2)(y5 − y − x)− x4y(1 + x2)− 2y3(1 + y2)2 = 0 .

We compute the resultant matrix determinant of the system with respect to y, a univariate polynomial
P in x whose zeros are guaranteed to contain all solutions in x of the initial system. We then use the
Sturm sequence of P to find its exact number of real roots. This is implemented with the Singular
code below, whose output is 1.

LIB "solve.lib"; LIB "rootsur.lib";
ring r = (0,x),(y),dp;
poly p1 = 2*(1+xˆ2)ˆ2*(1+yˆ2)*(xˆ5-x+y)-yˆ4*x*(1+yˆ2)-2*xˆ3*(1+xˆ2)ˆ2;
poly p2 = 2*(1+yˆ2)ˆ2*(1+xˆ2)*(yˆ5-y-x)-xˆ4*y*(1+xˆ2)-2*yˆ3*(1+yˆ2)ˆ2;
ideal i = p1,p2;
poly f = det(mp_res_mat(i));
ring s = 0,(x,y),dp; poly f = imap(r, f);
nrroots(f);

We know that θ̄ = 0 is a real solution, so θ̄ must be the unique critical point.]

E PROOF OF THEOREM 2

Theorem 2. Given a reasonable algorithm with bounded continuous distribution on θ0 and a real
number ε > 0, there exists a coercive, nondegenerate, almost-everywhere analytic two-player mar-
ketMσ with a strict minimum and no other critical points, such that θk either cycles or diverges to
infinite losses for both players with probability at least 1− ε.

Proof. We modify the construction from Theorem 1 by deforming a small region around the maxi-
mum to replace it with a minimum. First let 0 < σ < 0.1 and define

fσ(θ) =

{
(x2 + y2 − σ2)/2 if ‖θ‖ ≥ σ

(y2 − 3x2)(x2 + y2 − σ2)/(2σ2) otherwise,

where θ = (x, y) and ‖θ‖ =
√
x2 + y2 is the standard L2-norm. Note that fσ is continuous since

lim
‖θ‖→σ+

fσ(θ) = 0 = lim
‖θ‖→σ−

fσ(θ) .
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Now consider the two-player marketMσ given by

L1 = x6/6− x2 + fσ + xy +
1

4

(
y4

1 + x2
− x4

1 + y2

)
L2 = y6/6− fσ − xy −

1

4

(
y4

1 + x2
− x4

1 + y2

)
.

The resulting losses are continuous but not differentiable; however, they are analytic (in particular
smooth) almost everywhere, namely, for all θ not on the circle of radius σ. This is sufficient for
the purposes of gradient-based optimization, noting that neural nets also fail to be everywhere-
differentiable in the presence of rectified linear units.

We claim thatMσ has a single critical point at the origin θ̄ = 0. First note that

ξMσ
= ξM0

=

x5 − x+ y − y4x
2(1+x2)2 −

x3

1+y2

y5 − y − x− x4y
2(1+y2)2 −

y3

1+x2

 = ξM

for all ‖θ‖ ≥ σ, where M is the game from Theorem 1. It was proved there that the only real
solution to ξ = 0 is the origin, which does not satisfy ‖θ‖ ≥ σ. Any critical point must therefore
satisfy ‖θ‖ < σ, for which

ξ = ξMσ
=

x5 + x+ y − 2x(3x2 + y2)/σ2 − y4x
2(1+x2)2 −

x3

1+y2

y5 + y − x− 2y(y2 − x2)/σ2 − x4y
2(1+y2)2 −

y3

1+x2

 .

First note that θ̄ = 0 is a critical point; we prove that there are no others. The continuous parameter
σ prevents us from using a formal verification system, so we must work ‘by hand’. Warning: the
proof is a long inelegant string of case-by-case inequalities.

Assume for contradiction that ξ = 0 with θ 6= 0. First note that ‖θ‖ < σ implies |x|, |y| < σ, and
x = 0 or y = 0 implies x = y = 0 using ξ1 = 0 or ξ2 = 0 respectively. We can therefore assume
0 < |x|, |y| < σ. We can moreover assume that x > 0, the opposite case following by the quadrant
change of variables (x′, y′) = (−x,−y).

1. We begin with the case σ/2 ≤ x < σ. First notice that

x+ y − 2x(3x2 + y2)/σ2 = x(1− 6x2/σ2) + y(1− 2xy/σ2) ≤ x(1− 3/2) + y(1− y/σ)

and the rightmost term attains its maximum value for y = σ/2, hence

x+ y − 2x(3x2 + y2)/σ2 ≤ −x/2 + σ/4 ≤ 0 .

This implies

ξ1 ≤ x5 − y4x

2(1 + x2)2
− x3

1 + y2
< x5 − x3

1 + y2
< x3

(
1− y2 − 1

1 + y2

)
=
−x3y4

1 + y2
< 0

using x2 + y2 < 1, which is a contradiction to ξ = 0.

2. We proceed with the case x < σ/2 and |y| ≤ σ/2. First, y < 0 implies the contradiction

ξ2 < y − 2y3/σ2 − x4y

2(1 + y2)2
− y3

1 + x2
< y/2− y

(
σ4

25
+
σ2

22

)
< y

(
1

2
− 1

25
− 1

22

)
< 0 ,

so we can assume y > 0. In particular we have (1− 2y(y + x)/σ2) > 0. If y ≤ x, we also obtain

ξ2 < y5 + (y − x)
(
1− 2y(y + x)/σ2

)
− y3

1 + x2
< y3

(
y2 − 1

1 + x2

)
<
−y3x4

1 + x2
< 0 ,

so we can assume x < y. There are again two cases to distinguish. If x < σ/2− bσ2 with b = 0.08,

x(1− 6x2/σ2) + y(1− 2xy/σ2) > x(1− 3(1/2− σb)) + x(1− (1/2− σb)) > 4σbx
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which implies the contradiction

ξ1 > 4σbx− y4x

2(1 + x2)2
− x3

1 + y2
> σx

(
4b− σ4

25
− σ2

22

)
> σx

(
4b− 1

25
− 1

22

)
> 0 .

Finally assume x ≥ σ/2− bσ2. Then we have

(y−x)(1− 2y(x+ y)/σ2) < bσ2(1− 4x2/σ2) < bσ2(1− (1− 2σb)2) = 4σ3b2(1−σb) < 4σ3b2

and obtain

ξ2 < y5 + 4σ3b2 − y3

1 + x2
< σ3

(
σ2/25 + 4b2 − (1/2− σb)3

1 + σ2/4

)
.

We claim that the rightmost term is negative. Indeed, the quantity inside the brackets has derivative

σ/24 +
(1/2− σb)2

(1 + σ2/4)2

(
3b(1 + σ2/4) + σ(1/2− σb)/2

)
> 0

and so its supremum across σ ∈ [0, 0.1] must be attained at σ = 0.1. We obtain the contradiction

ξ2 < σ3

(
0.01/25 + 4b2 − (1/2− b)3

1 + 0.01/4

)
< 0

for b = 0.08 and σ > 0, as required.

3. Finally, consider the case x < σ/2 and |y| > σ/2. First, y < 0 implies the contradiction

ξ1 < x+ y − 2x(3x2 + y2)/σ2 < −2x(3x2 + y2) < 0

so we can assume y > 0. Now assume y < σ − x(1 + σ2). Then

x(1− 6x2/σ2) + y(1− 2xy/σ2) > −x/2 + y(1− y/σ) > −x/2 + x(1 + σ2) > x(1/2 + σ2) ,

which yields the contradiction

ξ1 > x

(
1

2
+ σ2 − y4

2(1 + x2)2
− x2

1 + y2

)
> x

(
1/2 + σ2 − σ4 − σ2/4

)
> x(1/2− 1/4) > 0 .

We can therefore assume y ≥ σ − x(1 + σ2). We have

(y − x)(1− 2y(y + x)/σ2) < (y − x)(1− (y + x)/σ) ≤ (y − x)(1− (1− σx)) < σx(y − x)

which attains its maximum in x at x = y/2, hence

ξ2 < y5 − y3

1 + x2
+
σy2

4
<
σy2

4

(
4σ2 − 2

1 + σ2
+ 4

)
.

Finally we obtain the contradiction

ξ2 <
σy2

4

(
5σ2 + 4σ4 − 1

1 + σ2

)
< 0

for all σ < 0.1. All cases lead to contradictions, so we conclude that θ̄ is the only critical point, with
positive definite Hessian

H(θ̄) =

(
1 1
−1 1

)
� 0 ,

hence θ̄ is a strict minimum. Now notice thatM0 has the same dominant terms asM from Theorem
1, so coercivity ofM0 follows from the same argument. SinceMσ is identical toM0 outside the
σ-ball Bσ = {(x, y) ∈ R2 | ‖θ‖ < σ}, coercivity ofM0 implies coercivity ofMσ for any σ.

Fix any reasonable algorithm F , any bounded continuous measure ν on Rd with initial region U ,
and any ε > 0. We abuse notation somewhat and write F kσ (θ0) for the kth iterate of F inMσ with
initial parameters θ0. We claim that there exists σ > 0 such that

Pν

(
θ0 ∈ U and lim

k
F kσ (θ0) = θ̄

)
< ε .
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Figure 2: Algorithms inA fail to converge inMσ with σ = α = γ = 0.01. Single run with standard
normal initialisation, 3000 iterations.

Since θ̄ is the only critical point and Mσ is coercive, this implies bounded but non-convergent
iterates or divergent iterates with infinite losses with probability at least 1− ε, proving the theorem.
To begin, µ(Bσ)→ 0 as σ → 0 implies that we can pick σ′ > 0 such that Pν(θ0 ∈ Bσ′) < ε/2 by
continuity of ν with respect to Lebesgue measure.

Now let Ū be the closure of U and define D = Ū ∩ {‖θ‖ ≥ σ′}. Note that D is compact since Ū is
compact and closed subsets of a compact set are compact. F is reasonable, D is bounded and θ̄ = 0
is a strict maximum inM0, so there are hyperparameters such that the stable set

Z = {θ0 ∈ D | lim
k
F k0 (θ0) = 0}

has zero measure. We claim that
Zδ := {θ0 ∈ D | inf

k∈N

∥∥F k0 (θ0)
∥∥ < δ}

has arbitrarily small measure as δ → 0. Assume for contradiction that there exists α > 0 such that
µ(Zδ) ≥ α for all δ > 0. Then Zδ ⊂ Zδ′ and µ(Zδ) ≤ µ(D) <∞ for all δ < δ′ implies

µ

(⋂
n∈N

Z 1
n

)
= lim
n→∞

µ
(
Z 1
n

)
≥ α

by Nelson (2015, Exercise 1.19). On the other hand,⋂
n∈N

Z 1
n

= Z0

yields the contradiction 0 = µ(Z0) ≥ α. We conclude that Zδ has arbitrarily small measure, hence
there exists δ > 0 such that

Pν(θ0 ∈ Zδ) < ε/2

by continuity of ν. Now let σ = min{σ′, δ} and notice that

θ0 ∈ D \ Zδ =⇒ inf
k

∥∥F k0 (θ0)
∥∥ ≥ δ ≥ σ =⇒ inf

k

∥∥F kσ (θ0)
∥∥ ≥ σ ,

where the last implication holds since Mσ and M0 are indistinguishable in {‖θ‖ ≥ σ}, so the
algorithm must have identical iterates F kσ (θ0) = F k0 (θ0) for all k. It follows by contraposition that
limk F

k
σ (θ0) = θ̄ implies infk

∥∥F kσ (θ0)
∥∥ < σ and so θ0 ∈ Zδ or θ0 /∈ D. Finally we obtain

Pν

(
θ0 ∈ U and lim

k
F kσ (θ0) = θ̄

)
= Pν (θ0 ∈ U ∩ Zδ or θ0 ∈ U \D)

≤ Pν (θ0 ∈ U ∩ Zδ) + Pν (θ0 ∈ U \D)

≤ Pν (θ0 ∈ Zδ) + Pν (θ0 ∈ Bσ′)
< ε/2 + ε/2 = ε

as required. We plot iterates for a single run of each algorithm in Figure 3 with α = γ = 0.01.
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F PROOF OF THEOREM 3

Theorem 3. There is a weakly-coercive, nondegenerate, analytic two-player zero-sum game N
whose only critical point is a strict maximum. Algorithms in A almost surely have bounded non-
convergent iterates in N for α, γ sufficiently small.

Proof. Consider the analytic zero-sum game N given by
L1 = xy − x2/2 + y2/2 + x4/4− y4/4 = −L2

with simultaneous gradient

ξ =

(
y − x+ x3

−x− y + y3

)
and Hessian

H =

(
−1 + 3x2 1
−1 −1 + 3y2

)
.

We show that the only solution to ξ = 0 is the origin. First we can assume x, y ≥ 0 since any
other solution can be obtained by a quadrant variable change (†). Now assume for contradiction that
y 6= 0, then

ξ2 = 0 = −x− y + y3 ≤ −y + y3 = y(y2 − 1)

implies y ≥ 1 and hence
ξ1 = 0 = y − x+ x3 ≥ 1− x+ x3 = (x+ 1)(x− 1)2 + x2 > 0

which is a contradiction. It follows that y = 0 and hence ξ2 = 0 = x as required. Now the origin
has invertible, negative-definite Hessian

H(0) =

(
−1 1
−1 −1

)
≺ 0

so the unique critical point is a strict maximum. The game is nondegenerate since the only critical
point has invertible Hessian. The game is weakly-coercive since L1(x, ȳ) → ∞ for any fixed ȳ by
domination of the x4 term; similarly for L2(x̄, y) by domination of the y4 term.

Bounded iterates: strategy. We begin by showing that all algorithms have bounded iterates inN
for α, γ sufficiently small. For each algorithm F , our strategy is to show that there exists r > 0 such
that for any s > 0 we have ‖F (θ)‖ < ‖θ‖ for all r < ‖θ‖ < s and α, γ sufficiently small. This will
be enough to prove bounded iteration upon bounded initialisation. Denote by Br the ball of radius
r centered at the origin.

GD. We have
θT ξ = x(y − x+ x3) + y(−x− y + y3)

= x4 − x2 + y4 − y2

= (x2 − 1)2 + (y2 − 1)2 + x2 + y2 − 2 > 1

for all ‖θ‖2 = x2 + y2 > 3. For any s > 0 we obtain

‖F (θ)‖2 = ‖θ − αξ‖2 = ‖θ‖2 − 2αθT ξ + α2 ‖ξ‖2 < ‖θ‖ − α
(

2− α ‖ξ‖2
)
< ‖θ‖2

for all
√

3 < ‖θ‖ < s and α sufficiently small, namely 0 < α < 2/ supθ∈Bs ‖ξ‖
2.

EG. For any s > 0 and
√

4 < ‖θ‖ < s we have

‖θ − αξ(θ)‖2 > 4− 2αθT ξ > 3

for α < 1/ supθ∈Bs 2θT ξ. Now using θT ξ > 1 for all ‖θ‖2 > 3 by the argument for GD above,

‖F (θ)‖2 = ‖θ‖2 − 2αθT ξ(θ − αξ(θ)) + α2 ‖ξ(θ − αξ(θ))‖2

= ‖θ‖2 − 2α(θ − αξ(θ))T ξ(θ − αξ(θ)) +O(α2)

< ‖θ‖2 − α (2−O(α)) < ‖θ‖2

for α sufficiently small.
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AGD. For any s > 0, notice by continuity of ξ that there exists δ > 0 such that

θT (ξ1, ξ2(θ1 − αξ1, θ2)) > θT ξ − 1/2

for all α < δ and θ ∈ Bs, since Bs is bounded and θ1 − αξ1 → θ1 as α→ 0. It follows that

‖F (θ)‖2 = ‖θ‖2 − 2αθT (ξ1, ξ2(θ1 − αξ1, θ2)) +O(α2)

< ‖θ‖2 − 2α(θT ξ − 1/2) +O(α2)

< ‖θ‖2 − 2α(1− 1/2) +O(α2)

< ‖θ‖2 − α(1−O(α)) < ‖θ‖2

for all
√

3 < ‖θ‖ < s and α < δ sufficiently small.

OMD. For any s > 0, notice by continuity of ξ that there exists δ > 0 such that∣∣θT (ξ(θ)− ξ((id− αξ)−1(θ))
∣∣ < 1/2

for all α < δ and θ ∈ Bs, since Bs is bounded and (id− αξ)−1(θ)→ θ as α→ 0. It follows that

‖F (θ)‖2 = ‖θ‖2 − 2αθT ξ − 2αθT (ξ(θ)− ξ((id− αξ)−1(θ)) +O(α2)

< ‖θ‖2 − 2α+ α+O(α2)

= ‖θ‖2 − α(1−O(α)) < ‖θ‖2

for all
√

3 < ‖θ‖ < s and α < δ sufficiently small.

CO, CGD, LA, LOLA, SOS. Writing ν for γ if F = FCO and ν for α otherwise, for each
algorithm we have

F (θ) = θ − αξ + ανK

for some continuous function K : Rd → R. For instance, K = −HT ξ for CO (see Appendix A).
We obtain

‖F (θ)‖2 = ‖θ − αξ + ανK‖2

= ‖θ‖2 − 2αθT ξ + 2ανθTK − 2α2νξTK + α2 ‖ξ‖2 + α2ν2 ‖K‖

= ‖θ‖2 − α
(

2θT ξ − 2νθTK + 2ανξTK − α ‖ξ‖2 − αν2 ‖K‖
)
.

Notice that every term in the brackets contains an α or ν except for the first. We have already shown
that θT ξ > 1 for all ‖θ‖2 > 3 for GD above, hence for any s > 0 we have

‖F (θ)‖2 < ‖θ‖2 − α
(

2− 2ν sup
θ∈Bs

θTK + 2αν inf
θ∈Bs

ξTK − α sup
θ∈Bs

‖ξ‖2 − α sup
θ∈Bs

ν2 ‖K‖
)

= ‖θ‖2 − α (2−O(α, ν)) < ‖θ‖2

for all
√

3 < ‖θ‖2 < s and α, ν sufficiently small.

SGA. The situation differs from the above since parameter λ follows an alignment criterion,
namely λ = sign

(
〈ξ,HT ξ〉〈AT ξ,HT ξ〉

)
, which cannot be made small. First note that

θTGSGA = θtξ + λθT (AT ξ) = x4 + y4 − x2 − y2 + λ(x2 + y2 + x3y − xy3) .

If λ = −1,
θTGSGA = x4 + y4 − 2x2 − 2y2 − x3y + xy3

and splitting x4 + y4 in two yields

x4 + y4

2
− 2x2 − 2y2 =

1

4

[
(x2 − y2)2 + (x2 + y2)(x2 + y2 − 8)

]
> 1

for ‖θ‖2 = x2 + y2 > 9, while

x4 + y4

2
− x3y + xy3 =

1

2

[
(−x2 + xy + y2)2 + x2y2

]
> 0
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for ‖θ‖ > 0. Summing the two yields θTGSGA > 1 for ‖θ‖2 > 9 and λ = −1. If λ = 1,

θTGSGA = x4 + y4 + x3y − xy3

= x4 + y4 − 2x2 − 2y2 + x3y − xy3 + 2(x2 + y2)

≥ x4 + y4 − 2x2 − 2y2 + x3y − xy3 > 1

for ‖θ‖2 > 9 by swapping x and y in the λ = −1 case above. We conclude θTGSGA > 1 for
‖θ‖2 > 9 regardless of λ. For any s > 0 we obtain

‖F (θ)‖2 = ‖θ‖2 − 2αθTGSGA + α2 ‖GSGA‖2 < ‖θ‖2 − α
(

2− α ‖GSGA‖2
)
< ‖θ‖2

for all 3 < ‖θ‖ < s and α < 2/ supθ∈Bs GSGA.

Bounded iterates: conclusion. Now assume as usual that θ0 is initalised in any bounded region
U . For each algorithm we have found r such that for any s > 0 we have ‖F (θ)‖ < ‖θ‖ for all
r < ‖θ‖ < s and α, γ sufficiently small. Now pick r′ ≥ r such that U ⊂ Br′ . Define the bounded
region

V = {θ − tG(θ) | t ∈ [0, 1], θ ∈ Br′} .
and pick s ≥ r′ such that V ⊂ Bs. By the above we have ‖F (θ)‖ < ‖θ‖ for all r < ‖θ‖ < s
and α, γ sufficiently small. In particular, fix any α, γ < 1 satisfying this condition. We claim that
F (θ) ∈ Bs for all θ ∈ Bs. Indeed, either θ ∈ Br implies F (θ) = θ − αG(θ) ∈ V ⊂ Bs or θ /∈ Br
implies ‖F (θ)‖ < ‖θ‖ < s and so F (θ) ∈ Bs. We conclude that θ0 ∈ U ⊂ Bs implies bounded
iterates θk = F k(θ) ∈ Bs for all k.

Non-convergence: strategy. We show that all methods inA have the origin as unique fixed points
for α, γ sufficiently small. Fixed points of each gradient-based method are given by G = 0, where
G is given in Appendix A, and we moreover show that the Jacobian ∇G at the origin is negative-
definite. Non-convergence will follow from this for α sufficiently small.

GD. Fixed points of simultaneous GD correspond by definition to critical points:

GGD = ξ = 0 ⇐⇒ θ = 0 .

The Jacobian of G at 0 is

∇ξ = H =

(
−1 1
−1 −1

)
≺ 0 .

AGD. We have

GAGD = 0 ⇐⇒
{
ξ1 = 0

ξ2(θ1 − αξ1, θ2) = 0
⇐⇒

{
ξ1 = 0

ξ2 = 0
⇐⇒ ξ = 0 ⇐⇒ θ = 0 .

Now

ξ2(x− αξ1(x, y), y) = −(x− α(y − x+ x3))− y + y3

= x(−1− α) + y(−1 + α) + αx3 + y3

so the Jacobian at the origin is

JAGD =

(
−1 1
−1− α −1 + α

)
with symmetric part

SAGD =

(
−1 −α/2
−α/2 −1 + α

)
which has negative trace for all α < 2 and positive determinant

−α2/2− α+ 1 = −(α+ 1)2/2 + 3/2 > −9/8 + 3/2 > 0

for all α < 1/2, which together imply negative eigenvalues and hence SAGD ≺ 0. Recall that a
matrix is negative-definite iff its symmetric part is, hence JAGD ≺ 0 for all α < 1/2.
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EG. We have

GEG = ξ ◦ (id− αξ) = 0 ⇐⇒ id− αξ = 0 ⇐⇒

{
x− α(y − x+ x3) = 0

y − α(−x− y + y3) = 0 .

We have shown that any bounded initialisation results in bounded iterates for EG for α sufficiently
small. Let U be this bounded region and assume for contradiction that id − αξ = 0 with x, y 6= 0
(noting that x = 0 implies y = 0 by the first equation and vice-versa). We can assume x, y > 0
since any other solution can be obtained by a quadrant change of variable (†). We first prove that
x, y < 1 for 0 < α < 1/ supθ∈U{y − x+ x3}. Indeed we have

0 = ξ1 > x− α sup
θ∈U

> x− 1

hence x < 1. A similar derivation holds for y, hence 0 < x, y < 1. But now x ≥ y implies

0 = ξ1 ≥ x− α(y − y + x3) = x(1− αx2) ≥ x(1− α) > 0

for α < 1 while x < y implies

0 = ξ2 ≥ y − α(−x− x+ y3) = y(1− αy2) ≥ y(1− α) > 0

and the contradiction is complete, hence θ = 0 is the only fixed point of EG. Now

JEG = H(I − αH) =

(
−1 1
−1 −1

)(
1 + α −α
α 1 + α

)
=

(
−1 1 + 2α

−1− 2α −1

)
with SEG = −I ≺ 0, hence JEG ≺ 0 for all α.

OMD. By Daskalakis & Panageas (2018, Remark 1.5), fixed points of OMD must satisfy ξ = 0
by viewing OMD as mapping pairs (θk, θk−1) to pairs (θk+1, θk), hence θ = 0. Now

JOMD = 2H −H(I − αH)−1 = 2

(
−1 1
−1 −1

)
− 1

1 + 2α+ 2α2

(
−1− 2α 1
−1 −1− 2α

)
.

Now notice that
1 + 2α

1 + 2α+ 2α2
≤ 1

and so

SOMD =

(
−2 + 1+2α

1+2α+2α2 0

0 −2 + 1+2α
1+2α+2α2

)
≺ 0

for all α.

CO. We have

GCO = (I + γHT )ξ = 0 ⇐⇒ ξ = 0 ⇐⇒ θ = 0

for all γ since the matrix

(I + γHT ) =

(
1− γ −γ
γ 1− γ

)
is always invertible with determinant (1− γ)2 + γ2 > 0. Now

JCO = (I + γHT )H =

(
1− γ −γ
γ 1− γ

)(
−1 1
−1 −1

)
=

(
−1 + 2γ 1
−1 −1 + 2γ

)
≺ 0

for all γ < 1/2.
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SGA. We have
GSGA = (I + λAT )ξ = 0 ⇐⇒ ξ = 0 ⇐⇒ θ = 0

since antisymmetric A with eigenvalues ia, a ∈ R implies that I + λAT is always invertible with
eigenvalues 1 + iλa 6= 0. Now recall that λ is given by

λ = sign
(
〈ξ,HT ξ〉〈AT , HT ξ〉

)
= sign

(
ξTHT ξ · ξTAHT ξ

)
.

We have

HT =

(
−1 + 3x2 −1

1 −1 + 3y2

)
≺ 0

and

AHT =

(
1 −1 + 3y2

1− 3x2 1

)
� 0

for all ‖θ‖ sufficiently small, hence ξTHT ξ ≤ 0 and ξTAHT ξ ≥ 0 and thus

λ = sign
(
〈ξ,HT ξ〉〈AT , HT ξ〉

)
= sign

(
ξTHT ξ · ξTAHT ξ

)
≤ 0

around the origin. Now

JSGA = (I + λAT )H =

(
1 −λ
λ 1

)(
−1 1
−1 −1

)
=

(
−1 + λ 1 + λ
−1− λ −1 + λ

)
≺ 0

for all λ < 1, which holds in particular for λ ≤ 0.

CGD. Note that

Ho =

(
0 1
−1 0

)
= A

is antisymmetric, hence I + αHo is always invertible as for SGA and

GCGD = (I + αHo)
−1ξ = 0 ⇐⇒ ξ = 0 ⇐⇒ θ = 0 .

Now

JCGD = (I + αHo)
−1H =

1

1 + α2

(
1 −α
α 1

)(
−1 1
−1 −1

)
=

1

1 + α2

(
−1 + α 1 + α
−1− α −1 + α

)
≺ 0

for all α < 1.

LA. As above,
GLA = (I − αHo)ξ = 0 ⇐⇒ ξ = 0 ⇐⇒ θ = 0

since (I − αHo) is always invertible. Now

JLA = (I − αHo)H = (I − αA)H =

(
−1 + α 1 + α
−1− α −1 + α

)
≺ 0

for all α < 1.

LOLA. Notice that

diag
(
HT
o ∇L

)
= diag

((
0 −1
1 0

)(
y − x+ x3 −y + x− x3

x+ y − y3 −x− y + y3

))
=

(
−x− y + y3

−y + x− x3

)
= Hoξ

and so

GLOLA = (I − αHo)ξ − α diag
(
HT
o ∇L

)
= (I − 2αHo)ξ ⇐⇒ ξ = 0 ⇐⇒ θ = 0

as for LA. Similarly, substituting 2α for α in the derivation for LA yields

JLOLA = (I − 2αHo)H ≺ 0

for all α < 1/2.
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SOS. As for LOLA we have

GSOS = (I − αHo)ξ − pα diag
(
HT
o ∇L

)
= (I − α(1 + p)Ho)ξ ⇐⇒ ξ = 0 ⇐⇒ θ = 0

for any α, p. Now p(θ̄) = 0 for fixed points θ̄ by Letcher et al. (2019b, Lemma D.7), hence

JSOS = JLA =

(
−1 + α 1 + α
−1− α −1 + α

)
≺ 0

for all α < 1.

Non-convergence: conclusion. We conclude that all algorithms in A have the origin as unique
fixed points, with negative-definite Jacobian, for α, γ sufficiently small. If a method converges, it
must therefore converge to the origin. We show that this occurs with zero probability. One may
invoke the Stable Manifold Theorem from dynamical systems, but there is a more direct proof.

Take any algorithm F in A and let U be the initialisation region. We prove that the stable set

Z = {θ0 ∈ U | lim
k
F k(θ0) = 0}

has Lebesgue measure zero for α sufficiently small. First assume for contradiction that θk → 0 with
θk 6= 0 for all k. Then

G(θk) = G(0) +∇G(0)θk +O(‖θk‖2) = ∇G(θ̄)(θk) +O(‖θk‖2)

since G(0) = 0, and we obtain

‖θk+1‖2 = ‖θk − αG(θk)‖2

= ‖θk‖2 − 2αθTkG(θk) + α2 ‖G(θk)‖2

≥ ‖θk‖2 − 2αθTk∇G(0)θk +O(‖θk‖3) > ‖θk‖2

for all k sufficiently large, since ∇G(0) ≺ 0. This is a contradiction to θk → 0, so θk → 0 implies
θk = 0 for some k and so, writing FU : U → Rd for the restriction of F to U ,

Z ⊂ ∪∞k=0F
−k
U ({0}) .

We claim that FU is a C1 local diffeomorphism, and a diffeomorphism onto its image. Now GU is
C1 with bounded domain, hence L-Lipschitz for some finite L. By Lemma 0, the eigenvalues of∇G
in U satisfy |λ| ≤ ‖∇G‖ ≤ L, hence ∇FU = I − α∇GU has eigenvalues 1 − αλ ≥ 1 − α|λ| ≥
1 − αL > 0. It follows that ∇FU is invertible everywhere, so FU is a local diffeomorphism by
the Inverse Function Theorem (Spivak, 1971, Th. 2.11). To prove that FU : U → F (U) is a
diffeomorphism, it is sufficient to show injectivity of FU . Assume for contradiction that FU (θ) =
FU (θ′) with θ 6= θ′. Then by definition,

θ − θ′ = α(GU (θ′)−GU (θ))

and so
‖θ − θ′‖ = α ‖GU (θ′)−GU (θ)‖ ≤ αL ‖θ − θ′‖ < ‖θ − θ′‖ ,

a contradiction. We conclude that FU is a diffeomorphism onto its image with continuously differ-
entiable inverse F−1

U , hence F−1
U is locally Lipschitz and preserves measure zero sets. It follows by

induction that µ(F−kU ({0})) = 0 for all k, and so

µ(Z) ≤ µ
(
∪∞k=0F

−k
U ({0})

)
= 0

since countable unions of measure zero sets have zero measure. Since θ0 follows a continuous
distribution ν, we conclude

Pν

(
lim
k
F k(θ0) = 0

)
= 0

as required. Since all algorithms were also shown to produce bounded iterates, they almost surely
have bounded non-convergent iterates for α, γ sufficiently small. The proof is complete; iterates are
plotted for a single run of each algorithm in Figure 3 with α = γ = 0.01.
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Figure 3: Algorithms in A fail to converge in N with α = γ = 0.01. Single run with standard
normal initialisation, 3000 iterations.

G PROOF OF COROLLARY 1

Corollary 1. There are no measures of progress for reasonable algorithms which produce bounded
iterates inM or N .

Proof. Assume for contradiction that a measure of progressM exists for some reasonable algorithm
F and consider the iterates θk produced in the gameM orN . We prove that the set of accumulation
points of θk is a subset of critical points, following Lange (2013, Prop. 12.4.2). Consider any
accumulation point θ̄ = limm→∞ θkm . The sequence M(θk) is monotonically decreasing and
bounded below, hence convergent. In particular,

lim
m
M(F (θkm)) = lim

m
M(θkm+1) = lim

m
M(θkm) .

By continuity of M and F , we obtain

M(F (θ̄)) = M(lim
m
F (θkm)) = lim

m
M(F (θkm)) = lim

m
M(θkm) = M(θ̄)

and hence F (θ̄) = θ̄. Since F is reasonable, θ̄ must be a critical point. Now the only critical point of
M orN is the strict maximum θ̄ = 0, so any accumulation point of θk must be θ̄. The sequence θk is
assumed to be bounded, so it must have at least one accumulation point by Bolzano-Weierstrass. A
sequence with exactly one accumulation point is convergent, hence θk → θ̄. This is in contradiction
with the algorithm being reasonable.
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