Appendix

1 Interpretation using rank-1 Nystrom approximation

The bound in Equation 5 of the main paper can be interpreted using a rank-1 Nystrom approximation
for f(x,x¢ ). By holding w fixed and maximizing for ¢ in the right hand side of Equation 5, we get
g = f(w,w)" >, y+ f(x¢, w) where f(w,w)T indicates the pseudo—inverseﬂ We can insert this
optimal ¢* back into the right hand side to yield:

D unflew) = 0 ww) = 3 S m

where we have defined they Nystrom matrix: 7
:ty/mbm = f(xe, w) f(w, W) f(w,xp) 2
The matrix f}o,"" is a rank-1 Nystrém approximation for the full similarity matrix f(x;, X )

Williams and Seeger [2001]. Note that for every dimension ¢ of the representation vector y, we
have a different landmark vector w* so we are using a different rank-1 approximation of the matrix
f(x¢,xy) for every to the pairwise sum % Yor e Yy f (X, xpr).

Typically the weight vector w , often called a “landmark”, used in the Nystrom approximation is set
either by setting it to a random input or by more sophisticated schemes like setting it with KMeans.
In our case, we are directly optimizing the landmarks via Equation 6 in the main paper. To our
knowledge the only other work to do this was performed in [Fu|[2014].

2 PyTorch code for training

The code used in the main training loop of our algorithm is shown in Fig. [T]

3 Homogeneous kernels

Before moving on we note that a simplification can be made if we have a homogenous (scale
free) kernel, i.e. if f(au,bv) = (ab)*f(u,v). Examples of such kernels are the linear kernel
f(u,v) = u- v, homogeneous polynomial kernels f(u,v) = (u-v)?, and the cosine-based kernel
we will use in one of our experiments f(u,v) = ||y||||v]/ (@ - ¥v)©. In this case, there is a degeneracy
between ¢; and the norm of w,. This means we can actually eliminate the minimization over q by
setting ¢; = 1. We prove this fact in the appendix. In the case of a homogeneous kernel, we are left
with the simpler equivalent optimization:

min max min — > {(yif(wi,X» - 2f(Wi7Wi)] t3 > [Lij (yiys) —

i=1

1
§L12j + My (3

ij=1

This more clearly shows the relationship between the linear similarity matching objectives and the
more general kernel similarity matching objective. When f(w;,x) = w; - x, we are in fact left with

!The pseudo-inverse of the scalar f(w, w) acts exactly like the regular inverse except it is defined to be 0
when f(w, w) is zero, unlike the regular inverse which would be undefined.
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# train loop

for i in range(n_iter):
# inference
x = next(loader)
y = self.forward(x)

# gradients
e = self.energy(x,y)
gq, gw, gl = torch.autograd.grad(e, [self.q, self.w, self.1l])

# updates

with torch.no_grad():
self.q += etag * gq
self.w += etaw * gw / (self.g#**2).unsqueeze(1l)
self.l -= etal * gl

Figure 1: Training loop to perform the GDA-based optimazation of Eq. 9 in the main paper written
using PyTorch

the exact objective studied in previous works on linear similarity matching |Pehlevan et al.|[2018]].
This simplification can be easily implemented in code by initializing ¢; = 1 and setting the learning
rate for 74 to be O for all iterations.

4 Proof that the bound in Equation 6 is maximized when ¢ = 1 and f is a
homogeneous kernel

Assume that f is a homogenous kernel, so that f(Aju, Aav) = (A1 A2)® f(u, v) for any Ay, Ao > 0.
We will show that in this case we can simply set ¢ = 1. Assume we have some pair g, w. Then
define ¢ = 1 and w' := ¢'/*w. Because our kernel is homogeneous, we have f(w’',x;) =
f(g**w,x;) = qf (w,x;) and similarly f(w’, w') = ¢*f(w, w). In other words when we have a

homogenous kernel, we can always just rescale the features w’ < ¢'/“w so the following holds for
any q:
1 1
zt:qytf(xta - 5(] f (w,w) Zyt (x¢, W') — if(Wl7W/) “)

5 Methods we compare to in our experiments

Kernel PCA The optimal (in terms of mean squared error) rank N approximation f to the kernel
matrix f is given by the top n-dimensional subspace of the kernel matrix [Borg and Groenen, 2005].

Specifically, we perform an eigenvector decomposition on f then set f via:

f(xs,%¢) Z/\VZV —>fst—Z)\vv )

For the mnist dataset, the kernel matrix is 70k x 70k entries so we use a randomized svd algorithm
to compute the top components, rather than a full SVD. We use the PyTorch implementation
“torch.svd_lowrank” with ¢ = 1024 4 256 (so we estimate the top 1024+256 singular values and
vectors) and we set niter=4 meaning we do 4 power iterations.

Nystrom methods Given a set of landmarks {w; : ¢ = 1,2,..., N}, the nystrom method defines
two matrices:
Ay = f(x",wy)  Bij = f(xi,w;) (6)
These are used to approximate the kernel matrix via:
for = Z A[BI; Al (7)



To calculate the pseudo-inverse of B we use double precision arithmetic and set first set all singular
value of B smaller than 1e — 10 to zero. We compare 3 different methods of landmark generation in
our paper.

Nystrom with uniformly sampled landmarks This is the simplest method, and was proposed in
he original paper using the Nystrom method to approximate kernel matrices [Williams and Seeger,
2001]]. We simply uniformly sample N landmarks without replacement from the dataset.

Nystrom with landmarks generated via KMeans This method was used by |Zhang et al.| [[2008]]
and instead uses the cluster centers given by KMeans as the landmarks. We initialize our means with
templates from the dataset and the use Lloyd’s method to update our cluster centers [Lloyd,|1982].
This is run either until convergence, or 100 iterations of the algorithm occurs, whichever happens
first.

Nystrom with landmarks generated via our method We use the N features learned with Hebbian
update rules as the landmarks in the Nystrom approximation.

Random Fourier features For the half moons dataset using the Gaussian kernel, we also compare
our method to the random Fourier feature method [[Rahimi et al., [2007]]. The authors in [Bahroun et al.
[2017] train a linear similarity matching on top of these features. But for simplicity, we just use the
random features themselves, rather than the subsequent neurally generated features. This provides a
best-case scenario for the neural random Fourier method. The neural algorithm is simply trying to
matching similarities min y||y® - y* — ¢* - ¢'||, and it should be able to provide zero error, given
the same output dimension as input dimension. Although it practice it can be challenging to set the
learning rates appropriately, so we evaluate ¢ instead of y to avoid any possible issues with improper
training.

To generate these features, we randomly sample w; ~ A/(mean = 0, variance = %I) where and
b; € Uniform[0, 27] as set the features as

Pt = \/gcos(wi -xt ;) (8)

6 Half Moons Experiment

6.0.1 Training details

We train with minibatch sizes of 64 input. We train for 10000 iterations with 7,, = 1, = 0.01 and
m = 0.1. Then we anneal the learning rates by a factor of 10x and train for 10000 more iterations
Nw = Ng = 0.001 and n; = 0.01.

7 MNIST Experiment

7.1 Training details

We train with minibatch sizes of 64. After initialization and warmup, we set « and train for 10,000
iterations with 7, = 0.001, n; = 0.01. We then decay the learning rates for W, L by 10x and train for
with 5k more iterations with n,, = 0.0001,7; = 0.001. This whole procedure takes approximately 4
minutes on an NVIDIA GTX 1080 GPU.

7.2 Learned features for MNIST dataset

In Figure 2] we show the weights w;, visualized as 20x20 images, that are learned. When o = 1
(linear similarity matching), the features appear as complicated linear combinations of input digits.
However, with a = 2 we see clear digits beginning to emerge. And with oo = 4 nearly all the features
look like whole digits.

8 Receptive field analysis (aka ''linearized neuron responses'')

A natural way to visualize what the networks learn is to examine the feedforward weights. However
these visualizations are not as interpretable in this experiment as they were for the simple halfmoons
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Figure 2: Feedforward weights (W) learned by the network for « = 1,2, 3,4. When o = 1, the
weights appear to be complicated linear combinations of input vectors. As « increases, the weights

begin to resemble “templates”, i.e. whole digits. In the main text, we argue this behavior results from
the increasing sharpness of neural tuning as « increases.

Linearized Neuron Responses
a=3

Figure 3: “Linearized responses” for a subset of neurons from networks with o = {1,2,3,4}
Specifically, for each neuron y; we compute the vector s; = [0.1 T+ (xx )] - (y;x) and visualize
s; as a 20 x 20 image. As « increases, it appears that neurons become increasingly selective to whole
input digits.
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Figure 4: Eigenvalue spectrum of the input similarity matrix f(x;, x; ) and learned output similarity
matrix y¢ - yy . If similarity matching were optimal, (i.e. we just performed uncentered kernel PCA
on the input similarity matrix) the largest 800 eigenvalues would be exactly matched and subsequent
eigenvalues would be zero. We see that increasing « brings up the tails of the spectrum, approximately
"whitening" the responses. For v = 1, because the inputs are 400 dimensional, the spectrum only has
at most 400 nonzero eigenvalues.

dataset. In particular for o = 1,2, 3 the weights appear to be a blend of templates (whole digits)
and more complicated linear combinations of digits. We show some examples from each network
configuration in the appendix.

We can better understand and visualize the network responses by instead examining the linearized neu-

. —1
ron responses. Specifically, for each neuron y; we compute the vector s; = [0. 1T+ <XXT>] (yix).
This vector can be thought of as a linear approximation to each neuron y; = s; - x. We show these
vectors, again visualized as images, in Figure

These linearized responses actually highlight a behavior not seen by only considering feedforward
weights. We see for a = 2, it appears that many of the neurons appear to be selective for smaller
regions of the input, sometimes interpretable as strokes and edges. This behavior is likely coming
from some sort of cancellation between the feedforward input and lateral interactions. As « increases,
the linear filters appear to grow in size to resemble whole digits.

For o« = 1 (aka linear similarity matching) the linearized responses do not in any way appear as whole
digits, rather they appear to be high spatial frequency images. This is not a failure of the networks, as
the input-output similarities are nearly perfectly matched. This behavior results from the fact that
linearity is not enough to encourage parts or whole templates to be learned.

8.1 Spectral analysis of the representations

We examine the eigenvalue spectrum of the input similarity matrix f(x;,x; ) and the output similarity
matrix y; - y;. We plot these spectra in Figure[d] Note that we normalize the spectra by dividing by
the largest eigenvalue.

Without even considering the output representations, we can already observe interesting behavior
just by considering the spectrum of the input similarity matrix. As we increase «, the “sharpness”
of the kernel, the spectrum of f tends to flatten out. The effective rank of this matrix increases
with increasing kernel sharpness. This observation is is in part a motivation for kernel similarity
matching. Matching a high rank matrix naturally requires high dimensional vectors. This increase
in dimensionality may be useful for downstream tasks such as linear classification. It is also an
important part of brain inspired modeling to use overcomplete representations of the input|Olshausen
and Field| [1997]].

For o = 1, the spectrum of y, -y closely matches the spectrum f(x;, x;/) for the larger eigenvalues.
However, it appears to fall off for smaller eigenvalues. This may be due in part to the training not
being fully converged. For a > 1, the spectrum of y; - y approximately matches for the larger
eigenvalues (although not perfectly). However again the spectrum tends to fall off more rapidly for
the learned representations than for the input similarity matrix. Note that because the dimensionality



of y is 800 for all experiments, the spectrum necessarily must be zero for all eigenvalues smaller than
the 800th largest eigenvalue.
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