
Contrastive Consistent Representation Distillation

Abstract

These items are contained in the supplementary materials:
1. Details of projection heads and predictors.
2. Network architectures.
3. Study of balancing factors.
4. Implementation details for experiments on CIFAR100.
5. Standard Deviation of CoCoRD on CIFAR100.
6. Implementation details for linear probing.
7. Implementation details for experiments on ImageNet.
8. Implementation details for experiments on object detection.
9. Other methods

1 Details of Projection Heads and Predictors
The projection head is composed of “fc-bn-relu-fc”, where fc denotes a fully-connected layer,
bn is a batch normalization layer and relu is the ReLU activation function. The hidden dimension of
the projection head is 2048 and the output dimension is also 2048.

The predictor consists of “fc-bn-relu-fc”. The predictor has a bottleneck structure. The hidden
dimension of the predictor is 1/4 of the output dimension and the output dimension is 2048.

We also conduct experiments to investigate the effects of projection heads and projectors. We employ
resnet32 as the student and resnet110 as the teacher. The experimental results are provided in Table 1.
As we can see, CoCoRD needs both projection heads and predictors for boosting the student. The
experimental results also demonstrate that it is important to distill in a representation space.

Table 1: The effects of projection heads or predictors. Note that “w/o projection heads” means we remove all
the projection heads. The reported results are Top-1 accuracy (%) on CIFAR100. The best result are shown in
bold. Average over 5 runs. mean denotes the average and std stands for the corresponding standard deviation.

w/ projection heads w/o projection heads

w/ predictor w/o predictor w/ predictor w/o predictor

mean 74.20 73.43 72.83 73.34

std 0.14 0.04 0.18 0.11

2 Network Architectures
WRN-d-w represents Wide Residual Network [1] with depth d and width factor w.

resnet-d is CIFAR-style resnet [2] with 3 groups of basic blocks. resnet8x4 means a 4x wider resnet8.

ResNet-d represents ImageNet-style ResNet [2] with more channels.

MobileNetV2 [3]. We set the width multiplier to 0.5.

vgg-d denotes vgg [4] with depth d adapted from its ImageNet counterpart.

ShuffleNetV1 [5] and ShuffleNetV2 [6] are adapted to input of size 32x32.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Table 2: The effects of λpred. We set λctr and λcls to 1. CIFAR100 test accuracy (%) is reported. The
best performance is shown in bold. Average over 5 runs. mean denotes the average and std stands for the
corresponding standard deviation.

λpred 0 0.5 1.0 2.0 4.0 8.0

mean 72.92 73.61 73.53 73.92 74.20 73.36

std 0.23 0.28 0.31 0.19 0.14 0.26

Table 3: The effects of λctr . We set λpred to 4 and λcls to 1. CIFAR100 test accuracy (%) is reported. The
best performance is shown in bold. Average over 5 runs. mean denotes the average and std stands for the
corresponding standard deviation.

λctr 0 0.5 1.0 2.0 4.0 8.0

mean 71.81 73.12 74.20 73.94 73.61 73.23

std 0.42 0.27 0.14 0.22 0.29 0.37

3 Study of Balancing Factors
We conduct experiments to investigate the effects of the three balancing factors λctr, λcls and λpred.
We use resnet32-resnet110 as the student-teacher combination. For experiments on balancing factors,
we set τ=0.1, N=2048, mc=0.999 and mr=0.9.

To investigate the effects of λpred, λctr and λcls are set to 1. The results are provided in Table 2.
To investigate the effects of λctr, λpred is set to 4 and λcls is set to 1. The results are shown in
Table 3. To investigate the effects of λcls, λpred is set to 4 and λctr is set to 1. The results are shown
in Table 4. Based on the experimental results above, λctr=1, λcls=1 and λpred=4 are chosen as the
default setting for CoCoRD on CIFAR100 and ImageNet.

4 Implementation Details for Experiments on CIFAR100
For all experiments on CIFAR100, we use SGD optimizer with momentum 0.9 to train the student
models with CoCoRD. λctr=1, λcls=1 and λpred=4. The training batch size is set to 64 and the
weight decay is set to 5x10−4. For experiments in Table 1 of the main paper, we initialize the learning
rate as 0.05 and decay the learning rate by 0.1 at the {150, 180, 210}-th epochs.

For experiments in Table 2 of the main paper, we use a learning rate of 0.015 for MobileNetV2, a
learning rate of 0.03 for ShuffleNetV1 and ShuffleNetV2 and a learning rate of 0.05 for vgg8 based
on simple grid searches. Each learning rate is also multiplied by 0.1 at {150, 180, 210}-th epochs.
Images of size 32x32 are randomly cropped from zero-padded 40x40 images and are horizontally
flipped with a probability of 0.5 for data augmentation. The independent transformation for a different
view of the input is sampled from this data augmentation.

5 Standard Deviation of CoCoRD on CIFAR100
The standard deviation of CoCoRD over 5 runs on CIFAR100 dataset is provided in Table 5 for
student and teacher models of the same architecture style, and in Table 6 for student and teacher
models of different architecture style.

6 Implementation Details for Linear Probing
For experiments in Table 3 of the main paper, we initialize the learning rate as 0.001. We use SGD
optimizer with momentum 0.9 and the weight decay is set to 0. We freeze the features and train a
supervised linear classifier on the global average pooling features of the models for 100 epochs.

7 Implementation Details for Experiments on ImageNet
For experiments on ImageNet with ResNet18 or ResNet50, we follow the standard PyTorch practice
but train for 100 epochs in total. The learning rate starts at 0.1 and the batch size is set to 256. Note
that we only compute Lpred on ImageNet. λctr=1, λcls=1 and λpred=4.

8 Implementation Details for Experiments on Object Detection
We initialize the backbones of the object detection models with the CoCoRD-distilled ResNet50. The
teacher is ResNet101 during CoCoRD distillation.

8.1 PASCAL VOC Object Detection
The detector is Faster R-CNN [7] with a backbone of R50-C4 which is available in Detectron2. The
backbone ends with the conv4 stage and the box prediction head consists of the conv5 stage (including

2

https://github.com/pytorch/examples/tree/main/imagenet
https://github.com/facebookresearch/detectron2/tree/main/detectron2


Table 4: The effects of λcls. We set λpred to 4 and λctr to 1. CIFAR100 test accuracy (%) is reported. The
best performance is shown in bold. Average over 5 runs. mean denotes the average and std stands for the
corresponding standard deviation.

λcls 0.5 1.0 2.0 4.0 8.0

mean 73.97 74.20 73.03 72.53 71.89

std 0.26 0.14 0.31 0.32 0.24

Table 5: Test accuracy (%) of student models on CIFAR100 of CoCoRD. Standard deviation is provided.
Teacher
Student

WRN-40-2
WRN-16-2

WRN-40-2
WRN-40-1

resnet56
resnet20

resnet110
resnet20

resnet110
resnet32

resnet32x4
resnet8x4

vgg13
vgg8

Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36

CoCoRD (ours) 75.48 (±0.16) 75.17 (±0.17) 71.74 (±0.11) 72.11 (±0.29) 74.20 (±0.14) 75.29 (±0.07) 73.99 (±0.13)
CoCoRD+KD 75.90 (±0.05) 75.25 (±0.14) 72.09 (±0.31) 72.18 (±0.07) 74.37 (±0.18) 74.94 (±0.16) 74.26 (±0.11)

Table 6: Test accuracy (%) of student models on CIFAR100 of CoCoRD. Standard deviation is provided.
Teacher
Student

vgg13
MobileNetV2

ResNet50
MobileNetV2

ResNet50
vgg8

resnet32x4
ShuffleNetV1

resnet32x4
ShuffleNetV2

WRN-40-2
ShuffleNetV1

Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.60 64.60 70.36 70.50 71.82 70.50

CoCoRD (ours) 69.86 (±0.22) 70.22 (±0.07) 74.52 (±0.12) 75.99 (±0.12) 77.28 (±0.08) 76.42 (±0.10)
CoCoRD+KD 69.26 (±0.25) 69.89 (±0.19) 74.62 (±0.10) 76.48 (±0.23) 77.39 (±0.04) 76.56 (±0.26)

global pooling) followed by a BN layer. The same setup is applied to all entries in PASCAL VOC
detection in Table 7 of the main paper. The detector is fine-tuned on VOC trainval07+12 for 24k
iterations in an end-to-end manner. We evaluate the default VOC metric of AP50 and COCO-style
metrics of AP and AP75. The evaluation is on the VOC test2007. The image scale is [480, 800]
pixels during training and 800 at inference.

8.2 COCO Object Detection
The detector is Mask R-CNN [8] with R50-C4 backbone. The image scale is in [640,800] pixels
during training and is 800 at inference. We fine-tune the detector on the COCO train2017 in an
end-to-end manner and evaluate on COCO val2017. The schedule is 2x as in [9].

9 Other methods
We compare CoCoRD with the following state-of-the-art methods from the literature.

• KD: Distilling the knowledge in a neural network [10]

• FitNet: FitNets: Hints for Thin Deep Nets [11]

• AT: Paying More Attention to Attention: Improving the Performance of Convolutional
Neural Networks via Attention Transfer [12]

• SP: Similarity-preserving knowledge distillation [13]

• CC: Correlation congruence for knowledge distillation [14]

• VID: Variational information distillation for knowledge transfer [15]

• RKD: Relational knowledge distillation [16]

• PKT: Learning deep representations with probabilistic knowledge transfer [17]

• AB: Knowledge transfer via distillation of activation boundaries formed by hidden neu-
rons [18]

• FT: Paraphrasing complex network: Network compression via factor transfer [19]

• FSP: A gift from knowledge distillation: Fast optimization, network minimization and
transfer learning [20]

• NST: Like what you like: Knowledge distill via neuron selectivity transfer [21]

• CRD: Contrastive Representation Distillation [22]

• LCKT, GCKT, WCoRD: Wasserstein contrastive representation distillation [23]

• ReviewKD: Distilling Knowledge via Knowledge Review [24]

• SSKD: Knowledge Distillation Meets Self-Supervision [25]

3



References

[1] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in BMVC, pp. 87.1–87.12, 2016.
[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in CVPR,

pp. 770–778, 2016.
[3] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted

residuals and linear bottlenecks,” in CVPR, pp. 4510–4520, 2018.
[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” arXiv preprint arXiv:1409.1556, 2014.
[5] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient convolutional neural

network for mobile devices,” in CVPR, pp. 6848–6856, 2018.
[6] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical guidelines for efficient cnn

architecture design,” in ECCV, pp. 116–131, 2018.
[7] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with

region proposal networks,” Advances in neural information processing systems, vol. 28, 2015.
[8] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in ICCV, pp. 2961–2969, 2017.
[9] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2.” https://github.com/

facebookresearch/detectron2, 2019.
[10] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” in NeurIPS

Deep Learning and Representation Learning Workshop, 2015.
[11] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio, “Fitnets: Hints for

thin deep nets,” in ICLR, 2015.
[12] S. Zagoruyko and N. Komodakis, “Paying more attention to attention: Improving the perfor-

mance of convolutional neural networks via attention transfer,” in ICLR, 2017.
[13] F. Tung and G. Mori, “Similarity-preserving knowledge distillation,” in ICCV, pp. 1365–1374,

2019.
[14] B. Peng, X. Jin, J. Liu, D. Li, Y. Wu, Y. Liu, S. Zhou, and Z. Zhang, “Correlation congruence

for knowledge distillation,” in ICCV, pp. 5007–5016, 2019.
[15] S. Ahn, S. X. Hu, A. Damianou, N. D. Lawrence, and Z. Dai, “Variational information distillation

for knowledge transfer,” in CVPR, pp. 9163–9171, 2019.
[16] W. Park, D. Kim, Y. Lu, and M. Cho, “Relational knowledge distillation,” in CVPR, pp. 3967–

3976, 2019.
[17] N. Passalis and A. Tefas, “Learning deep representations with probabilistic knowledge transfer,”

in ECCV, pp. 268–284, 2018.
[18] B. Heo, M. Lee, S. Yun, and J. Y. Choi, “Knowledge transfer via distillation of activation

boundaries formed by hidden neurons,” in AAAI, pp. 3779–3787, 2019.
[19] J. Kim, S. Park, and N. Kwak, “Paraphrasing complex network: Network compression via factor

transfer,” in Advances in Neural Information Processing Systems, vol. 31, 2018.
[20] J. Yim, D. Joo, J. Bae, and J. Kim, “A gift from knowledge distillation: Fast optimization,

network minimization and transfer learning,” in CVPR, pp. 4133–4141, 2017.
[21] Z. Huang and N. Wang, “Like what you like: Knowledge distill via neuron selectivity transfer,”

arXiv preprint arXiv:1707.01219, 2017.
[22] Y. Tian, D. Krishnan, and P. Isola, “Contrastive representation distillation,” in ICLR, 2020.
[23] L. Chen, D. Wang, Z. Gan, J. Liu, R. Henao, and L. Carin, “Wasserstein contrastive representa-

tion distillation,” in CVPR, pp. 16296–16305, 2021.
[24] P. Chen, S. Liu, H. Zhao, and J. Jia, “Distilling knowledge via knowledge review,” in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5008–5017,
2021.

[25] G. Xu, Z. Liu, X. Li, and C. C. Loy, “Knowledge distillation meets self-supervision,” in
European Conference on Computer Vision (ECCV), 2020.

4

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

	Details of Projection Heads and Predictors
	Network Architectures
	Study of Balancing Factors
	Implementation Details for Experiments on CIFAR100
	Standard Deviation of CoCoRD on CIFAR100
	Implementation Details for Linear Probing
	Implementation Details for Experiments on ImageNet
	Implementation Details for Experiments on Object Detection
	PASCAL VOC Object Detection
	COCO Object Detection

	Other methods

