A Additional Explanations

A.1 Linear Relaxation for ReLU

Recall that as introduced in Section given bounds of z;(x) as |; < z;(x) < u;, we aim to relax
an activation o(z;(x)) as

Vli < Zl(X) < u;, §izi(x) +t, < O'(ZZ*(X)) < §i2’i(X) +El

For every neuron 7, if [1;]; >0 or [u;]; <0, 0(2;(x)) =2;(x) or o(z;(x)) =0 respectively is already
linear, and then we can simply take

[sil 12 ()] + [t = 8l [2: ()] + [Bi = o (2 (x))-
Otherwise when [I;]; < 0 < [u;];, the upper bound can be the line passing ReLU activation at

[z:(x)]; =[L]; and [z;(x)]; =[u;], respectively, i.e.,

Syl + il = (f’([‘[lia]j = Ef}[}b)

The lower bound can be any line with a slope between 0 and 1 and a bias of 0, i.e., 0 < [s,;]; < 1,
[t;]; = 0, where [s;]; can be viewed as a parameter optimized with an objective of tightening output
bounds [34,154,136]. We illustrate the linear relaxation in Figure E}
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Figure 4: Two lines can bound the ReLLU activation when the sign of its input is unstable (—1.5 <
2 < 1.5 in this example) and are used for bound propagation with linear relaxation.

A.2 Linear Relaxation for Absolute Value Function

In Figure[5] we illustrate the linear relaxation for the absolute value function.
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Figure 5: Given the bound on the input to an absolute value function (—1 < z < 1.5 in this example),

a line can upper bound the function. We take the blue one with slope %, while Zhang et al. [59] would
take the green one with slope 0, which is a looser upper bound.
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A.3 Applicability to Other Activations

Although we focus on ReLLU networks and /., local Lipschitz constants in this paper, our method can
also be applied to networks with other activations. When the activation is not ReLU, in Proposition 2]
we can still obtain the range of [A;(x)],; given pre-activation bounds [L;]; and [u;],. Suppose the
Clarke gradient satisfies [A;(x)],; C [I,u]. Then

[Jit1(x)Ai(x)]; < max{[Jip1(x)]; - 1, [Jix1(x)]; - u} = 6([Jit1(x)]),

and

[Jit1(x)Ai(x)];

min{[Ji1(x)]; - I, [Ji1 (x)]; - u}

= —max{—[Ji1(x)]; - I, ~[Jir1(x)]; - u}
= —5(—[Jit1(x)];),

where 6 (-) is a Leaky-ReLU-like function. Thereby, in Proposition[3| we can replace ReLU o (-) with
&(+) instead, and the proposition will hold for non-ReLU activations in the network.

v

B Additional Experiments

B.1 Additional Experiments on Synthetic Data

Table 5: Local Lipschitz constant values and runtime (seconds) on MLP models with varying depth
on synthetic data. Settings other than the models are the same as those for experiments in Table E}

MLP with width=32
Method Depth=2 Depth=4 Depth=8

Value Runtime Value Runtime Value Runtime

NaiveUB 29.25 0.00 36.99 0.00 180.87 0.00
LipMIP 15.42 6.78 1232 381.62 18,938.35 1,000.11*
LipSDP 25.88 9.97 24.57 28.55 49.00 1,826.92

LipBaB 15.42 5.87 13.74 60.10 963.83 60.67

RecurJac 15.45 17.19 13.95 23.64 195.16 42.09

Ours (w/o BaB) | 16.00 2.27 13.24 9.02 35.64 22.11

Ours (w/ BaB) | 15.42 4.89 12.36 15.92 30.32 60.03

Table 6: Local Lipschitz constant values and runtime (seconds) on an 3-layer MLP model with a
width of 64, for input domains with varying radii e. Settings other than the model and € are the same
as those for experiments in Table|1}

3-layer MLP with width=64
e=10.01 e=0.05 e=0.1 e=0.2
Value Runtime Value Runtime Value Runtime Value Runtime

NaiveUB 33.02 0.01 33.02 0.01 33.02 0.01 33.02 0.01

Method

LipMIP 15.49 7.75 15771 40393  102.64 1,000.05% 244.47 1,000.05*
LipSDP 27.27 93.35 27.27 93.35 27.27 93.35 27.27 93.35
LipBaB 15.49 2.66 17.13 60.44 30.59 63.16 56.03 60.26
RecurJac 15.49 19.27 16.17 18.39 20.25 17.07 65.28 18.09

Ours (w/o BaB) | 15.49 4.32 16.00 5.41 17.45 6.42 40.34 5.81
Ours (w/ BaB) | 15.49 5.46 15.82 13.54 16.30 13.57 32.70 60.10

In this section, we show additional empirical results on the synthetic dataset. Settings are mostly
similar to those for experiments in Section[5.1] In Table[5] we show results on models with varying
depth. For deeper models, our method outperforms previous works with larger gaps. And in Table[6]
we show results on varying radii € for the input domain. Our method outperforms previous methods
for computing local Lipschitz constants (baselines except for NaiveUB and LipSDP) with larger
gaps when the input domain has larger radii. But since local Lipschitz constants aim to analyze
the properties of the network within a small local region, the input domain should not be too large,
otherwise it is essentially no longer local.
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B.2 Repeated Experiments on MNIST

On MNIST, we show experiments where we train each of 3-layer MLP and CNN-2C2F with 5
different random initialization respectively, and other settings remain the same as those in Table[2} We
compute local Lipschitz constants for these models, and we report the mean and standard deviations
for the 5 runs in each setting respectively. We show the results in Table [/| Our improvement over the
baselines is significant.

Table 7: Results on models with 5 different random initialization on MNIST. Other settings remain
similar as those in Table 2}

3-layer MLP CNN-2C2F

Method Value Runtime Value Runtime

NaiveUB 3218.17 + 289.99 0.00 £0.00  92108.52 + 13962.82  0.00 £ 0.00

LipMIP 14053.27 + 264.03*  120.29 £ 0.11 - -

LipBaB 988.66 + 86.93 63.01 + 0.63 - -

RecurJac 1153.68 + 97.87 0.38 £+ 0.08 11174.06 + 134249  114.18 +3.40
Ours (w/o BaB) 734.40 + 63.69 4.26 +0.37 4895.50 + 517.39 7.89 £ 0.20

Ours 423.30 + 38.25 58.54 + 3.15 4878.96 + 518.49 60.05 £+ 0.01

C Experiment Details

C.1 Synthetic Datasets

For experiments using synthetic data, we generate the datasets following LipMIP [24] which generates
a randomized classification dataset given the input dimension and number of classes. We use 10
classes. We generate a dataset for MLP models and CNN models respectively, where the input
dimension is 16 for MLP models, and 1 x 8 x 8 for CNN models. For each dataset, we generate
7000 examples for training and 3000 examples for testing.

C.2 Model Structures

Synthetic Data For experiments on synthetic data, the numbers of hidden neurons in MLP models
and the number of convolution filters are listed as “width” in the tables for the corresponding results.
The numbers of layers are also mentioned in the tables. All the convolution kernels have a size of
3 x 3, a stride of 1, and no padding. Each CNN model only has one fully-connected output layer for
classification, and there is no hidden fully-connected layer.

MNIST For experiments on MNIST, each hidden layer in the 3-layer MLP model has 20 neurons;
and for the CNN-2C2F model, there are 8 convolution filters in each of the two convolutional layers,
where each convolutional filter has a kernel size of 4 X 4, a stride of 1, and no padding, and there is a
fully-connected hidden layer with 100 neurons.

CIFAR-10 For experiments on CIFAR-10, the CNN-2C2F model has 32 convolution filters in each
of the two convolutional laeyrs, where each convolutional filter has a kernel size of 3 x 3, a stride of
1, and no padding, and there is a fully-connected hidden layer with 256 neurons; and the CNN-4C2F
model has two additional convolutional layers with same hyperparameters.

TinyImageNet For experiments on TinyImageNet, the CNN-2C2F model has 32 convolution filters
in each of the two convolutional laeyrs, where each convolutional filter has a kernel size of 3 x 3, a
stride of 2, and a padding size of 1, and there is a fully-connected hidden layer with 256 neurons; and
the CNN-4C2F model has two additional convolutional layers with same hyperparameters.

Monotonicity Analysis For the monotonicity analysis, we use a 4-layer MLP model where each
hidden layer has 512 neurons.

C.3 Model Training

We use the Adam optimizer to train the models. For experiments on the synthetic data, we train each
model for 10 epochs with a learning rate of 103, For experiments on the image datasets, we train
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each model for 30 epochs with a learning rate of 5 x 10~%. For experiments on the monotonicity
analysis, we train the model for 10 epochs with a learning rate of 5 x 10~*. Hyperparameters were
not specifically tuned, as the focus on this paper is not on training models.

C.4 Compute Resources

All experiments are done on internal GPU servers, and each experiment only uses one single GPU.
We use a NVIDIA RTX A6000 GPU for experiments on CIFAR-10 and TinylmageNet, and we use a
NVIDIA GeForce RTX 2080 Ti GPU for experiments on other datasets.

C.5 Existing Assets

The implementation is partly based on the following open-source code repositories under BSD-3-
Clause license:

* auto_LiRPA (https://github.com/Verified-Intelligence/auto_LiRPA);

* alpha-beta-CROWN
(https://github.com/Verified-Intelligence/alpha-beta-CROWN).

The following datasets are used, with no license found:

e MNIST (http://yann.lecun.com/exdb/mnist);
* CIFAR-10 (https://www.cs.toronto.edu/"kriz/cifar.html);
* TinylmageNet (http://cs231n.stanford.edu/tiny-imagenet-200.zip);
* Adult dataset (https://archive.ics.uci.edu/ml/datasets/adult).
These resources are publicly available. We believe the data do not contain personally identifiable

information or offensive content.

D Proofs for Our Linear Relaxation

D.1 Proof for Proposition|I]

Proof. For every j € [d], we have [L;]; < [J1(x)]; < [Uj]; (¥x € &). In the special case with
[Li]; = [Ui]; = [J1(x)];, we take

[A1]; =0, [€o); = —[A1];[La]; + [[Laly] = [[T1(x)];],
and thereby [[J1 (x)];] = [A1];[J1(x)]; + [€ol;-

Otherwise, assuming [L;]; < [U4];, we have 0 < % < 1. Meanwhile, since | - | is a
convex function, we have
VO <t <1, [HUs]; + (1= )Lal;| < U]+ (1= §)[[Lal;]- (13)

By taking t = % for Eq. , the left-hand-side becomes
[H[U]; + (1 =) [Lal;| = [T ()51,

and the right-hand-side becomes
(U1 = Ea]5]) - [31(0)]j — [Tl - [[Oa]5] + [[Lals] - [Ua];
Ll

U] + (1 = 9)[[La]s] =

[Ua]; = [Lal; ’
and thereby we have
1< U] = IEa]i]) - [(F1(0)]; = [Lal; - [[Ua]s] + |yl - [Ua];
Gl < (U1l — [
By taking [Aq]; = Ul =g and [Eol; = —[Auj[Tal; + [[Lal;],
simplified into [A 1;[d1(x)]; + [€o];, and thereby |[J1(x)]; <A 1) [J1(x)]; + [€o)j-
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So far, we have |[J;(x)],| < [Al] [J1(x)]; + [€o]; hold for all j € [d]. In Section , we have

assumed that we handle one row in the Jacobian at each time, and J; (x) € R**< can be viewed as a
row vector. We upper bound its norm as

d
[J1(x) e = Z|J1 Z 1 + [€o]y) = ;&131(X)+50.

D.2  Proof for Proposition 2]
Proof. For the j-th neuron in layer i(i € [n — 1]), given [A;(x)];; = [0, 1], if [Ji1(x)]; > 0, we

have
[Jit1(x)Ai(x)]; = [Jit1(x)];[Ai(x)];5 > 0,
and if [J;41(x)]; < 0, we have
[Jit1(x)Ai(x)]; = [Jit1(x)];[Ai(x)]j; > [Jiv1(x)]5,
and thus
in{[Jit1(x)];,0}.

mi
ma; x{[ i+1(x)];,0}. Recall that ReLU activation
0} = o([Jit1(x)];). and min{[J;1(x)];, 0} =

[erl( ) Z(X)] >
<

Similarly, we can also obtain [J ;41 (x)A;(x)];
is o(x) = max{x,0}, and thus max{[J;;1(x)];,

—max{—[J;4+1(x)];,0} = —o(=[J;11(x jl]

)-

D.3  Proof for Proposition[3]

Proof. For the j-th neuron in layer i(i € [n — 1]), given [L;1]; < [Ji41(x)]; < [Uj41];, we have
—[Uit1]j < =[Jig1(x)]; < —[Lj+1];. And by the convex relaxation of ReLU activation in many
previous works [52, 141, 58], we have
o([Uin]y) = o([Litaly)
[Uitals — [Liyal;
o(=[Lin]y) = o(=[Uinl))
[ Z+1]J [Uz+1]3

o([Jit1(x)];) < (Jir1(x)]5 = [Livaly) + o ([Livaly),

o(=[Jir1(x)];) < ([Ji1 ()5 + [Livaly) + o(=[Lit1l))s

and
(i) > ~ T =R (1, G + L) = o(-(Er)
By setting
o)y = T el ) ) — o[,
s = Dl —Retl) )y = G L + (sl
we have

—o(=[Fir1(x)]) > [Eigali T ()] + [Eigals-

o([Tir1(0)]y) < Birali[Tos1 ()] + [Biraly-
By further combining results from Proposition[2} we have

[Fir1(0)A(x)]; > —o(—[Tix1(x)];) > EipaliTisr ()5 + [Ei 415,

[Jir1(0)A®)]; < o([Tip1(0)];) < BigalsFarr ()] + [iral;-
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D.4 Proof for Theorem [

Proof. For the j-th neuron in the i-th layer (i € [n — 1]), a linear relaxation sJ + ¢ is valid lower
bound if and only if

VJ € |[Lit1ly, [Ui+1]]} V[A(x)]5€[0,1], 8T +1 < T [Ai(x)]55- (14)

When [U;;1]; > [Lit1]; > 0, we have

5. = —0(=[Uinly) + o(=[Lisl;) _ 0+0 —0
S [Uit1]; — [Lival; Uitaly — [Liyal;
[tiy1]; = —[Sip1)iLisa]; — o(—[Liga];) = 0.

Then suppose there exists some J([Li11]; <J < [U;11];) such that s.J +¢ > [8;,1];J + [£41]5, we

have s.J +t > 0. However, by taking J = J and [A;(x)];; = 0, s.J +t > 0 while J - [A;(x)];; = 0,
and thus the condition sJ 4+t < J-[A;(x)];; = 0 s violated, and sJ +¢ cannot be a linear relaxation
for the lower bound. And if [L;;+]; < [U;41]; < 0, we have

B0l = —0(=[Uis1);) + o(=[Lin1];) _ =(=[Uina]y) + (=[Lina];) _ ]
Sy [Uit1]; — [Livl; [Uit1]; — [Lival; ’

[ti41]; = —[Eip1)i[Lis1l; — o(—[Liga];) = 0.

Then suppose there exists some J([Li1]; <J <[Uis1];) such that s.J +t > [8, 1] + [ti41]5, we
have s.J +1 > J. However, by taking J = .J and [A;(x)],;; = 1, 8]+t > J while J-[A;(x)];; = J,
and thus the condition s.J+¢ < J-[A;(x)],; = = J is violated, and s.J + ¢ cannot be a linear relaxation
for the lower bound.

Next, we consider the remaining case when [L;41]; < 0 < [U;41];. We have

B = —0(=[Uinlj) + o(=[Linal;) _  —[Linl;
S (Uit1]j — [Lisal; [Uig1]y — [Liya]y’
= e ooy LUl
[§i+1]j - _[§i+1]J[LZ+1]j U( [Lerl]J) = [Uij]l‘ — [Ltj-l] -

Then suppose there exists some J([Lj;1]; < J < [U;11];) such that s.J +¢ > [8;,1];J + [£41]5, we
denote H = s.J +t, and then s.J + ¢ = s(J — J) + H. We have
—Linl; 5 Wil [Uinly

[Uit]j — [Lial; I (Uit1lj — [Liyaly’

H >

and

[ 1+1] (J [ 1+1]j)

H= ol = =G ] o,

>0 = H> [Li+1]j~

According to conditions in Eq. (T4), we have
VJ € {[Litaly, J, [Uanls}, VA5 € [0,1], s(J = J) + H < J[A:(x)]5-

Then by taking .J = J and [A;(x)];; = 0, we have H < 0; by taking J = [L;11]; and [A;(x)];; = 1,
we have
s([Lisa]j = J) + H < L]y,
and thus
H — [Lit];

52 —
J — [Lit1];

> 0.
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And by taking J = [U;1];, we have
s([Uip); — )+ H

H—Linalj o5 1 _ 5
> T Lol (Uil =J)+H

_ —[Lit1]; L
Uiy — [Lisal (Uin]y =)+ H

—[Lit1l; s L
[Uin]; — [Li1); (Uil = J) + [Lisal;

_ L ( = [Lina]y)
[Uital; — [Lisal;
which violates Eq. when [A;(x)];; = 0.
Thus, so far we have proved that if sJ + ¢ is a valid linear relaxation for the lower bound,

VJ ([Lin1]; < J < [Uina]j), s +1 < Fiﬂ]jj + [t;.1]; must hold, i.e., it must be no tighter than

the relaxation proposed by Proposition[3, And then we must have V.J ([Li1]; < J < [Uiyi1];)s

sl+i< [Ei-s-ﬂjj + [Ei-i-l]j’ unless (s,t) = ([8;41];, Ei-s-l]j)- And thereby,
(8,8) # ([Si41l> [kigals) = VLinal; <I<[Uinaly, s+t <[8ip5 7 + [Lials-
Similarly, for the linear relaxation 3J + ¢ on the upper bound satisfying,
V€ (Ll [Uiials | VIAR)]5 €10,1], 57+ 2 - [8u(x)]35,

we can also prove

>0,

(5,1) # ([Sivaly, [tialy) = V[Linal; <T<[Uia]j, 5T+ > [Sival; ] + [bia]-
O

Thereby, we have shown the optimality of our linear relaxation, which is provably tighter than other
relaxations such as interval bound-like relaxation in RecurJac [S9]]. Alternatively, if we directly adopt
the relaxation for the multiplication of two variables proposed in Shi et al. [38] for the multiplication
of [J;41(x)]; and [A;(x)];, it will produce a similarly loose relaxation as Zhang et al. [59].

E Connection with RecurJac

In this section, we explain in more detail that RecurJac [59] is a special case under our framework
using linear bound propagation but RecurJac has used relatively loose interval bounds in non-
trivial cases as partly illustrated in Figure 2| For the j-th neuron in the i-th layer, in cases where
[Lit1]; < 0 < [Uj41]; but excluding the situation where
i=n— 1, [Albj =0or [AZ]J] = 1,

if we use following interval relaxation instead of our relaxation proposed in Section

[Lisa]sluily < T (x)Ai(x)]; < [Uiplj[ui];  for [Lipa]; <0 <[Uin];,  (15)
then our framework without BaB computes equivalent results as RecurJac given same bounds on
A;(x). This is an interval relaxation because the relaxed lower bound and upper bound no longer
depend on J; 1 (x) and thereby constitute an interval, instead of linear functions w.r.t. J;1(x). In
particular, for the case illustrated in Figure[2] with [A;];; = [0, 1], Eq. is equivalent to

[Lit1]; < Jiv1(x)Ai(x)]; < [Uiga];  for [Lisa]; <0 <[Uigal;.

But the interval relaxation is also used in more trivial cases with [A;(x)];; = 0 or [A;(x)];; =1
fixed except ¢ = n — 1, where [J;41(x)A;(x)]; is naturally a linear function of J;;(x) and can
allow linear bound propagation to continue and propagate the bounds to J;;1(x). Using interval
bounds also loosen the bounds in these cases.

Next, we compare with “Algorithm 1” in Zhang et al. [59] and show the equivalence. For each layer
i € [n], we use L; and Uj; to denote the lower bound and upper bound on the Clarke Jacobian J (%)
computed by our framework with the alternative relaxation in Eq. @). And we use INJi and fJ’i to
denote bounds computed by RecurJac, i.e., “L(=D and “UD” in Zhang et al. [59] where | = 1.
We aim to show that ]ch = I:i and U = fJi hold for all ¢ € [n].
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Equivalence on the last layer First, as mentioned in Section[4.1] we have J,,(x) = W,, which
does not depend on any relaxation, and thus L,=U,=1J, (x) = W,, remains unchanged even

if we change to use RecurJac’s relaxation. Meanwhile, RecurJac also returns L,, = U,, = W,, (in
Zhang et al. [59]]’s “Algorithm 17, it is showed that “L(~) = U= = W®” when “] = H”, where
H is used to denote the number of layers in Zhang et al. [59] equivalent to n here).

Equivalence on the second last layer Second, followmg Eq. (D we have J,_1(x) =
J n(x)An,l(x)Wn 1. Note that the interval relaxation in Eq. ([:) is not used for layer n— 1.
For every neuron j, if [A;(x)];; = 0 or [A;(x)];; = 1 is fixed, linear bound propagation is straight-
forward by merging [A,_1(x)];; and [W,,_1]; . into new linear coefficients:

(Jn (%)) [An-1(x)]j;[Wn-1lj: = [Jn ()] ([An-1()][Wrn-1;,:)-

For other cases with [A;(x)];; = [0, 1], note that since J,,(x) = L, = U, = W,, is constant, this

is a special case and at least one of [L,]; = [W,]; > 0 and [U,]; = [W,]; < 0 holds. Then the
relaxation in Eq. (@ is used. Following Eq. (4), when using bound propagation to bound J,,_1(x),
we have

Jn,]_ (X)
= Jn (X)An—l (X)Wn—l

> > FaL(A ()] Wil
[An—1(x)];;=0
or [Ap_1(x)];;=1
+ > [Jn ()] [Wr—1lj:— + > [Jn ()] W1l +
[An—1(x)];;=[0,1], [An—1(x)];;=[0,1],
[L,];>0 [U,];<0

= > WA ()] Wail))
[An—1(x)];;=0
or [An—1(x)]5;=1

+ ) (Woli[Whilj.— + (Wl [Wailj 4
[An—1(x)]5;=[0,1], [An—1(x)];;=[0,1],
[Ln];>0 [U,];<0

It is easy to verify that the above bound is equivalent to
Jnfl(x) 2 ([Wn]Jrlnfl + [Wn]funfl)[wnflbr + ([Wn]%»unfl + [Wn]flnfl)[wnfl]f-
Similarly, we also have

Jn1(x) < ((Waliu, 1+ [Wo] 1, 1) [Wha]y + ((Wa]i by + [Wa]u, 1) [Wia] .

These bounds are equlvalent to Zhang et al. [39]’s Eq. (10) and (11) for obtaining Ln 1 and Un 1,
andthusLn 1= Ln 1 andUn 1 —Un 1.

Equlvalence on remalnmg layers Next, we use mathematical induction to show that L, =L;

and U; = U; hold fori = n —2,n —3,---, 1. Suppose we have shown that L; = L; and
U = U hold for k + 1 < i < n, and we aim to show that Lk Lk and Uk Uk We focus
on the lower bound first, and the upper bound can be similarly proved. L, is the lower bound of
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Ji(x) = Jpi1 (%) Ak (x)W), computed by bound propagation as
Jk+1 (X)Ak (X)Wk
> > [Jier1 ()] ([Ar(x)]5 [Wil;.:) (16)

([Ak (%)]5;=0 or [Ak(x)];;=1)
and ([L4+1];>0 or [Ujpy1];<0)

+ D e (LW - (17)
[Ak(x)];;=(0,1],
[Lk+1];20
+ ) T LWl (18)
[Ak(x)];;=[0,1],
[Uk+1];<0
+ > (L[] Wkl 4+ [Una ][] Wil - ), (19)

[Lr+1]; <0<[Ug41l;

where Eq. (16) is a special case with fixed [Ak( )];; and the sign of [Jj41(x)]; is also fixed, Eq.
(I7) and Eq ) are by Eq. ) and Eq. (22) is by the interval relaxation in Eq. (]E) By merging,

Eq (16), E and Eq , the bound can be further simplified into
Trr1 (%) A (x) Wi
> Z [Tier1 ()] (045 (Wl -+ [Tregr ()] 1] Wk (20)
[Lk41];>0
Y FreaCOLMLIWl— + Trea (OT [kl Wl 1)
[Uk+1]3<0
+ > (L] [i] (Wl 4 + [Uka ][] Wil - ) (22)

[Lk41]<0<[Ug41]4

Eq. (22) corresponds to Zhang et al. [59]’s “(14)”. And when using linear bound propagation for
cases with [Ly11]; > 0 or [Ugy1]; < 0, bounds are propagated to J11(x) and then the linear
coefficients are merged with weights of the next layer Wy, which corresponds to Zhang et al.
[S9]’s “(17)”. Thus we have so far showed the equivalence in computing the lower bounds, and the
equivalence can also be similarly derived for the upper bounds.
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