
Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 EXPERIMENTAL SETUP

As baselines we use the architectures and results reported by Fey & Lenssen (2019) for citation
networks, Dwivedi et al. (2020) for MNIST, CIFAR-10 and ZINC and, Xu et al. (2019) for REDDIT-
BINARY. We re-implemented the architectures and datasets used in these publications and replicated
the results reported at FP32. Models using GIN layers learn parameter ✏. These models are often
referred to as GIN-✏. The high-level description of these architectures is shown in table 5. The
number of parameters for each architecture-dataset in this work are shown in table 6.

Our infrastructure was implemented using PyTorch Geometric (PyG) (Fey & Lenssen, 2019). We
generate candidate hyperparameters using random search, and prune trials using the asynchronous
hyperband algorithm (Li et al., 2020). Hyperparameters searched over were learning rate, weight
decay, and dropout (Srivastava et al., 2014) and drop-edge (Rong et al., 2020) probabilities. The
search ranges were initialized centered at the values used in the reference implementations of the
baselines. Degree-Quant requires searching for two additional hyperparameters, pmin and pmax,
these were tuned in a grid-search fashion. We report our results using the hyperparameters which
achieved the best validation loss over 100 runs on the Cora and Citeseer datasets, 10 runs for MNIST,
CIFAR-10 and ZINC, and 10-fold cross-validation for REDDIT-BINARY.

Our experiments ran on several machines in our SLURM cluster using Intel CPUs and NVIDIA
GPUs. Each machine was running Ubuntu 18.04. The GPU models in our cluster were: V100, RTX
2080Ti and GTX 1080Ti. (Jain et al., 2020)

Model # Layers # Hidden Units Residual Output MLP
Arch. Cit M C Z R Cit M C Z R Cit M C Z R Cit M C Z R

GCN 2 4 4 4 - 16 146 146 145 - ⇥ X X X - ⇥ X X X -
GAT 2 4 4 4 - 8 19 19 18 - ⇥ X X X - ⇥ X X X -
GIN 2 4 4 4 5 16 110 110 110 64 ⇥ X X X ⇥ ⇥ X X X X

Table 5: High level description of the architectures evaluated for citation networks (Cit), MNIST (M), CIFAR-10
(C), ZINC (Z) and REDDIT-BINARY (R). We relied on Adam optimizer for all experiments. For all batched
experiments, we used 128 batch-sizes. All GAT models used 8 attention heads. All GIN architectures used
2-layer MLPs, except those for citation networks which used a single linear layer.

Model Node Classification Graph Classification Graph Regression
Arch. Cora Citeseer MNIST CIFAR-10 REDDIT-BIN ZINC

GCN 23063 59366 103889 104181 - 105454
GAT 92373 237586 113706 114010 - 105044
GIN 23216 59536 104554 104774 42503 102088

Table 6: Number of parameters for each of the evaluated architectures

For QAT experiments, all elements of each network are quantized: inputs to each layer, the weights,
the messages sent between nodes, the inputs to aggregation stage and its outputs and, the outputs
of the update stage (which are the outputs of the GNN layer before activation). In this way, all
intermediate tensors in GNNs are quantized with the exception of the attention mechanism in GAT;
we do not quantize after the softmax calculation, due to the numerical precision required at this
stage. With the exception of Cora and Citeseer, the models evaluated in this work make use of Batch
Normalization (Ioffe & Szegedy, 2015). For deployments of quantized models, Batch Normalization
layers are often folded with the weights (Krishnamoorthi, 2018). This is to ensure the input to the next
layer is within the expected [qmin, qmax] ranges. In this work, for both QAT baselines and QAT+DQ,
we left BN layers unfolded but ensure the inputs and outputs were quantized to the appropriate
number of bits (i.e. INT8 or INT4) before getting multiplied with the layer weights. We leave as
future work proposing a BN folding mechanism applicable for GNNs and studying its impact for
deployments of quantized GNNs.

12



Under review as a conference paper at ICLR 2021

The GIN models evaluated on REDDIT-BINARY used QAT for all layers with the exception of the
input layer of the MLP in the first GIN layer. This compromise was needed to overcome the severe
degradation introduced by quantization when operating on nodes with a single scalar as feature.

A.2 DATASETS

We show in Table 7 the statistics for each dataset either used or referred to in this work. For Cora
and Citeseer datasets, nodes correspond to documents and edges to citations between these. Node
features are a bag-of-words representation of the document. The task is to classify each node in
the graph (i.e. each document) correctly. The MNIST and CIFAR-10 datasets (commonly used
for image classification) are transformed using SLIC (Achanta et al., 2012) into graphs where each
node represents a cluster of perceptually similar pixels or superpixels. The task is to classify each
image using their superpixels graph representation. The ZINC dataset contains graphs representing
molecules, were each node is an atom. The task is to regress a molecular property (constrained
solubility (Jin et al., 2018)) given the graph representation of the molecule. Nodes in graphs of the
REDDIT-BINARY dataset represent users of a Reddit thread with edges drawn between a pair of
nodes if these interacted. This dataset contains graphs of two types of communities: question-answer
threads and discussion threads. The task is to determine if a given graph is from a question-answer
thread or a discussion thread.

We use standard splits for MNIST, CIFAR-10 and ZINC. For citation datasets (Cora and Citeseer), we
use the splits used by Kipf & Welling (2017). For REDDIT-BINARY we use 10-fold cross validation.

Dataset Graphs Nodes Edges Features Labels

Cora 1 2,708 5,278 1,433 7
Citeseer 1 3,327 4,552 3,703 6
Pubmed 1 19,717 44,324 500 3
MNIST 70K 40-75 564.53 (avg) 3 10

CIFAR10 60K 85-150 941.07 (avg) 5 10
ZINC 12K 9-37 49.83 (avg) 28 1

REDDIT-BINARY 2K 429.63 (avg) 497.75 (avg) 1 2
Reddit 1 232,965 114,848,857 602 41

Amazon 1 9,430,088 231,594,310 300 24

Table 7: Statistics for each dataset used in the paper. Some datasets are only referred to in fig. 1

A.3 QUANTIZATION IMPLEMENTATIONS

In section 4.1 we analyse different readily available quantization implementations and how they
impact in QAT results. First, vanilla STE, which is the reference STE (Bengio et al., 2013) that lets
the gradients pass unchanged; and gradient clipping (GC), which clips the gradients based on the
maximum representable value for a given quantization level. Or in other words, GC limits gradients
if the tensor’s magnitudes are outside the [qmin, qmax] range.

xmin =

⇢
min(X) if step = 0
min(xmin, X) otherwise

(1)

xmin =

⇢
min(X) if step = 0
(1� c)xmin + cmin(X) otherwise

(2)

The quantization modules keep track of the input tensor’s min and max values, xmin and xmax, which
are then used to compute qmin, qmax, zero-point and scale parameters. For both vanilla STE and GC,
we study two popular ways of keeping track of these statistics: min/max, which tracks the min/max
tensor values observed over the course of training; and momentum, which computes the moving
averages of those statistic during training. The update rules for xmin for STE min/max and STE
momentum are presented in eq. (1) and eq. (2) respectively, where X is the tensor to be quantized and
c is the momentum hyperparameter, which in all our experiments is set to its default 0.01. Equivalent
rules apply when updating xmax (omitted).

13



Under review as a conference paper at ICLR 2021

For stochastic QAT we followed the implementation described in Fan et al. (2020), where at each
training step a binary mask sampled from a Bernoulli distribution is used to specify which elements
of the weight tensor will be quantized and which will be left at full precision. We experimented with
block sizes larger than one (i.e. a single scalar) but often resulted in a sever drop in performance. All
the reported results use block size of one.

A.4 DEGREE-QUANT AND GRAPH LEVEL SUMMARIZATION

The percentile operation in our quantization scheme remains important for summarizing the graph
when doing graph-level tasks, such as graph regression (Zinc) or graph classification (MNIST, CIFAR-
10 and REDDIT-BINARY). Since the number of nodes in each input graph is not constant, this
can cause the summarized representation produced from the final graph layer to have a more tailed
distribution than would be seen with other types of architectures (e.g. CNN). Adding the percentile
operation reduces the impact of these extreme tails in the fully connected graph-summarization layers,
thereby increasing overall performance. The arguments regarding weight update accuracy also still
apply, as the @L

@h(i)
l+1

term in the equations for the GCN and GIN should be more accurate compared to

when the activations are always quantized before the summarization. This phenomenon is also noted
by Fan et al. (2020).

A.5 DEGRADATION STUDIES

Figures 7 and 8 show the results of the ablation study conducted in section 5 for GCN and GIN. We
observe that GCN is more tolerant to INT4 quantization than other architectures. GIN, however,
requires accurate representations after the update stage, and heavily suffers from further quantization
like GAT. The idea of performing different stages of inference at different precisions has been
proposed, although it is uncommon (Wang et al., 2018).

Figure 7: Degradation of INT8 GCN on Cora as indi-
vidual elements are converted to INT4 without Degree-

Quant.

Figure 8: Degradation of INT8 GIN on Cora as indi-
vidual elements are converted to INT4 without Degree-

Quant.

14



Under review as a conference paper at ICLR 2021

Figure 9: In-degree distribution for each of the six datasets assessed. Note that a log y-axis is used for all
datasets except for MNIST and CIFAR-10.

Figure 10: Validation loss curves for GIN models evaluated
on REDDIT-BINARY. Results averaged across 10-fold cross-
validation. We show four DQ-INT8 experiments each with a differ-
ent values for (pmin,pmax) and our FP32 baseline.

Quantization Model REDDIT-BIN "

Ref. (FP32) GIN 92.2 ± 2.3

Ours (FP32) GIN 92.0 ± 1.5

DQ-INT8 (0.0, 0.1) GIN 91.8 ± 2.3

DQ-INT8 (0.1, 0.2) GIN 90.1 ± 2.5

DQ-INT8 (0.2, 0.2) GIN 89.0 ± 3.0

DQ-INT8 (0.2, 0.3) GIN 88.1 ± 3.0

Table 8: Final test accuracies for FP32 and
DQ-INT8 models whose validation loss
curves are shown in fig. 10

15



Under review as a conference paper at ICLR 2021

Quantization Model Node Classification Graph Regression
Scheme Arch. Cora " Citeseer " ZINC #

QAT-INT8 + DQ Masking
GCN 81.1 ± 0.6 71.0 ± 0.7 0.468 ± 0.014
GAT 82.1 ± 0.1 71.4 ± 0.8 0.462 ± 0.005
GIN 78.9 ± 1.2 67.1 ± 1.7 0.347 ± 0.028

QAT-INT4 + DQ Masking
GCN 78.5 ± 1.4 62.8 ± 8.5 0.599 ± 0.015
GAT 64.4 ± 9.3 68.9 ± 1.2 0.529 ± 0.008
GIN 71.2 ± 2.9 56.7 ± 3.8 0.427 ± 0.010

nQAT-INT4 + Percentile
GCN 75.6 ± 2.5 64.8 ± 3.8 0.633 ± 0.012
GAT 70.1 ± 2.8 51.4 ± 3.4 0.596 ± 0.008
GIN 63.5 ± 2.0 46.3 ± 4.1 0.771 ± 0.058

Table 9: Ablation study against the two elements of Degree-Quant (DQ). The first two rows of results are
obtained with only the stochastic element of Degree-Quant enabled for INT8 and INT4. Percentile-based
quantization ranges are disabled in these experiments. The bottom row of results were obtained with noisy
quantization (nQAT) at INT4 with the use of percentiles. DQ masking alone is often sufficient to achieve
excellent results, but the addition of percentile-based range tracking can be beneficial to increase stability. We
can see that using nQAT with percentiles is not sufficient to achieve results of the quality DQ provides.

Device Arch.
CIFAR-10 Cora Citeseer

FP32 W8A8 Speedup FP32 W8A8 Speedup FP32 W8A8 Speedup

CPU
GCN 182ms 88ms 2.1⇥ 0.94ms 0.74ms 1.3⇥ 0.97ms 0.76ms 1.3⇥
GAT 500ms 496ms 1.0⇥ 0.86ms 0.78ms 1.1⇥ 0.99ms 0.88ms 1.1⇥
GIN 144ms 44ms 3.3⇥ 0.85ms 0.68ms 1.3⇥ 0.95ms 0.55ms 1.7⇥

GPU
GCN 2.1ms 1.6ms 1.3⇥ 0.08ms 0.09ms 0.9⇥ 0.09ms 0.09ms 1.0⇥
GAT 30.0ms 27.1ms 1.1⇥ 0.57ms 0.64ms 0.9⇥ 0.56ms 0.64ms 0.9⇥
GIN 20.9ms 16.2ms 1.2⇥ 0.09ms 0.07ms 1.3⇥ 0.09ms 0.07ms 1.3⇥

Table 10: INT8 latency results run on a 22 core 2.1GHz Intel Xeon Gold 6152 and, on a GTX 1080Ti GPU. All
layers have 128 in/out features. For CIFAR-10 we used batch size of 1K graphs.

16



Under review as a conference paper at ICLR 2021

Node

Activations

 N 

F

Matmul F

F'

All Weights are
uniformly quantized

to INT-N

Quantize

Quantize

DQ Mask

F'Node

Messages

FP32

Aggregated

Messages

Each node gathers the messages from neighbour nodes
(these can be FP32 or/and INT-N). The intermediate
aggregation is always FP32. Then, the result of the

aggregation is quantized to INT-N or left at FP32
depending on the DQ mask at the current training step.

INT-N

F'

Layer

Output
F'

Retain for
backward pass

F'

Update Stage

DQ mask for current training step.  Nodes
to be retained at FP32 are shown in white

 N 

DQ Mask

Intermediate
aggregation

output

Quantize

DQ Mask

(quantized in the
previous layer)

INT-N

FP32

Figure 11: Diagram representing how DQ makes use of a topology-aware quantization strategy that is better
suited for GNNs. The diagram illustrates this for a GCN layer. At every training stage, a degree-based mask is
generated. This mask is used in all quantization layers located after each of the stages in the message-passing
pipeline. By retaining at FP32 nodes with higher-degree more often, the noisy updates during training have a
lesser impact and therefore models perform better, even at INT4.

17



Under review as a conference paper at ICLR 2021

Node

Activations

 N 

F

Matmul

Quantize

F'Node

Messages

Aggregated

Messages
F'

Layer

Output
F'

Update Stage

F

F'

Quantize
with noise

Retain for
backward pass

F'

Aggregate

Quantize

Unlike with DegreeQuant, all
stages make use of uniform

quantization without introducing
topology-aware masking 

Quantize

(quantized in the
previous layer)

INT-N

FP32

Figure 12: Diagram representing how nQAT is implemented for GNNs. The diagram illustrates this for a GCN
layer. The stochastic stage only takes place when quantizing the weights, the remaining of the quantization
modules happen following a standard QAT strategy. A QAT diagram would be similar to this one but fully
quantizing the weights.

18



Under review as a conference paper at ICLR 2021

Final Layer

Output

Fout

MLP

Quantize

QAT + percentiles
without making use

of DQ mask 

Graph-level

Task Output

 N 

Summarization

Fout

Final Layer

Output

Fout

MLP

Quantize

Graph-level

Task Output

 N 

Summarization

Fout

Graph summarization and output stage

for graph-level tasks using DQ

Graph summarization and output stage

for graph-level tasks using nQAT

Weights are
stochastically

masked

Fout' Fout'

Figure 13: Diagrams representing how the output graph-summarization stages for graph-level tasks (e.g. graph
classification, graph regression) are implemented when making use of DQ (left) and nQAT (right). GNNs
making use of DQ during the node-aggregation stages (see fig. 11), do not use the stochastic element of DQ in
the output MLP layers but still make use of percentiles. For models making use of nQAT, the final MLP still
makes use of stochastic quantization of weights.

19


