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ABSTRACT

The offline reinforcement learning (RL) problem is often motivated by the need to
learn data-driven decision policies in financial, legal and healthcare applications.
However, the learned policy could retain sensitive information of individuals in the
training data (e.g., treatment and outcome of patients), thus susceptible to various
privacy risks. We design offline RL algorithms with differential privacy guarantees
which provably prevent such risks. These algorithms also enjoy strong instance-
dependent learning bounds under both tabular and linear Markov Decision Process
(MDP) settings. Our theory and simulation suggest that the privacy guarantee
comes at (almost) no drop in utility comparing to the non-private counterpart for a
medium-size dataset.

1 INTRODUCTION

Offline Reinforcement Learning (or batch RL) aims to learn a near-optimal policy in an unknown
environment1 through a static dataset gathered from some behavior policy µ. Since offline RL
does not require access to the environment, it can be applied to problems where interaction with
environment is infeasible, e.g., when collecting new data is costly (trade or finance (Zhang et al.,
2020)), risky (autonomous driving (Sallab et al., 2017)) or illegal / unethical (healthcare (Raghu
et al., 2017)). In such practical applications, the data used by an RL agent usually contains sensitive
information. Take medical history for instance, for each patient, at each time step, the patient reports
her health condition (age, disease, etc.), then the doctor decides the treatment (which medicine to use,
the dosage of medicine, etc.), finally there is treatment outcome (whether the patient feels good, etc.)
and the patient transitions to another health condition. Here, (health condition, treatment, treatment
outcome) corresponds to (state, action, reward) and the dataset can be considered as n (number of
patients) trajectories sampled from a MDP with horizon H (number of treatment steps). However,
learning agents are known to implicitly memorize details of individual training data points verbatim
(Carlini et al., 2019), even if they are irrelevant for learning (Brown et al., 2021), which makes offline
RL models vulnerable to various privacy attacks.

Differential privacy (DP) (Dwork et al., 2006) is a well-established definition of privacy with many
desirable properties. A differentially private offline RL algorithm will return a decision policy that
is indistinguishable from a policy trained in an alternative universe any individual user is replaced,
thereby preventing the aforementioned privacy risks. There is a surge of recent interest in developing
RL algorithms with DP guarantees, but they focus mostly on the online setting (Vietri et al., 2020;
Garcelon et al., 2021; Liao et al., 2021; Chowdhury & Zhou, 2021; Luyo et al., 2021).

Offline RL is arguably more practically relevant than online RL in the applications with sensitive data.
For example, in the healthcare domain, online RL requires actively running new exploratory policies
(clinical trials) with every new patient, which often involves complex ethical / legal clearances,
whereas offline RL uses only historical patient records that are often accessible for research purposes.
Clear communication of the adopted privacy enhancing techniques (e.g., DP) to patients was reported
to further improve data access (Kim et al., 2017).

Our contributions. In this paper, we present the first provably efficient algorithms for offline RL
with differential privacy. Our contributions are twofold.

1The environment is usually characterized by a Markov Decision Process (MDP) in this paper.
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• We design two new pessimism-based algorithms DP-APVI (Algorithm 1) and DP-VAPVI
(Algorithm 2), one for the tabular setting (finite states and actions), the other for the case
with linear function approximation (under linear MDP assumption). Both algorithms enjoy
DP guarantees (pure DP or zCDP) and instance-dependent learning bounds where the cost
of privacy appears as lower order terms.

• We perform numerical simulations to evaluate and compare the performance of our algorithm
DP-VAPVI (Algorithm 2) with its non-private counterpart VAPVI (Yin et al., 2022) as well
as a popular baseline PEVI (Jin et al., 2021). The results complement the theoretical findings
by demonstrating the practicality of DP-VAPVI under strong privacy parameters.

Related work. To our knowledge, differential privacy in offline RL tasks has not been studied before,
except for much simpler cases where the agent only evaluates a single policy (Balle et al., 2016; Xie
et al., 2019). Balle et al. (2016) privatized first-visit Monte Carlo-Ridge Regression estimator by an
output perturbation mechanism and Xie et al. (2019) used DP-SGD. Neither paper considered offline
learning (or policy optimization), which is our focus.

There is a larger body of work on private RL in the online setting, where the goal is to minimize regret
while satisfying either joint differential privacy (Vietri et al., 2020; Chowdhury & Zhou, 2021; Ngo
et al., 2022; Luyo et al., 2021) or local differential privacy (Garcelon et al., 2021; Liao et al., 2021;
Luyo et al., 2021; Chowdhury & Zhou, 2021). The offline setting introduces new challenges in DP
as we cannot algorithmically enforce good “exploration”, but have to work with a static dataset and
privately estimate the uncertainty in addition to the value functions. A private online RL algorithm
can sometimes be adapted for private offline RL too, but those from existing work yield suboptimal
and non-adaptive bounds. We give a more detailed technical comparison in Appendix B.

Among non-private offline RL works, we build directly upon non-private offline RL methods known
as Adaptive Pessimistic Value Iteration (APVI, for tabular MDPs) (Yin & Wang, 2021b) and Variance-
Aware Pessimistic Value Iteration (VAPVI, for linear MDPs) (Yin et al., 2022), as they give the
strongest theoretical guarantees to date. We refer readers to Appendix B for a more extensive review
of the offline RL literature. Introducing DP to APVI and VAPVI while retaining the same sample
complexity (modulo lower order terms) require nontrivial modifications to the algorithms.

A remark on technical novelty. Our algorithms involve substantial technical innovation over
previous works on online DP-RL with joint DP guarantee2. Different from previous works, our
DP-APVI (Algorithm 1) operates on Bernstein type pessimism, which requires our algorithm to deal
with conditional variance using private statistics. Besides, our DP-VAPVI (Algorithm 2) replaces the
LSVI technique with variance-aware LSVI (also known as weighted ridge regression, first appears
in (Zhou et al., 2021)). Our DP-VAPVI releases conditional variance privately, and further applies
weighted ridge regression privately. Both approaches ensure tighter instance-dependent bounds on
the suboptimality of the learned policy.

2 PROBLEM SETUP

Markov Decision Process. A finite-horizon Markov Decision Process (MDP) is denoted by a tuple
M = (S,A, P, r,H, d1) (Sutton & Barto, 2018), where S is state space and A is action space. A non-
stationary transition kernel Ph : S ×A× S 7→ [0, 1] maps each state action (sh, ah) to a probability
distribution Ph(·|sh, ah) and Ph can be different across time. Besides, rh : S×A 7→ R is the expected
immediate reward satisfying 0 ≤ rh ≤ 1, d1 is the initial state distribution and H is the horizon. A
policy π = (π1, · · · , πH) assigns each state sh ∈ S a probability distribution over actions according
to the map sh 7→ πh(·|sh), ∀h ∈ [H]. A random trajectory s1, a1, r1, · · · , sH , aH , rH , sH+1 is
generated according to s1 ∼ d1, ah ∼ πh(·|sh), rh ∼ rh(sh, ah), sh+1 ∼ Ph(·|sh, ah),∀h ∈ [H].

For tabular MDP, we have S ×A is the discrete state-action space and S := |S|, A := |A| are finite.
In this work, we assume that r is known3. In addition, we denote the per-step marginal state-action
occupancy dπh(s, a) as: dπh(s, a) := P[sh = s|s1 ∼ d1, π]·πh(a|s), which is the marginal state-action
probability at time h.

2Here we only compare our techniques (for offline RL) with the works for online RL under joint DP guarantee,
as both settings allow access to the raw data.

3This is due to the fact that the uncertainty of reward function is dominated by that of transition kernel in RL.
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Value function, Bellman (optimality) equations. The value function V π
h (·) and Q-value func-

tion Qπ
h(·, ·) for any policy π is defined as: V π

h (s) = Eπ[
∑H

t=h rt|sh = s], Qπ
h(s, a) =

Eπ[
∑H

t=h rt|sh, ah = s, a], ∀h, s, a ∈ [H] × S × A. The performance is defined as vπ :=

Ed1 [V
π
1 ] = Eπ,d1

[∑H
t=1 rt

]
. The Bellman (optimality) equations follow ∀h ∈ [H]: Qπ

h =

rh + PhV
π
h+1, V π

h = Ea∼πh
[Qπ

h], Q⋆
h = rh + PhV

⋆
h+1, V

⋆
h = maxa Q

⋆
h(·, a).

Linear MDP (Jin et al., 2020b). An episodic MDP (S,A, H, P, r) is called a linear MDP with
known feature map ϕ : S ×A → Rd if there exist H unknown signed measures νh ∈ Rd over S and
H unknown reward vectors θh ∈ Rd such that
Ph (s

′ | s, a) = ⟨ϕ(s, a), νh (s′)⟩ , rh (s, a) = ⟨ϕ(s, a), θh⟩ , ∀ (h, s, a, s′) ∈ [H]×S ×A×S.
Without loss of generality, we assume ∥ϕ(s, a)∥2 ≤ 1 and max(∥νh(S)∥2, ∥θh∥2) ≤

√
d for all

h, s, a ∈ [H]× S ×A. An important property of linear MDP is that the value functions are linear in
the feature map, which is summarized in Lemma E.14.

Offline setting and the goal. The offline RL requires the agent to find a policy π in order to maximize
the performance vπ , given only the episodic data D = {(sτh, aτ

h, r
τ
h, s

τ
h+1)}

h∈[H]

τ∈[n]
4 rolled out from some

fixed and possibly unknown behavior policy µ, which means we cannot change µ and in particular
we do not assume the functional knowledge of µ. In conclusion, based on the batch data D and a
targeted accuracy ϵ > 0, the agent seeks to find a policy πalg such that v⋆ − vπalg ≤ ϵ.

2.1 ASSUMPTIONS IN OFFLINE RL

In order to show that our privacy-preserving algorithms can generate near optimal policy, certain
coverage assumptions are needed. In this section, we will list the assumptions we use in this paper.

Assumptions for tabular setting.
Assumption 2.1 ((Liu et al., 2019)). There exists one optimal policy π⋆, such that π⋆ is fully covered
by µ, i.e. ∀ sh, ah ∈ S × A, dπ

⋆

h (sh, ah) > 0 only if dµh(sh, ah) > 0. Furthermore, we denote the
trackable set as Ch := {(sh, ah) : dµh(sh, ah) > 0}.

Assumption 2.1 is the weakest assumption needed for accurately learning the optimal value v⋆ by
requiring µ to trace the state-action space of one optimal policy (µ can be agnostic at other locations).
Similar to (Yin & Wang, 2021b), we will use Assumption 2.1 for the tabular part of this paper, which
enables comparison between our sample complexity to the conclusion in (Yin & Wang, 2021b),
whose algorithm serves as a non-private baseline.

Assumptions for linear setting. First, we define the expectation of covariance matrix under the
behavior policy µ for all time step h ∈ [H] as below:

Σp
h := Eµ

[
ϕ(sh, ah)ϕ(sh, ah)

⊤] . (1)
As have been shown in (Wang et al., 2021; Yin et al., 2022), learning a near-optimal policy from
offline data requires coverage assumptions. Here in linear setting, such coverage is characterized by
the minimum eigenvalue of Σp

h. Similar to (Yin et al., 2022), we apply the following assumption for
the sake of comparison.
Assumption 2.2 (Feature Coverage, Assumption 2 in (Wang et al., 2021)). The data distributions
µ satisfy the minimum eigenvalue condition: ∀h ∈ [H], κh := λmin(Σ

p
h) > 0. Furthermore, we

denote κ = minh κh.

2.2 DIFFERENTIAL PRIVACY IN OFFLINE RL

In this work, we aim to design privacy-preserving algorithms for offline RL. We apply differential
privacy as the formal notion of privacy. Below we revisit the definition of differential privacy.
Definition 2.3 (Differential Privacy (Dwork et al., 2006)). A randomized mechanism M satisfies
(ϵ, δ)-differential privacy ((ϵ, δ)-DP) if for all neighboring datasets U,U ′ that differ by one data
point and for all possible event E in the output range, it holds that

P[M(U) ∈ E] ≤ eϵ · P[M(U ′) ∈ E] + δ.

4For clarity we use n for tabular MDP and K for linear MDP when referring to the sample complexity.
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When δ = 0, we say pure DP, while for δ > 0, we say approximate DP.

In the problem of offline RL, the dataset consists of several trajectories, therefore one data point in
Definition 2.3 refers to one single trajectory. Hence the definition of Differential Privacy means that
the difference in the distribution of the output policy resulting from replacing one trajectory in the
dataset will be small. In other words, an adversary can not infer much information about any single
trajectory in the dataset from the output policy of the algorithm.

During the whole paper, we will use zCDP (defined below) as a surrogate for DP, since it enables
cleaner analysis for privacy composition and Gaussian mechanism. The properties of zCDP (e.g.,
composition, conversion formula to DP) are deferred to Appendix E.3.
Definition 2.4 (zCDP (Dwork & Rothblum, 2016; Bun & Steinke, 2016)). A randomized mechanism
M satisfies ρ-Zero-Concentrated Differential Privacy (ρ-zCDP), if for all neighboring datasets U,U ′

and all α ∈ (1,∞),
Dα(M(U)∥M(U ′)) ≤ ρα,

where Dα is the Renyi-divergence (Van Erven & Harremos, 2014).

Finally, we go over the definition and privacy guarantee of Gaussian mechanism.
Definition 2.5 (Gaussian Mechanism (Dwork et al., 2014)). Define the ℓ2 sensitivity of a function
f : NX 7→ Rd as

∆2(f) = sup
neighboring U,U ′

∥f(U)− f(U ′)∥2.

The Gaussian mechanism M with noise level σ is then given by
M(U) = f(U) +N (0, σ2Id).

Lemma 2.6 (Privacy guarantee of Gaussian mechanism (Dwork et al., 2014; Bun & Steinke, 2016)).
Let f : NX 7→ Rd be an arbitrary d-dimensional function with ℓ2 sensitivity ∆2. Then for any ρ > 0,
Gaussian Mechanism with parameter σ2 =

∆2
2

2ρ satisfies ρ-zCDP. In addition, for all 0 < δ, ϵ < 1,

Gaussian Mechanism with parameter σ = ∆2

ϵ

√
2 log 1.25

δ satisfies (ϵ, δ)-DP.

We emphasize that the privacy guarantee covers any input data. It does not require any distributional
assumptions on the data. The RL-specific assumptions (e.g., linear MDP and coverage assumptions)
are only used for establishing provable utility guarantees.

3 RESULTS UNDER TABULAR MDP: DP-APVI (ALGORITHM 1)

For reinforcement learning, the tabular MDP setting is the most well-studied setting and our first
result applies to this regime. We begin with the construction of private counts.

Private Model-based Components. Given data D = {(sτh, aτ
h, r

τ
h, s

τ
h+1)}

h∈[H]

τ∈[n] , we denote nsh,ah
:=∑n

τ=1 1[s
τ
h, a

τ
h = sh, ah] be the total counts that visit (sh, ah) pair at time h and nsh,ah,sh+1

:=∑n
τ=1 1[s

τ
h, a

τ
h, s

τ
h+1 = sh, ah, sh+1] be the total counts that visit (sh, ah, sh+1) pair at time h, then

given the budget ρ for zCDP, we add independent Gaussian noises to all the counts:

n′
sh,ah

=
{
nsh,ah +N (0, σ2)

}+
, n′

sh,ah,sh+1
=
{
nsh,ah,sh+1 +N (0, σ2)

}+
, σ2 =

2H

ρ
. (2)

However, after adding noise, the noisy counts n′ may not satisfy n′
sh,ah

=
∑

sh+1∈S n′
sh,ah,sh+1

.
To address this problem, we choose the private counts of visiting numbers as the solution to the

following optimization problem (here Eρ = 4

√
H log 4HS2A

δ

ρ ):

{ñsh,ah,s′}s′∈S = argmin{xs′}s′∈S
max
s′∈S

∣∣xs′ − n′
sh,ah,s′

∣∣
such that

∣∣∣∣∣∑
s′∈S

xs′ − n′
sh,ah

∣∣∣∣∣ ≤ Eρ

2
and xs′ ≥ 0,∀ s′ ∈ S.

ñsh,ah
=
∑
s′∈S

ñsh,ah,s′ .

(3)
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Remark 3.1. The optimization problem (3) can be reformulated as:

min t, s.t. |xs′ − n′
sh,ah,s′

| ≤ t and xs′ ≥ 0 ∀ s′ ∈ S,

∣∣∣∣∣∑
s′∈S

xs′ − n′
sh,ah

∣∣∣∣∣ ≤ Eρ

2
. (4)

Note that (4) is a Linear Programming problem with S + 1 variables and 2S + 2 (one con-
straint on absolute value is equivalent to two linear constraints) linear constraints, which can
be solved efficiently by the simplex method (Ficken, 2015) or other provably efficient algorithms
(Nemhauser & Wolsey, 1988). In addition, if we do not solve this optimization problem and di-
rectly take ñsh,ah,sh+1

= n′
sh,ah,sh+1

and ñsh,ah
=
∑

sh+1∈S ñsh,ah,sh+1
, we can only derive

|ñsh,ah
− nsh,ah

| ≤ Õ(
√
SEρ) through concentration on summation of S i.i.d. Gaussian noises. In

contrast, solving (3) ensures that |ñsh,ah
− nsh,ah

| ≤ Eρ with high probability 5.

The private estimation of the transition kernel is defined as:

P̃h(s
′|sh, ah) =

ñsh,ah,s′

ñsh,ah

, (5)

if ñsh,ah
> Eρ and P̃h(s

′|sh, ah) = 1
S otherwise.

Remark 3.2. Different from the transition kernel estimate in previous works (Vietri et al., 2020;
Chowdhury & Zhou, 2021) that may not be a distribution, we have to ensure that ours is a probability
distribution, because our Bernstein type pessimism (line 5 in Algorithm 1) needs to take variance
over this transition kernel estimate. The intuition behind the construction of our private transition
kernel is that, for those state-action pairs with ñsh,ah

≤ Eρ, we can not distinguish whether the
non-zero private count comes from noise or actual visitation. Therefore we only take the empirical
estimate of the state-action pairs with sufficiently large ñsh,ah

.

Algorithm 1 Differentially Private Adaptive Pessimistic Value Iteration (DP-APVI)
1: Input: Offline dataset D = {(sτh, aτ

h, r
τ
h, s

τ
h+1)}n,H

τ,h=1. Reward function r. Constants C1 =
√
2, C2 =

16, C > 1, failure probability δ, budget for zCDP ρ.
2: Initialization: Calculate ñsh,ah , ñsh,ah,sh+1 as (3), P̃h(sh+1|sh, ah) as (5). ṼH+1(·) ← 0. Eρ ←

4

√
H log 4HS2A

δ
ρ

. ι← log(HSA/δ).
3: for h = H,H − 1, . . . , 1 do
4: Q̃h(·, ·)← rh(·, ·) + (P̃h · Ṽh+1)(·, ·)

5: ∀sh, ah, let Γh(sh, ah)← C1

√
Var

P̃sh,ah
(Ṽh+1)·ι

ñsh,ah
−Eρ

+
C2SHEρ·ι
ñsh,ah

if ñsh,ah > Eρ, otherwise CH .

6: Q̂p
h(·, ·)← Q̃h(·, ·)− Γh(·, ·).

7: Qh(·, ·)← min{Q̂p
h(·, ·), H − h+ 1}+.

8: ∀sh, let π̂h(·|sh)← argmaxπh
⟨Qh(sh, ·), πh(·|sh)⟩ and Ṽh(sh)← ⟨Qh(sh, ·), π̂h(·|sh)⟩.

9: end for
10: Output: {π̂h}.

Algorithmic design. Our algorithmic design originates from the idea of pessimism, which holds
conservative view towards the locations with high uncertainty and prefers the locations we have
more confidence about. Based on the Bernstein type pessimism in APVI (Yin & Wang, 2021b), we
design a similar pessimistic algorithm with private counts to ensure differential privacy. If we replace
ñ and P̃ with n and P̂ 6, then our DP-APVI (Algorithm 1) will degenerate to APVI. Compared to
the pessimism defined in APVI, our pessimistic penalty has an additional term Õ

(
SHEρ

ñsh,ah

)
, which

accounts for the additional pessimism due to our application of private statistics.

We state our main theorem about DP-APVI below, the proof sketch is deferred to Appendix C.1 and
detailed proof is deferred to Appendix C due to space limit.

5This conclusion is summarized in Lemma C.3.
6The non-private empirical estimate, defined as (15) in Appendix C.
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Theorem 3.3. DP-APVI (Algorithm 1) satisfies ρ-zCDP. Furthermore, under Assumption 2.1, denote
d̄m := minh∈[H]{dµh(sh, ah) : d

µ
h(sh, ah) > 0}. For any 0 < δ < 1, there exists constant c1 > 0,

such that when n > c1 ·max{H2, Eρ}/d̄m · ι (ι = log(HSA/δ)), with probability 1− δ, the output

policy π̂ of DP-APVI satisfies (Õ hides constants and Polylog terms, Eρ = 4

√
H log 4HS2A

δ

ρ )

0 ≤ v⋆−vπ̂ ≤ 4
√
2

H∑
h=1

∑
(sh,ah)∈Ch

dπ
⋆

h (sh, ah)

√
VarPh(·|sh,ah)(V

⋆
h+1(·)) · ι

ndµh(sh, ah)
+Õ

(
H3 + SH2Eρ

n · d̄m

)
.

(6)

Comparison to non-private counterpart APVI (Yin & Wang, 2021b). According to Theorem
4.1 in (Yin & Wang, 2021b), the sub-optimality bound of APVI is for large enough n, with high
probability, the output π̂ satisfies:

0 ≤ v⋆ − vπ̂ ≤ Õ

 H∑
h=1

∑
(sh,ah)∈Ch

dπ
⋆

h (sh, ah)

√
VarPh(·|sh,ah)(V

⋆
h+1(·))

ndµh(sh, ah)

+ Õ

(
H3

n · d̄m

)
. (7)

Compared to our Theorem 3.3, the additional sub-optimality bound due to differential privacy is

Õ
(

SH2Eρ

n·d̄m

)
= Õ

(
SH

5
2

n·d̄m
√
ρ

)
= Õ

(
SH

5
2

n·d̄mϵ

)
.7 In the most popular regime where the privacy budget

ρ or ϵ is a constant, the additional term due to differential privacy appears as a lower order term,
hence becomes negligible as the sample complexity n becomes large.

Comparison to Hoeffding type pessimism. We can simply revise our algorithm by using Hoeffding
type pessimism, which replaces the pessimism in line 5 with C1H ·

√
ι

ñsh,ah
−Eρ

+
C2SHEρ·ι
ñsh,ah

. Then

with a similar proof schedule, we can arrive at a sub-optimality bound that with high probability,

0 ≤ v⋆ − vπ̂ ≤ Õ

H ·
H∑

h=1

∑
(sh,ah)∈Ch

dπ
⋆

h (sh, ah)

√
1

ndµh(sh, ah)

+ Õ

(
SH2Eρ

n · d̄m

)
. (8)

Compared to our Theorem 3.3, our bound is tighter because we express the dominate term by the
system quantities instead of explicit dependence on H (and VarPh(·|sh,ah)(V

⋆
h+1(·)) ≤ H2). In

addition, we highlight that according to Theorem G.1 in (Yin & Wang, 2021b), our main term nearly
matches the non-private minimax lower bound. For more detailed discussions about our main term
and how it subsumes other optimal learning bounds, we refer readers to (Yin & Wang, 2021b).

Apply Laplace Mechanism to achieve pure DP. To achieve Pure DP instead of ρ-zCDP, we can
simply replace Gaussian Mechanism with Laplace Mechanism (defined as Definition E.19). Given
privacy budget for Pure DP ϵ, since the ℓ1 sensitivity of {nsh,ah

} ∪ {nsh,ah,sh+1
} is ∆1 = 4H , we

can add independent Laplace noises Lap( 4Hϵ ) to each count to achieve ϵ-DP due to Lemma E.20.
Then by using Eϵ = Õ

(
H
ϵ

)
instead of Eρ and keeping everything else ((3), (5) and Algorithm 1) the

same, we can reach a similar result to Theorem 3.3 with the same proof schedule. The only difference
is that here the additional learning bound is Õ

(
SH3

n·d̄mϵ

)
, which still appears as a lower order term.

4 RESULTS UNDER LINEAR MDP: DP-VAPVI(ALGORITHM 2)

In large MDPs, to address the computational issues, the technique of function approximation is
widely applied, and linear MDP is a concrete model to study linear function approximations. Our
second result applies to the linear MDP setting. Generally speaking, function approximation reduces
the dimensionality of private releases comparing to the tabular MDPs. We begin with private counts.

Private Model-based Components. Given the two datasets D and D′ (both from µ) as in Algorithm
2, we can apply variance-aware pessimistic value iteration to learn a near optimal policy as in

7Here we apply the second part of Lemma 2.6 to achieve (ϵ, δ)-DP, the notation Õ also absorbs log 1
δ

(only
here δ denotes the privacy budget instead of failure probability).
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VAPVI (Yin et al., 2022). To ensure differential privacy, we add independent Gaussian noises to the
5H statistics as in DP-VAPVI (Algorithm 2) below. Since there are 5H statistics, by the adaptive
composition of zCDP (Lemma E.17), it suffices to keep each count ρ0-zCDP, where ρ0 = ρ

5H . In
DP-VAPVI, we use ϕ1, ϕ2, ϕ3,K1,K2

8 to denote the noises we add. For all ϕi, we directly apply
Gaussian Mechanism. For Ki, in addition to the noise matrix 1√

2
(Z + Z⊤), we also add E

2 Id to
ensure that all Ki are positive definite with high probability (The detailed definition of E,L can be
found in Appendix A).

Algorithm 2 Differentially Private Variance-Aware Pessimistic Value Iteration (DP-VAPVI)
1: Input: Dataset D = {(sτh, aτ

h, r
τ
h, s

τ
h+1)}K,H

τ,h=1
D′ = {(s̄τh, āτ

h, r̄
τ
h, s̄

τ
h+1)}K,H

τ,h=1
. Budget for zCDP ρ.

Failure probability δ. Universal constant C.
2: Initialization: Set ρ0 ← ρ

5H
, ṼH+1(·) ← 0. Sample ϕ1 ∼ N

(
0, 2H4

ρ0
Id
)

, ϕ2, ϕ3 ∼ N
(
0, 2H2

ρ0
Id
)

,

K1,K2 ← E
2
Id + 1√

2
(Z + Z⊤), where Zi,j ∼ N

(
0, 1

4ρ0

)
(i.i.d.), E = Õ

(√
Hd
ρ

)
. Set D ←

Õ
(

H2L
κ

+ H4E
√

d

κ3/2 +H3
√
d
)

.
3: for h = H,H − 1, . . . , 1 do
4: Set Σ̃h ←

∑K
τ=1 ϕ(s̄

τ
h, ā

τ
h)ϕ(s̄

τ
h, ā

τ
h)

⊤ + λI +K1

5: Set β̃h ← Σ̃−1
h [
∑K

τ=1 ϕ(s̄
τ
h, ā

τ
h) · Ṽh+1(s̄

τ
h+1)

2 + ϕ1]

6: Set θ̃h ← Σ̃−1
h [
∑K

τ=1 ϕ(s̄
τ
h, ā

τ
h) · Ṽh+1(s̄

τ
h+1) + ϕ2]

7: Set
[
ṼarhṼh+1

]
(·, ·)←

〈
ϕ(·, ·), β̃h

〉
[0,(H−h+1)2] −

[〈
ϕ(·, ·), θ̃h

〉
[0,H−h+1]

]2
8: Set σ̃h(·, ·)2 ← max{1, ṼarhṼh+1(·, ·)}
9: Set Λ̃h ←

∑K
τ=1 ϕ (sτh, a

τ
h)ϕ (sτh, a

τ
h)

⊤ /σ̃2
h(s

τ
h, a

τ
h) + λI +K2

10: Set w̃h ← Λ̃−1
h

(∑K
τ=1 ϕ (sτh, a

τ
h) ·

(
rτh + Ṽh+1 (s

τ
h+1)

)
/σ̃2

h(s
τ
h, a

τ
h) + ϕ3

)
11: Set Γh(·, ·)← C

√
d ·
(
ϕ(·, ·)⊤Λ̃−1

h ϕ(·, ·)
)1/2

+ D
K

12: Set Q̄h(·, ·)← ϕ(·, ·)⊤w̃h − Γh(·, ·)
13: Set Q̂h(·, ·)← min

{
Q̄h(·, ·), H − h+ 1

}+
14: Set π̂h(· | ·)← argmaxπh

〈
Q̂h(·, ·), πh(· | ·)

〉
A, Ṽh(·)← maxπh

〈
Q̂h(·, ·), πh(· | ·)

〉
A

15: end for
16: Output: {π̂h}Hh=1.

Below we will show the algorithmic design of DP-VAPVI (Algorithm 2). For the offline dataset,
we divide it into two independent parts with equal length: D = {(sτh, aτh, rτh, sτh+1)}

h∈[H]
τ∈[K] and

D′ = {(s̄τh, āτh, r̄τh, s̄τh+1)}
h∈[H]
τ∈[K]. One for estimating variance and the other for calculating Q-values.

Estimating conditional variance. The first part (line 4 to line 8) aims to estimate the condi-
tional variance of Ṽh+1 via the definition of variance: [VarhṼh+1](s, a) = [Ph(Ṽh+1)

2](s, a) −
([PhṼh+1](s, a))

2. For the first term, by the definition of linear MDP, it holds that[
PhṼ

2
h+1

]
(s, a) = ϕ(s, a)⊤

∫
S Ṽ 2

h+1 (s
′) dνh (s

′) = ⟨ϕ,
∫
S Ṽ 2

h+1 (s
′) dνh (s

′)⟩. We can estimate

βh =
∫
S Ṽ 2

h+1 (s
′) dνh (s

′) by applying ridge regression. Below is the output of ridge regression
with raw statistics without noise:

argmin
β∈Rd

K∑
k=1

[〈
ϕ(s̄kh, ā

k
h), β

〉
− Ṽ 2

h+1

(
s̄kh+1

)]2
+ λ∥β∥22 = Σ̄−1

h

K∑
k=1

ϕ(s̄kh, ā
k
h)Ṽ

2
h+1

(
s̄kh+1

)
,

where definition of Σ̄h can be found in Appendix A. Instead of using the raw statistics, we replace
them with private ones with Gaussian noises as in line 5. The second term is estimated similarly in
line 6. The final estimator is defined as in line 8: σ̃h(·, ·)2 = max{1, ṼarhṼh+1(·, ·)}.9

8We need to add noise to each of the 5H counts, therefore for ϕ1, we actually sample H i.i.d samples ϕ1,h,
h = 1, · · · , H from the distribution of ϕ1. Then we add ϕ1,h to

∑K
τ=1 ϕ(s̄

τ
h, ā

τ
h) · Ṽh+1(s̄

τ
h+1)

2, ∀h ∈ [H].
For simplicity, we use ϕ1 to represent all the ϕ1,h. The procedure applied to the other 4H statistics are similar.

9The max{1, ·} operator here is for technical reason only: we want a lower bound for each variance estimate.
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Variance-weighted LSVI. Instead of directly applying LSVI (Jin et al., 2021), we can solve the
variance-weighted LSVI (line 10). The result of variance-weighted LSVI with non-private statistics
is shown below:

argmin
w∈Rd

λ∥w∥22+
K∑

k=1

[
⟨ϕ(skh, ak

h), w⟩ − rkh − Ṽh+1(s
k
h+1)

]2
σ̃2
h(s

k
h, a

k
h)

= Λ̂−1
h

K∑
k=1

ϕ
(
skh, a

k
h

)
·
[
rkh + Ṽh+1

(
skh+1

)]
σ̃2
h(s

k
h, a

k
h)

,

where definition of Λ̂h can be found in Appendix A. For the sake of differential privacy, we use
private statistics instead and derive the w̃h as in line 10.

Our private pessimism. Notice that if we remove all the Gaussian noises we add, our DP-VAPVI
(Algorithm 2) will degenerate to VAPVI (Yin et al., 2022). We design a similar pessimistic penalty
using private statistics (line 11), with additional D

K accounting for the extra pessimism due to DP.

Main theorem. We state our main theorem about DP-VAPVI below, the proof sketch is deferred to
Appendix D.1 and detailed proof is deferred to Appendix D due to space limit. Note that quantities
Mi, L,E can be found in Appendix A and briefly, L = Õ(

√
H3d/ρ), E = Õ(

√
Hd/ρ). For the

sample complexity lower bound, within the practical regime where the privacy budget is not very
small, max{Mi} is dominated by max{Õ(H12d3/κ5), Õ(H14d/κ5)}, which also appears in the
sample complexity lower bound of VAPVI (Yin et al., 2022). The σ2

V (s, a) in Theorem 4.1 is defined
as max{1,VarPh

(V )(s, a)} for any V .
Theorem 4.1. DP-VAPVI (Algorithm 2) satisfies ρ-zCDP. Furthermore, let K be the number of
episodes. Under the condition that K > max{M1,M2,M3,M4} and

√
d > ξ, where ξ :=

supV ∈[0,H], s′∼Ph(s,a), h∈[H]

∣∣∣∣ rh+V (s′)−(ThV )(s,a)

σV (s,a)

∣∣∣∣, for any 0 < λ < κ, with probability 1− δ, for

all policy π simultaneously, the output π̂ of DP-VAPVI satisfies (Õ hides constants and Polylog terms)

vπ − vπ̂ ≤ Õ

(
√
d ·

H∑
h=1

Eπ

[√
ϕ(·, ·)⊤Λ−1

h ϕ(·, ·)
])

+
DH

K
, (9)

where Λh =
∑K

k=1
ϕ(skh,a

k
h)·ϕ(s

k
h,a

k
h)

⊤

σ2

Ṽh+1(sk
h
,ak

h
)

+ λId and D = Õ
(

H2L
κ + H4E

√
d

κ3/2 +H3
√
d
)

.

In particular, define Λ⋆
h =

∑K
k=1

ϕ(skh,a
k
h)·ϕ(s

k
h,a

k
h)

⊤

σ2

V ⋆
h+1

(sk
h
,ak

h
)

+ λId, we have with probability 1− δ,

v⋆ − vπ̂ ≤ Õ

(
√
d ·

H∑
h=1

Eπ⋆

[√
ϕ(·, ·)⊤Λ⋆−1

h ϕ(·, ·)
])

+
DH

K
. (10)

Comparison to non-private counterpart VAPVI (Yin et al., 2022). Plugging in the definition
of L,E (Appendix A), under the meaningful case that the privacy budget is not very large, DH is

dominated by Õ

(
H

11
2 d/κ

3
2√

ρ

)
. According to Theorem 3.2 in (Yin et al., 2022), the sub-optimality

bound of VAPVI is for sufficiently large K, with high probability, the output π̂ satisfies:

v⋆ − vπ̂ ≤ Õ

(
√
d ·

H∑
h=1

Eπ⋆

[√
ϕ(·, ·)⊤Λ⋆−1

h ϕ(·, ·)
])

+
2H4

√
d

K
. (11)

Compared to our Theorem 4.1, the additional sub-optimality bound due to differential privacy is

Õ

(
H

11
2 d/κ

3
2√

ρ·K

)
= Õ

(
H

11
2 d/κ

3
2

ϵ·K

)
.10 In the most popular regime where the privacy budget ρ or ϵ is

a constant, the additional term due to differential privacy also appears as a lower order term.

Instance-dependent sub-optimality bound. Similar to DP-APVI (Algorithm 1), our DP-VAPVI
(Algorithm 2) also enjoys instance-dependent sub-optimality bound. First, the main term in (10)
improves PEVI (Jin et al., 2021) over O(

√
d) on feature dependence. Also, our main term admits no

explicit dependence on H , thus improves the sub-optimality bound of PEVI on horizon dependence.
For more detailed discussions about our main term, we refer readers to (Yin et al., 2022).

10Here we apply the second part of Lemma 2.6 to achieve (ϵ, δ)-DP, the notation Õ also absorbs log 1
δ

(only
here δ denotes the privacy budget instead of failure probability).
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5 SIMULATIONS

In this section, we carry out simulations to evaluate the performance of our DP-VAPVI (Algorithm 2),
and compare it with its non-private counterpart VAPVI (Yin et al., 2022) and another pessimism-based
algorithm PEVI (Jin et al., 2021) which does not have privacy guarantee.

Experimental setting. We evaluate DP-VAPVI (Algorithm 2) on a synthetic linear MDP example that
originates from the linear MDP in (Min et al., 2021; Yin et al., 2022) but with some modifications.11

For details of the linear MDP setting, please refer to Appendix F. The two MDP instances we use
both have horizon H = 20. We compare different algorithms in figure 1(a), while in figure 1(b), we
compare our DP-VAPVI with different privacy budgets. When doing empirical evaluation, we do not
split the data for DP-VAPVI or VAPVI and for DP-VAPVI, we run the simulation for 5 times and
take the average performance.
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(a) Compare different algorithms, H = 20

0 200 400 600 800 1000
Number of episodes

1

2

3

4

5

6

7

Su
bo

pt
im

al
ity

 g
ap

VAPVI
DP-VAPVI, =0.1
DP-VAPVI, =1
DP-VAPVI, =5
DP-VAPVI, =25

(b) Different privacy budgets, H = 20

Figure 1: Comparison between performance of PEVI, VAPVI and DP-VAPVI (with different privacy
budgets) under the linear MDP example described above. In each figure, y-axis represents sub-
optimality gap v⋆ − vπ̂ while x-axis denotes the number of episodes K. The horizons are fixed to be
H = 20. The number of episodes takes value from 5 to 1000.

Results and discussions. From Figure 1, we can observe that DP-VAPVI (Algorithm 2) performs
slightly worse than its non-private version VAPVI (Yin et al., 2022). This is due to the fact that
we add Gaussian noise to each count. However, as the size of dataset goes larger, the performance
of DP-VAPVI will converge to that of VAPVI, which supports our theoretical conclusion that the
cost of privacy only appears as lower order terms. For DP-VAPVI with larger privacy budget, the
scale of noise will be smaller, thus the performance will be closer to VAPVI, as shown in figure
1(b). Furthermore, in most cases, DP-VAPVI still outperforms PEVI, which does not have privacy
guarantee. This arises from our privitization of variance-aware LSVI instead of LSVI.

6 CONCLUSION AND FUTURE WORKS

In this work, we take the first steps towards the well-motivated task of designing private offline RL
algorithms. We propose algorithms for both tabular MDPs and linear MDPs, and show that they
enjoy instance-dependent sub-optimality bounds while guaranteeing differential privacy (either zCDP
or pure DP). Our results highlight that the cost of privacy only appears as lower order terms, thus
become negligible as the number of samples goes large.

Future extensions are numerous. We believe the technique in our algorithms (privitization of
Bernstein-type pessimism and variance-aware LSVI) and the corresponding analysis can be used in
online settings too to obtain tighter regret bounds for private algorithms. For the offline RL problems,
we plan to consider more general function approximations and differentially private (deep) offline RL
which will bridge the gap between theory and practice in offline RL applications. Many techniques
we developed could be adapted to these more general settings.

11We keep the state space S = {1, 2}, action space A = {1, · · · , 100} and feature map of state-action pairs
while we choose stochastic transition (instead of the original deterministic transition) and more complex reward.
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Tim Van Erven and Peter Harremos. Rényi divergence and kullback-leibler divergence. IEEE
Transactions on Information Theory, 60(7):3797–3820, 2014.

Giuseppe Vietri, Borja Balle, Akshay Krishnamurthy, and Steven Wu. Private reinforcement learning
with pac and regret guarantees. In International Conference on Machine Learning, pp. 9754–9764.
PMLR, 2020.

Baoxiang Wang and Nidhi Hegde. Privacy-preserving q-learning with functional noise in continuous
spaces. Advances in Neural Information Processing Systems, 32, 2019.

Ruosong Wang, Dean P Foster, and Sham M Kakade. What are the statistical limits of offline rl with
linear function approximation? International Conference on Learning Representations, 2021.

Tengyang Xie, Philip S Thomas, and Gerome Miklau. Privacy preserving off-policy evaluation. arXiv
preprint arXiv:1902.00174, 2019.

Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent
pessimism for offline reinforcement learning. Advances in neural information processing systems,
2021a.

Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridg-
ing sample-efficient offline and online reinforcement learning. Advances in neural information
processing systems, 2021b.

Ming Yin and Yu-Xiang Wang. Asymptotically efficient off-policy evaluation for tabular reinforce-
ment learning. In International Conference on Artificial Intelligence and Statistics, pp. 3948–3958.
PMLR, 2020.

Ming Yin and Yu-Xiang Wang. Optimal uniform ope and model-based offline reinforcement learning
in time-homogeneous, reward-free and task-agnostic settings. Advances in neural information
processing systems, 2021a.

Ming Yin and Yu-Xiang Wang. Towards instance-optimal offline reinforcement learning with
pessimism. Advances in neural information processing systems, 34, 2021b.

Ming Yin, Yu Bai, and Yu-Xiang Wang. Near-optimal provable uniform convergence in offline policy
evaluation for reinforcement learning. In International Conference on Artificial Intelligence and
Statistics, pp. 1567–1575. PMLR, 2021.

Ming Yin, Yaqi Duan, Mengdi Wang, and Yu-Xiang Wang. Near-optimal offline reinforcement
learning with linear representation: Leveraging variance information with pessimism. arXiv
preprint arXiv:2203.05804, 2022.

12



Under review as a conference paper at ICLR 2023

Andrea Zanette. Exponential lower bounds for batch reinforcement learning: Batch rl can be
exponentially harder than online rl. In International Conference on Machine Learning, pp. 12287–
12297. PMLR, 2021.

Andrea Zanette, Martin J Wainwright, and Emma Brunskill. Provable benefits of actor-critic methods
for offline reinforcement learning. Advances in neural information processing systems, 2021.

Zihao Zhang, Stefan Zohren, and Stephen Roberts. Deep reinforcement learning for trading. The
Journal of Financial Data Science, 2(2):25–40, 2020.

Kai Zheng, Tianle Cai, Weiran Huang, Zhenguo Li, and Liwei Wang. Locally differentially private
(contextual) bandits learning. Advances in Neural Information Processing Systems, 33:12300–
12310, 2020.

Dongruo Zhou, Quanquan Gu, and Csaba Szepesvari. Nearly minimax optimal reinforcement learning
for linear mixture markov decision processes. In Conference on Learning Theory, pp. 4532–4576.
PMLR, 2021.

Xingyu Zhou. Differentially private reinforcement learning with linear function approximation. arXiv
preprint arXiv:2201.07052, 2022.

13



Under review as a conference paper at ICLR 2023

A NOTATION LIST

A.1 NOTATIONS FOR TABULAR MDP

Eρ 4

√
H log 4HS2A

δ

ρ

n The original counts of visitation

n′ The noisy counts, as defined in (2)

ñ Final choice of private counts, as defined in (3)

P̃ Private estimate of transition kernel, as defined in (5)

P̂ Non-private estimate of transition kernel, as defined in (15)

ι log HSA
δ

ρ Budget for zCDP

δ Failure probability

A.2 NOTATIONS FOR LINEAR MDP

L 2H
√

5Hd log( 10Hd
δ )

ρ

E
√

10Hd
ρ

(
2 +

(
log(5c1H/δ)

c2d

) 2
3

)
D Õ

(
H2L
κ + H4E

√
d

κ3/2 +H3
√
d
)

Λ̂h

∑K
k=1 ϕ(s

k
h, a

k
h)ϕ(s

k
h, a

k
h)

⊤/σ̃2
h(s

k
h, a

k
h) + λId

Λ̃h

∑K
k=1 ϕ(s

k
h, a

k
h)ϕ(s

k
h, a

k
h)

⊤/σ̃2
h(s

k
h, a

k
h) + λId +K2

Λ̃p
h Eµ,h[σ̃

−2
h (s, a)ϕ(s, a)ϕ(s, a)⊤]

Λh

∑K
τ=1 ϕ(s

τ
h, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤/σ2
Ṽh+1

(sτh, a
τ
h) + λI

Λp
h Eµ,h[σ

−2

Ṽh+1
(s, a)ϕ(s, a)ϕ(s, a)⊤]

Λ⋆
h

∑K
τ=1 ϕ(s

τ
h, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤/σ2
V ⋆
h+1

(sτh, a
τ
h) + λI

Σ̄h

∑K
τ=1 ϕ(s̄

τ
h, ā

τ
h)ϕ(s̄

τ
h, ā

τ
h)

⊤ + λId

Σ̃h

∑K
τ=1 ϕ(s̄

τ
h, ā

τ
h)ϕ(s̄

τ
h, ā

τ
h)

⊤ + λId +K1

Σp
h Eµ,h

[
ϕ(s, a)ϕ(s, a)⊤

]
κ minh λmin(Σ

p
h)

σ2
V (s, a) max{1,VarPh

(V )(s, a)} for any V

σ⋆2
h (s, a) max

{
1,VarPh

V ⋆
h+1(s, a)

}
σ̃2
h(s, a) max{1, ṼarhṼh+1(s, a)}

M1 max{2λ, 128 log(2dH/δ), 128H4 log(2dH/δ)
κ2 ,

√
2L√
dκ

}
M2 max{Õ(H12d3/κ5), Õ(H14d/κ5)}

M3 max

{
512H4 log( 2dH

δ )
κ2 , 4λH2

κ

}
M4 max{H2L2

dκ , H6E2

κ2 , H4κ}
ρ Budget for zCDP

δ Failure probability (not the δ of (ϵ, δ)-DP)

ξ supV ∈[0,H], s′∼Ph(s,a), h∈[H]

∣∣∣∣ rh+V (s′)−(ThV )(s,a)

σV (s,a)

∣∣∣∣
14
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B EXTENDED RELATED WORK

Online reinforcement learning under JDP or LDP. For online RL, some recent works analyze
this setting under Joint Differential Privacy (JDP), which requires the RL agent to minimize regret
while handling user’s raw data privately. Under tabular MDP, Vietri et al. (2020) design PUCB
by revising UBEV (Dann et al., 2017). Private-UCB-VI (Chowdhury & Zhou, 2021) results from
UCBVI (with bonus-1) (Azar et al., 2017). However, both works privatize Hoeffding type bonus,
which lead to sub-optimal regret bound. Under linear MDP, Private LSVI-UCB (Ngo et al., 2022)
and Privacy-Preserving LSVI-UCB (Luyo et al., 2021) are private versions of LSVI-UCB (Jin et al.,
2020b), while LinOpt-VI-Reg (Zhou, 2022) and Privacy-Preserving UCRL-VTR (Luyo et al., 2021)
generalize UCRL-VTR (Ayoub et al., 2020). However, these works are usually based on the LSVI
technique (Jin et al., 2020b) (unweighted ridge regression), which does not ensure optimal regret
bound.

In addition to JDP, another common privacy guarantee for online RL is Local Differential Privacy
(LDP), LDP is a stronger definition of DP since it requires that the user’s data is protected before the
RL agent has access to it. Under LDP, Garcelon et al. (2021) reach a regret lower bound and design
LDP-OBI which has matching regret upper bound. The result is generalized by Liao et al. (2021) to
linear mixture setting. Later, Luyo et al. (2021) provide an unified framework for analyzing JDP and
LDP under linear setting.

Some other differentially private learning algorithms. There are some other works about differen-
tially private online learning (Guha Thakurta & Smith, 2013; Agarwal & Singh, 2017; Hu et al., 2021)
and various settings of bandit (Shariff & Sheffet, 2018; Gajane et al., 2018; Basu et al., 2019; Zheng
et al., 2020; Chen et al., 2020; Tossou & Dimitrakakis, 2017). For the reinforcement learning setting,
Wang & Hegde (2019) propose privacy-preserving Q-learning to protect the reward information. Ono
& Takahashi (2020) study the problem of distributed reinforcement learning under LDP. Lebensold
et al. (2019) present an actor critic algorithm with differentially private critic. Cundy & Ermon (2020)
tackle DP-RL under the policy gradient framework. Chowdhury et al. (2021) consider the adaptive
control of differentially private linear quadratic (LQ) systems.

Offline reinforcement learning under tabular MDP. Under tabular MDP, there are several works
achieving optimal sub-optimality/sample complexity bounds under different coverage assumptions.
For the problem of off-policy evaluation (OPE), Yin & Wang (2020) uses Tabular-MIS estimator to
achieve asymptotic efficiency. In addition, the idea of uniform OPE is used to achieve the optimal
sample complexity O(H3/dmϵ2) (Yin et al., 2021) for non-stationary MDP and the optimal sample
complexity O(H2/dmϵ2) (Yin & Wang, 2021a) for stationary MDP, where dm is the lower bound
for state-action occupancy. Such uniform convergence idea also supports some works regarding
online exploration (Jin et al., 2020a; Qiao et al., 2022). For offline RL with single concentrability
assumption, Xie et al. (2021b) arrive at the optimal sample complexity O(H3SC⋆/ϵ2). Recently,
Yin & Wang (2021b) propose APVI which can lead to instance-dependent sub-optimality bound,
which subsumes previous optimal results under several assumptions.

Offline reinforcement learning under linear MDP. Recently, many works focus on offline RL
under linear representation. Jin et al. (2021) present PEVI which applies the idea of pessimistic value
iteration (the idea originates from (Jin et al., 2020b)), and PEVI is provably efficient for offline RL
under linear MDP. Yin et al. (2022) improve the sub-optimality bound in (Jin et al., 2021) by replacing
LSVI by variance-weighted LSVI. Xie et al. (2021a) consider Bellman consistent pessimism for
general function approximation, and their result improves the sample complexity in (Jin et al., 2021)
by order O(d) (shown in Theorem 3.2). However, there is no improvement on horizon dependence.
Zanette et al. (2021) propose a new offline actor-critic algorithm that naturally incorporates the
pessimism principle. Besides, Wang et al. (2021); Zanette (2021) study the statistical hardness of
offline RL with linear representations by presenting exponential lower bounds.

C PROOF OF THEOREM 3.3

C.1 PROOF SKETCH

Since the whole proof for privacy guarantee is not very complex, we present it in Section C.2 below
and only sketch the proof for suboptimality bound.
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First of all, we bound the scale of noises we add to show that the ñ derived from (3) are close to real
visitation numbers. Therefore, denoting the non-private empirical transition kernel by P̂ (detailed
definition in (15)), we can show that ∥P̃ − P̂∥1 and |

√
VarP̃ (V )−

√
VarP̂ (V )| are small.

Next, resulting from the conditional independence of Ṽh+1 and P̃h, we apply Empirical Bernstein’s

inequality to get |(P̃h − Ph)Ṽh+1| ≲
√

VarP̃ (Ṽh+1)/ñsh,ah
+ SHEρ/ñsh,ah

. Together with our
definition of private pessimism and the key lemma: extended value difference (Lemma E.7 and E.8),
we can bound the suboptimality of our output policy π̂ by:

v⋆ − vπ̂ ≲
H∑

h=1

∑
(sh,ah)∈Ch

dπ
⋆

h (sh, ah)

√√√√VarP̃h(·|sh,ah)
(Ṽh+1(·))

ñsh,ah

+ SHEρ/ñsh,ah
. (12)

Finally, we further bound the above suboptimality via replacing private statistics by non-private ones.
Specifically, we replace ñ by n, P̃ by P and Ṽ by V ⋆. Due to (12), we have ∥Ṽ − V ⋆∥∞ ≲

√
1

nd̄m
.

Together with the upper bounds of ∥P̃ − P̂∥1 and |
√

VarP̃ (V )−
√

VarP̂ (V )|, we have√√√√VarP̃h(·|sh,ah)
(Ṽh+1(·))

ñsh,ah

≲

√
VarP̃h(·|sh,ah)

(V ⋆
h+1(·))

ñsh,ah

+
1

nd̄m

≲

√
VarP̂h(·|sh,ah)

(V ⋆
h+1(·))

ñsh,ah

+
1

nd̄m
≲

√
VarPh(·|sh,ah)(V

⋆
h+1(·))

ñsh,ah

+
1

nd̄m

≲

√
VarPh(·|sh,ah)(V

⋆
h+1(·))

ndµh(sh, ah)
+

1

nd̄m
.

(13)

The final bound using non-private statistics results from (12) and (13).

C.2 PROOF OF THE PRIVACY GUARANTEE

The privacy guarantee of DP-APVI (Algorithm 1) is summarized by Lemma C.1 below.

Lemma C.1 (Privacy analysis of DP-APVI (Algorithm 1)). DP-APVI (Algorithm 1) satisfies ρ-zCDP.

Proof of Lemma C.1. The ℓ2 sensitivity of {nsh,ah
} is

√
2H . According to Lemma 2.6, the Gaussian

Mechanism used on {nsh,ah
} with σ2 = 2H

ρ satisfies ρ
2 -zCDP. Similarly, the Gaussian Mechanism

used on {nsh,ah,sh+1
} with σ2 = 2H

ρ also satisfies ρ
2 -zCDP. Combining these two results, due to the

composition of zCDP (Lemma E.16), the construction of {n′} satisfies ρ-zCDP. Finally, DP-APVI
satisfies ρ-zCDP because the output π̂ is post processing of {n′}.

C.3 PROOF OF THE SUB-OPTIMALITY BOUND

C.3.1 UTILITY ANALYSIS

First of all, the following Lemma C.2 gives a high probability bound for |n′ − n|.

Lemma C.2. Let Eρ = 2
√
2σ
√
log 4HS2A

δ = 4

√
H log 4HS2A

δ

ρ , then with probability 1− δ, for all

sh, ah, sh+1, it holds that

|n′
sh,ah

− nsh,ah
| ≤ Eρ

2
, |n′

sh,ah,sh+1
− nsh,ah,sh+1

| ≤ Eρ

2
. (14)

Proof of Lemma C.2. The inequalities directly result from the concentration inequality of Gaussian
distribution and a union bound.
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According to the utility analysis above, we have the following Lemma C.3 giving a high probability
bound for |ñ− n|.
Lemma C.3. Under the high probability event in Lemma C.2, for all sh, ah, sh+1, it holds that

|ñsh,ah
− nsh,ah

| ≤ Eρ, |ñsh,ah,sh+1
− nsh,ah,sh+1

| ≤ Eρ.

Proof of Lemma C.3. When the event in Lemma C.2 holds, the original counts {nsh,ah,s′}s′∈S is a
feasible solution to the optimization problem, which means that

max
s′

|ñsh,ah,s′ − n′
sh,ah,s′

| ≤ max
s′

|nsh,ah,s′ − n′
sh,ah,s′

| ≤ Eρ

2
.

Due to the second part of (14), it holds that for any sh, ah, sh+1,

|ñsh,ah,sh+1
− nsh,ah,sh+1

| ≤ |ñsh,ah,sh+1
− n′

sh,ah,sh+1
|+ |n′

sh,ah,sh+1
− nsh,ah,sh+1

| ≤ Eρ.

For the second part, because of the constraints in the optimization problem, it holds that

|ñsh,ah
− n′

sh,ah
| ≤ Eρ

2
.

Due to the first part of (14), it holds that for any sh, ah,

|ñsh,ah
− nsh,ah

| ≤ |ñsh,ah
− n′

sh,ah
|+ |n′

sh,ah
− nsh,ah

| ≤ Eρ.

Let the non-private empirical estimate be:

P̂h(s
′|sh, ah) =

nsh,ah,s′

nsh,ah

, (15)

if nsh,ah
> 0 and P̂h(s

′|sh, ah) = 1
S otherwise. We will show that the private transition kernel P̃ is

close to P̂ by the Lemma C.4 and Lemma C.5 below.
Lemma C.4. Under the high probability event of Lemma C.3, for sh, ah, if ñsh,ah

≥ 3Eρ, it holds
that ∥∥∥P̃h(·|sh, ah)− P̂h(·|sh, ah)

∥∥∥
1
≤ 5SEρ

ñsh,ah

. (16)

Proof of Lemma C.4. If ñsh,ah
≥ 3Eρ and the conclusion in Lemma C.3 hold, we have∥∥∥P̃h(·|sh, ah)− P̂h(·|sh, ah)

∥∥∥
1
≤
∑
s′∈S

∣∣∣P̃h(s
′|sh, ah)− P̂h(s

′|sh, ah)
∣∣∣

≤
∑
s′∈S

(
ñsh,ah,s′ + Eρ

ñsh,ah
− Eρ

− ñsh,ah,s′

ñsh,ah

)
≤
∑
s′∈S

[(
1

ñsh,ah

+
2Eρ

ñ2
sh,ah

)
(ñsh,ah,s′ + Eρ)−

ñsh,ah,s′

ñsh,ah

]

≤ SEρ

ñsh,ah

+
2Eρ

ñsh,ah

+
2SE2

ρ

ñ2
sh,ah

≤ 5SEρ

ñsh,ah

.

(17)

The second inequality is because
ñsh,ah,s′−Eρ

ñsh,ah
+Eρ

≤ nsh,ah,s′

nsh,ah
≤ ñsh,ah,s′+Eρ

ñsh,ah
−Eρ

and
ñsh,ah,s′+Eρ

ñsh,ah
−Eρ

−
ñsh,ah,s′

ñsh,ah
≥ ñsh,ah,s′

ñsh,ah
− ñsh,ah,s′−Eρ

ñsh,ah
+Eρ

. The third inequality is because of Lemma E.6. The last
inequality is because ñsh,ah

≥ 3Eρ.

Lemma C.5. Let V ∈ RS be any function with ∥V ∥∞ ≤ H , under the high probability event of
Lemma C.3, for sh, ah, if ñsh,ah

≥ 3Eρ, it holds that∣∣∣√VarP̂h(·|sh,ah)
(V )−

√
VarP̃h(·|sh,ah)

(V )
∣∣∣ ≤ 4H

√
SEρ

ñsh,ah

. (18)
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Proof of Lemma C.5. For sh, ah such that ñsh,ah
≥ 3Eρ, we use P̃ (·) and P̂ (·) instead of

P̃h(·|sh, ah) and P̂h(·|sh, ah) for simplicity. Because of Lemma C.4, we have∥∥∥P̃ (·)− P̂ (·)
∥∥∥
1
≤ 5SEρ

ñsh,ah

.

Therefore, it holds that∣∣∣√VarP̂ (·)(V )−
√
VarP̃ (·)(V )

∣∣∣ ≤√|VarP̂ (·)(V )−VarP̃ (·)(V )|

≤

√√√√∑
s′∈S

∣∣∣P̂ (s′)− P̃ (s′)
∣∣∣V (s′)2 +

∣∣∣∣∣∑
s′∈S

[
P̂ (s′) + P̃ (s′)

]
V (s′)

∣∣∣∣∣ · ∑
s′∈S

∣∣∣P̂ (s′)− P̃ (s′)
∣∣∣V (s′)

≤
√
H2
∥∥∥P̃ (·)− P̂ (·)

∥∥∥
1
+ 2H2

∥∥∥P̃ (·)− P̂ (·)
∥∥∥
1

≤4H

√
SEρ

ñsh,ah

.

(19)
The second inequality is due to the definition of variance.

C.3.2 VALIDITY OF OUR PESSIMISTIC PENALTY

Now we are ready to present the key lemma (Lemma C.6) below to justify our use of Γ as the
pessimistic penalty.

Lemma C.6. Under the high probability event of Lemma C.3, with probability 1− δ, for any sh, ah,
if ñsh,ah

≥ 3Eρ (which implies nsh,ah
> 0), it holds that

∣∣∣(P̃h − Ph) · Ṽh+1(sh, ah)
∣∣∣ ≤

√√√√2VarP̃h(·|sh,ah)
(Ṽh+1(·)) · ι

ñsh,ah
− Eρ

+
16SHEρ · ι

ñsh,ah

, (20)

where Ṽ is the private version of estimated V function, which appears in Algorithm 1 and ι =
log(HSA/δ).

Proof of Lemma C.6.∣∣∣(P̃h − Ph) · Ṽh+1(sh, ah)
∣∣∣ ≤ ∣∣∣(P̃h − P̂h) · Ṽh+1(sh, ah)

∣∣∣+ ∣∣∣(P̂h − Ph) · Ṽh+1(sh, ah)
∣∣∣

≤H
∥∥∥P̃h(·|sh, ah)− P̂h(·|sh, ah)

∥∥∥
1
+
∣∣∣(P̂h − Ph) · Ṽh+1(sh, ah)

∣∣∣
≤5SHEρ

ñsh,ah

+
∣∣∣(P̂h − Ph) · Ṽh+1(sh, ah)

∣∣∣ ,
(21)

where the third inequality is due to Lemma C.4.

Next, recall π̂h+1 in Algorithm 1 is computed backwardly therefore only depends on sample tuple
from time h + 1 to H . As a result, Ṽh+1 = ⟨Qh+1, π̂h+1⟩ also only depends on the sample tuple
from time h+1 to H and some Gaussian noise that is independent to the offline dataset. On the other
side, by the definition, P̂h only depends on the sample tuples from time h to h+ 1. Therefore Ṽh+1

and P̂h are Conditionally independent (This trick is also used in (Yin et al., 2021) and (Yin & Wang,
2021b)), by Empirical Bernstein’s inequality (Lemma E.4) and a union bound, with probability 1− δ,
for all sh, ah such that ñsh,ah

≥ 3Eρ,

∣∣∣(P̂h − Ph) · Ṽh+1(sh, ah)
∣∣∣ ≤

√√√√2VarP̂h(·|sh,ah)
(Ṽh+1(·)) · ι

nsh,ah

+
7H · ι
3nsh,ah

. (22)
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Therefore, we have

∣∣∣(P̃h − Ph) · Ṽh+1(sh, ah)
∣∣∣ ≤

√√√√2VarP̂h(·|sh,ah)
(Ṽh+1(·)) · ι

nsh,ah

+
7H · ι
3nsh,ah

+
5SHEρ

ñsh,ah

≤

√√√√2VarP̂h(·|sh,ah)
(Ṽh+1(·)) · ι

nsh,ah

+
9SHEρ · ι
ñsh,ah

≤9SHEρ · ι
ñsh,ah

+

√√√√2VarP̃h(·|sh,ah)
(Ṽh+1(·)) · ι

nsh,ah

+ 4
√
2H

√
SEρ · ι

ñsh,ah
· nsh,ah

≤

√√√√2VarP̃h(·|sh,ah)
(Ṽh+1(·)) · ι

nsh,ah

+
16SHEρ · ι

ñsh,ah

≤

√√√√2VarP̃h(·|sh,ah)
(Ṽh+1(·)) · ι

ñsh,ah
− Eρ

+
16SHEρ · ι

ñsh,ah

.

(23)

The second and forth inequality is because when ñsh,ah
≥ 3Eρ, nsh,ah

≥ 2ñsh,ah

3 . Specifically,
these two inequalities are also because usually we only care about the case when SEρ ≥ 1, which is
equivalent to ρ being not very large. The third inequality is due to Lemma C.5. The last inequality is
due to Lemma C.3.

Note that the previous Lemmas rely on the condition that ñ is not very small (ñsh,ah
≥ 3Eρ). Below

we state the Multiplicative Chernoff bound (Lemma C.7 and Remark C.8) to show that under our
condition in Theorem 3.3, for (sh, ah) ∈ Ch, ñsh,ah

will be larger than 3Eρ with high probability.
Lemma C.7 (Lemma B.1 in (Yin & Wang, 2021b)). For any 0 < δ < 1, there exists an absolute
constant c1 such that when total episode n > c1 · 1/d̄m · log(HSA/δ), then with probability 1− δ,
∀h ∈ [H]

nsh,ah
≥ n · dµh(sh, ah)/2, ∀ (sh, ah) ∈ Ch.

Furthermore, we denote

E := {nsh,ah
≥ n · dµh(sh, ah)/2, ∀ (sh, ah) ∈ Ch, h ∈ [H].} (24)

then equivalently P (E) > 1− δ.

In addition, we denote

E ′ := {nsh,ah
≤ 3

2
n · dµh(sh, ah), ∀ (sh, ah) ∈ Ch, h ∈ [H].} (25)

then similarly P (E ′) > 1− δ.
Remark C.8. According to Lemma C.7, for any failure probability δ, there exists some constant c1 >

0 such that when n ≥ c1Eρ·ι
d̄m

, with probability 1− δ, for all (sh, ah) ∈ Ch, nsh,ah
≥ 4Eρ. Therefore,

under the condition of Theorem 3.3 and the high probability events in Lemma C.3 and Lemma C.7, it
holds that for all (sh, ah) ∈ Ch, ñsh,ah

≥ 3Eρ while for all (sh, ah) /∈ Ch, ñsh,ah
≤ Eρ.

Lemma C.9. Define (ThV )(·, ·) := rh(·, ·) + (PhV )(·, ·) for any V ∈ RS . Note π̂, Qh, Ṽh are
defined in Algorithm 1 and denote ξh(s, a) = (ThṼh+1)(s, a)−Qh(s, a). Then it holds that

V π⋆

1 (s)− V π̂
1 (s) ≤

H∑
h=1

Eπ⋆ [ξh(sh, ah) | s1 = s]−
H∑

h=1

Eπ̂ [ξh(sh, ah) | s1 = s] . (26)

Furthermore, (26) holds for all V π⋆

h (s)− V π̂
h (s).

Proof of Lemma C.9. Lemma C.9 is a direct corollary of Lemma E.8 with π = π⋆, Q̂h = Qh,
V̂h = Ṽh and π̂ = π̂ in Algorithm 1, we can obtain this result since by the definition of π̂ in
Algorithm 1, ⟨Qh (sh, ·) , πh (·|sh)− π̂h (·|sh)⟩ ≤ 0. The proof for V π⋆

h (s)−V π̂
h (s) is identical.

19



Under review as a conference paper at ICLR 2023

Next we prove the asymmetric bound for ξh, which is the key to the proof.

Lemma C.10 (Private version of Lemma D.6 in (Yin & Wang, 2021b)). Denote ξh(s, a) =

(ThṼh+1)(s, a) − Qh(s, a), where Ṽh+1 and Qh are the quantities in Algorithm 1 and Th(V ) :=
rh + Ph · V for any V ∈ RS . Then under the high probability events in Lemma C.3 and Lemma C.6,
for any h, sh, ah such that ñsh,ah

> 3Eρ, we have

0 ≤ξh(sh, ah) = (ThṼh+1)(sh, ah)−Qh(sh, ah)

≤2

√√√√2VarP̃h(·|sh,ah)
(Ṽh+1(·)) · ι

ñsh,ah
− Eρ

+
32SHEρ · ι

ñsh,ah

,

where ι = log(HSA/δ).

Proof of Lemma C.10. The first inequality: We first prove ξh(sh, ah) ≥ 0 for all (sh, ah), such that
ñsh,ah

≥ 3Eρ.

Indeed, if Q̂p
h(sh, ah) < 0, then Qh(sh, ah) = 0. In this case, ξh(sh, ah) = (ThṼh+1)(sh, ah) ≥ 0

(note Ṽh ≥ 0 by the definition). If Q̂p
h(sh, ah) ≥ 0, then by definition Qh(sh, ah) =

min{Q̂p
h(sh, ah), H − h+ 1}+ ≤ Q̂p

h(sh, ah) and this implies

ξh(sh, ah) ≥ (ThṼh+1)(sh, ah)− Q̂p
h(sh, ah)

=(Ph − P̃h) · Ṽh+1(sh, ah) + Γh(sh, ah)

≥−

√√√√2VarP̃h(·|sh,ah)
(Ṽh+1(·)) · ι

ñsh,ah
− Eρ

− 16SHEρ · ι
ñsh,ah

+ Γh(sh, ah) = 0,

where the second inequality uses Lemma C.6, and the last equation uses Line 5 of Algorithm 1.

The second inequality: Then we prove ξh(sh, ah) ≤ 2

√
2VarP̃h(·|sh,ah)(Ṽh+1(·))·ι

ñsh,ah
−Eρ

+
32SHEρ·ι
ñsh,ah

for

all (sh, ah) such that ñsh,ah
≥ 3Eρ.

First, since by construction Ṽh ≤ H − h+ 1 for all h ∈ [H], this implies

Q̂p
h = Q̃h − Γh ≤ Q̃h = rh + (P̃h · Ṽh+1) ≤ 1 + (H − h) = H − h+ 1

which is because rh ≤ 1 and P̃h is a probability distribution. Therefore, we have the equivalent
definition

Qh := min{Q̂p
h, H − h+ 1}+ = max{Q̂p

h, 0} ≥ Q̂p
h.

Then it holds that

ξh(sh, ah) = (ThṼh+1)(sh, ah)−Qh(sh, ah) ≤ (ThṼh+1)(sh, ah)− Q̂p
h(sh, ah)

=(ThṼh+1)(sh, ah)− Q̃h(sh, ah) + Γh(sh, ah)

=(Ph − P̃h) · Ṽh+1(sh, ah) + Γh(sh, ah)

≤

√√√√2VarP̃h(·|sh,ah)
(Ṽh+1(·)) · ι

ñsh,ah
− Eρ

+
16SHEρ · ι

ñsh,ah

+ Γh(sh, ah)

=2

√√√√2VarP̃h(·|sh,ah)
(Ṽh+1(·)) · ι

ñsh,ah
− Eρ

+
32SHEρ · ι

ñsh,ah

.

The proof is complete by combining the two parts.
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C.3.3 REDUCTION TO AUGMENTED ABSORBING MDP

Before we prove the theorem, we need to construct an augmented absorbing MDP to bridge Ṽ and
V ⋆. According to Line 5 in Algorithm 1, the locations with ñsh,ah

≤ Eρ is heavily penalized with
penalty of order Õ(H). Therefore we can prove that under the high probability event in Remark C.8,
dπ̂h(sh, ah) > 0 only if dµh(sh, ah) > 0 by induction, where π̂ is the output of Algorithm 1. The
conclusion holds for h = 1. Assume it holds for some h > 1 that dπ̂h(sh, ah) > 0 only if dµh(sh, ah) >
0, then for any sh+1 ∈ S such that dπ̂h+1(sh+1) > 0, it holds that dµh+1(sh+1) > 0, which leads to
the conclusion that dπ̂h+1(sh+1, ah+1) > 0 only if dµh+1(sh+1, ah+1) > 0. To summarize, we have

dπ0

h (sh, ah) > 0 only if dµh(sh, ah) > 0, π0 ∈ {π⋆, π̂}. (27)

Let us define M† by adding one absorbing state s†h for all h ∈ {2, . . . ,H}, therefore the augmented
state space S† = S ∪ {s†h} and the transition and reward is defined as follows: (recall Ch :=
{(sh, ah) : dµh(sh, ah) > 0})

P †
h(· | sh, ah) =

{
Ph(· | sh, ah) sh, ah ∈ Ch,
δ
s
†
h+1

sh = s†h or sh, ah /∈ Ch, r†h(sh, ah) =

{
rh(sh, ah) sh, ah ∈ Ch
0 sh = s†h or sh, ah /∈ Ch

and we further define for any π,

V †π
h (s) = E†

π

[
H∑
t=h

r†t

∣∣∣∣∣sh = s

]
, v†π = E†

π

[
H∑
t=1

r†t

]
∀h ∈ [H], (28)

where E† means taking expectation under the absorbing MDP M†.

Note that because π⋆ and π̂ are fully covered by µ (27), it holds that

v†π
⋆

= vπ
⋆

, v†π̂ = vπ̂. (29)

Define (T †
h V )(·, ·) := r†h(·, ·) + (P †

hV )(·, ·) for any V ∈ RS+1. Note π̂, Qh, Ṽh are defined
in Algorithm 1 (we extend the definition by letting Ṽh(s

†
h) = 0 and Qh(s

†
h, ·) = 0) and denote

ξ†h(s, a) = (T †
h Ṽh+1)(s, a)−Qh(s, a). Using identical proof to Lemma C.9, we have

V †π⋆

1 (s)− V †π̂
1 (s) ≤

H∑
h=1

E†
π⋆

[
ξ†h(sh, ah) | s1 = s

]
−

H∑
h=1

E†
π̂

[
ξ†h(sh, ah) | s1 = s

]
, (30)

where V †π
1 is defined in (28). Furthermore, (30) holds for all V †π⋆

h (s)− V †π̂
h (s).

C.3.4 FINALIZE OUR RESULT WITH NON-PRIVATE STATISTICS

For those (sh, ah) ∈ Ch, ξ†h(sh, ah) = rh(sh, ah) + PhṼh+1(sh, ah) − Qh(sh, ah) = ξh(sh, ah).
For those (sh, ah) /∈ Ch or sh = s†h, we have ξ†h(sh, ah) = 0.
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Therefore, by (30) and Lemma C.10, under the high probability events in Lemma C.3, Lemma C.6
and Lemma C.7, we have for all t ∈ [H], s ∈ S (S does not include the absorbing state s†t ),

V †π⋆

t (s)− V †π̂
t (s) ≤

H∑
h=t

E†
π⋆

[
ξ†h(sh, ah) | st = s

]
−

H∑
h=t

E†
π̂

[
ξ†h(sh, ah) | st = s

]
≤

H∑
h=t

E†
π⋆

[
ξ†h(sh, ah) | st = s

]
− 0

≤
H∑
h=t

E†
π⋆

2
√√√√2VarP̃h(·|sh,ah)

(Ṽh+1(·)) · ι
ñsh,ah

− Eρ
+

32SHEρ · ι
ñsh,ah

| st = s

 · 1 ((sh, ah) ∈ Ch)

≤
H∑
h=t

E†
π⋆

2
√√√√2VarP̃h(·|sh,ah)

(Ṽh+1(·)) · ι
nsh,ah

− 2Eρ
+

32SHEρ · ι
nsh,ah

− Eρ
| st = s

 · 1 ((sh, ah) ∈ Ch)

≤
H∑
h=t

E†
π⋆

4
√√√√VarP̃h(·|sh,ah)

(Ṽh+1(·)) · ι
nsh,ah

+
128SHEρ · ι

3nsh,ah

| st = s

 · 1 ((sh, ah) ∈ Ch)

≤
H∑
h=t

E†
π⋆

4
√√√√2VarP̃h(·|sh,ah)

(Ṽh+1(·)) · ι
ndµh(sh, ah)

+
256SHEρ · ι
3ndµh(sh, ah)

| st = s

 · 1 ((sh, ah) ∈ Ch)

(31)

The second and third inequality are because of Lemma C.10, Remark C.8 and the the fact that either
ξ† = 0 or ξ† = ξ while (sh, ah) ∈ Ch. The forth inequality is due to Lemma C.3. The fifth inequality
is because of Remark C.8. The last inequality is by Lemma C.7.

Below we present a crude bound of
∣∣∣V †π⋆

t (s)− Ṽt(s)
∣∣∣, which can be further used to bound the main

term in the main result.

Lemma C.11 (Self-bounding, private version of Lemma D.7 in (Yin & Wang, 2021b)). Under the
high probability events in Lemma C.3, Lemma C.6 and Lemma C.7, it holds that for all t ∈ [H] and
s ∈ S, ∣∣∣V †π⋆

t (s)− Ṽt(s)
∣∣∣ ≤ 4

√
2ιH2√
n · d̄m

+
256SH2Eρ · ι

3n · d̄m
.

where d̄m is defined in Theorem 3.3.

Proof of Lemma C.11. According to (31), since VarP̃h(·|sh,ah)
(Ṽh+1(·)) ≤ H2, we have for all

t ∈ [H], ∣∣∣V †π⋆

t (s)− V †π̂
t (s)

∣∣∣ ≤ 4
√
2ιH2√
n · d̄m

+
256SH2Eρ · ι

3n · d̄m
(32)

Next, apply Lemma E.7 by setting π = π̂, π′ = π⋆, Q̂ = Q, V̂ = Ṽ under M†, then we have

V †π⋆

t (s)− Ṽt(s) =

H∑
h=t

E†
π⋆

[
ξ†h(sh, ah) | st = s

]
+

H∑
h=t

E†
π⋆

[
⟨Qh (sh, ·) , π⋆

h (·|sh)− π̂h (·|sh)⟩ | st = s
]

≤
H∑
h=t

E†
π⋆

[
ξ†h(sh, ah) | st = s

]
≤4

√
2ιH2√
n · d̄m

+
256SH2Eρ · ι

3n · d̄m
.

(33)
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Also, apply Lemma E.7 by setting π = π′ = π̂, Q̂ = Q, V̂ = Ṽ under M†, then we have

Ṽt(s)− V †π̂
t (s) = −

H∑
h=t

E†
π̂

[
ξ†h(sh, ah) | st = s

]
≤ 0. (34)

The proof is complete by combing (32), (33) and (34).

Now we are ready to bound
√
VarP̃h(·|sh,ah)

(Ṽh+1(·)) by
√

VarPh(·|sh,ah)(V
†⋆
h+1(·)). Under the

high probability events in Lemma C.3, Lemma C.6 and Lemma C.7, with probability 1− δ, it holds
that for all (sh, ah) ∈ Ch,√

VarP̃h(·|sh,ah)
(Ṽh+1(·)) ≤

√
VarP̃h(·|sh,ah)

(V †⋆
h+1(·)) +

∥∥∥Ṽh+1 − V †π⋆

h+1

∥∥∥
∞,s∈S

≤
√

VarP̃h(·|sh,ah)
(V †⋆

h+1(·)) +
4
√
2ιH2√
n · d̄m

+
256SH2Eρ · ι

3n · d̄m

≤
√
VarP̂h(·|sh,ah)

(V †⋆
h+1(·)) +

4
√
2ιH2√
n · d̄m

+
256SH2Eρ · ι

3n · d̄m
+ 4H

√
SEρ

ñsh,ah

≤
√
VarP̂h(·|sh,ah)

(V †⋆
h+1(·)) +

4
√
2ιH2√
n · d̄m

+
256SH2Eρ · ι

3n · d̄m
+ 8H

√
SEρ

n · d̄m

≤
√
VarPh(·|sh,ah)(V

†⋆
h+1(·)) +

4
√
2ιH2√
n · d̄m

+
256SH2Eρ · ι

3n · d̄m
+ 8H

√
SEρ

n · d̄m
+ 3H

√
ι

n · d̄m

≤
√
VarPh(·|sh,ah)(V

†⋆
h+1(·)) +

9
√
ιH2√

n · d̄m
+

256SH2Eρ · ι
3n · d̄m

+ 8H

√
SEρ

n · d̄m
.

(35)

The second inequality is because of Lemma C.11. The third inequality is due to Lemma C.5. The
forth inequality comes from Lemma C.3 and Remark C.8. The fifth inequality holds with probability
1− δ because of Lemma E.5 and a union bound.

Finally, by plugging (35) into (31) and averaging over s1, we finally have with probability 1− 4δ,

vπ
⋆

− vπ̂ = v†π
⋆

− v†π̂ ≤
H∑

h=1

E†
π⋆

4
√√√√2VarP̃h(·|sh,ah)

(Ṽh+1(·)) · ι
ndµh(sh, ah)

+
256SHEρ · ι
3ndµh(sh, ah)


≤4

√
2

H∑
h=1

E†
π⋆

√VarPh(·|sh,ah)(V
†⋆
h+1(·)) · ι

ndµh(sh, ah)

+ Õ

(
H3 + SH2Eρ

n · d̄m

)

=4
√
2

H∑
h=1

∑
(sh,ah)∈Ch

dπ
⋆

h (sh, ah)

√
VarPh(·|sh,ah)(V

†⋆
h+1(·)) · ι

ndµh(sh, ah)
+ Õ

(
H3 + SH2Eρ

n · d̄m

)

=4
√
2

H∑
h=1

∑
(sh,ah)∈Ch

dπ
⋆

h (sh, ah)

√
VarPh(·|sh,ah)(V

⋆
h+1(·)) · ι

ndµh(sh, ah)
+ Õ

(
H3 + SH2Eρ

n · d̄m

)
,

(36)

where Õ absorbs constants and Polylog terms. The first equation is due to (29). The first inequality is
because of (31). The second inequality comes from (35) and our assumption that n · d̄m ≥ c1H

2.
The second equation uses the fact that dπ

⋆

h (sh, ah) = d†π
⋆

h (sh, ah), for all (sh, ah). The last
equation is because for any (sh, ah, sh+1) such that dπ

⋆

h (sh, ah) > 0 and Ph(sh+1|sh, ah) > 0,
V †⋆
h+1(sh+1) = V ⋆

h+1(sh+1).

C.4 PUT EVERYTHING TOGETHER

Combining Lemma C.1 and (36), the proof of Theorem 3.3 is complete.
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D PROOF OF THEOREM 4.1

D.1 PROOF SKETCH

Since the whole proof for privacy guarantee is not very complex, we present it in Section D.2 below
and only sketch the proof for suboptimality bound.

First of all, by extended value difference (Lemma E.7 and E.8), we can convert bounding the subopti-
mality gap of v⋆ − vπ̂ to bounding

∑H
h=1 Eπ [Γh(sh, ah)], given that |(ThṼh+1 − T̃hṼh+1)(s, a)| ≤

Γh(s, a) for all s, a, h. To bound (ThṼh+1 − T̃hṼh+1)(s, a), according to our analysis about the
upper bound of the noises we add, we can decompose (ThṼh+1−T̃hṼh+1)(s, a) to lower order terms
(Õ( 1

K )) and the following key quantity:

ϕ(s, a)⊤Λ̂−1
h

[
K∑

τ=1

ϕ (sτh, a
τ
h) ·

(
rτh + Ṽh+1

(
sτh+1

)
−
(
ThṼh+1

)
(sτh, a

τ
h)
)
/σ̃2

h(s
τ
h, a

τ
h)

]
. (37)

For the term above, we prove an upper bound of
∥∥∥σ2

Ṽh+1
− σ̃2

h

∥∥∥
∞

, so we can convert σ̃2
h to σ2

Ṽh+1
.

Next, since Var
[
rτh + Ṽh+1

(
sτh+1

)
−
(
ThṼh+1

)
(sτh, a

τ
h) | sτh, aτh

]
≈ σ2

Ṽh+1
, we can apply Bern-

stein’s inequality for self-normalized martingale (Lemma E.10) as in Yin et al. (2022) for deriving
tighter bound.

Finally, we replace the private statistics by non-private ones. More specifically, we convert σ2
Ṽh+1

to

σ⋆2
h (Λ−1

h to Λ⋆−1
h ) by combining the crude upper bound of

∥∥∥Ṽ − V ⋆
∥∥∥
∞

and matrix concentrations.

D.2 PROOF OF THE PRIVACY GUARANTEE

The privacy guarantee of DP-VAPVI (Algorithm 2) is summarized by Lemma D.1 below.

Lemma D.1 (Privacy analysis of DP-VAPVI (Algorithm 2)). DP-VAPVI (Algorithm 2) satisfies
ρ-zCDP.

Proof of Lemma D.1. For
∑K

τ=1 ϕ(s̄
τ
h, ā

τ
h) · Ṽh+1(s̄

τ
h+1)

2, the ℓ2 sensitivity is 2H2. For∑K
τ=1 ϕ(s̄

τ
h, ā

τ
h) · Ṽh+1(s̄

τ
h+1) and

∑K
τ=1 ϕ (sτh, a

τ
h) ·

(
rτh + Ṽh+1

(
sτh+1

))
/σ̃2

h(s
τ
h, a

τ
h), the ℓ2 sen-

sitivity is 2H . Therefore according to Lemma 2.6, the use of Gaussian Mechanism (the additional
noises ϕ1, ϕ2, ϕ3) ensures ρ0-zCDP for each counter. For

∑K
τ=1 ϕ(s̄

τ
h, ā

τ
h)ϕ(s̄

τ
h, ā

τ
h)

⊤ + λI and∑K
τ=1 ϕ (sτh, a

τ
h)ϕ (sτh, a

τ
h)

⊤
/σ̃2

h(s
τ
h, a

τ
h) + λI , according to Appendix D in (Redberg & Wang,

2021), the per-instance ℓ2 sensitivity is

∥∆x∥2 =
1√
2

sup
ϕ:∥ϕ∥2≤1

∥∥ϕϕ⊤∥∥
F
=

1√
2

sup
ϕ:∥ϕ∥2≤1

√∑
i,j

ϕ2
iϕ

2
j =

1√
2
.

Therefore the use of Gaussian Mechanism (the additional noises K1,K2) also ensures ρ0-zCDP for
each counter.12 Combining these results, according to Lemma E.17, the whole algorithm satisfies
5Hρ0 = ρ-zCDP.

D.3 PROOF OF THE SUB-OPTIMALITY BOUND

D.3.1 UTILITY ANALYSIS AND SOME PREPARATION

We begin with the following high probability bound of the noises we add.

12For more detailed explanation, we refer the readers to Appendix D of (Redberg & Wang, 2021).

24



Under review as a conference paper at ICLR 2023

Lemma D.2 (Utility analysis). Let L = 2H
√

d
ρ0

log( 10Hd
δ ) = 2H

√
5Hd log( 10Hd

δ )

ρ and

E =
√

2d
ρ0

(
2 +

(
log(5c1H/δ)

c2d

) 2
3

)
=
√

10Hd
ρ

(
2 +

(
log(5c1H/δ)

c2d

) 2
3

)
for some universal constants

c1, c2. Then with probability 1− δ, the following inequalities hold simultaneously:

For allh ∈ [H], ∥ϕ1∥2 ≤ HL, ∥ϕ2∥2 ≤ L, ∥ϕ3∥2 ≤ L.

For allh ∈ [H], K1,K2 are symmetric and positive definite and ∥Ki∥2 ≤ E, i ∈ {1, 2}. (38)

Proof of Lemma D.2. The second line of (38) results from Lemma 19 in (Redberg & Wang, 2021)
and Weyl’s Inequality. The first line of (38) directly results from the concentration inequality for
Guassian distribution and a union bound.

Define the Bellman update error ζh(s, a) := (ThṼh+1)(s, a)− Q̂h(s, a) and recall
π̂h(s) = argmaxπh

⟨Q̂h(s, ·), πh(· | s)⟩A, then because of Lemma E.8,

V π
1 (s)− V π̂

1 (s) ≤
H∑

h=1

Eπ [ζh(sh, ah) | s1 = s]−
H∑

h=1

Eπ̂ [ζh(sh, ah) | s1 = s] . (39)

Define T̃hṼh+1(·, ·) = ϕ(·, ·)⊤w̃h. Then similar to Lemma C.10, we have the following lemma
showing that in order to bound the sub-optimality, it is sufficient to bound the pessimistic penalty.

Lemma D.3 (Lemma C.1 in (Yin et al., 2022)). Suppose with probability 1 − δ, it holds for all
s, a, h ∈ S × A × [H] that |(ThṼh+1 − T̃hṼh+1)(s, a)| ≤ Γh(s, a), then it implies ∀s, a, h ∈
S ×A× [H], 0 ≤ ζh(s, a) ≤ 2Γh(s, a). Furthermore, with probability 1− δ, it holds for any policy
π simultaneously,

V π
1 (s)− V π̂

1 (s) ≤
H∑

h=1

2 · Eπ [Γh(sh, ah) | s1 = s] .

Proof of Lemma D.3. We first show given |(ThṼh+1 − T̃hṼh+1)(s, a)| ≤ Γh(s, a), then 0 ≤
ζh(s, a) ≤ 2Γh(s, a), ∀s, a, h ∈ S ×A× [H].

Step 1: The first step is to show 0 ≤ ζh(s, a), ∀s, a, h ∈ S ×A× [H].

Indeed, if Q̄h(s, a) ≤ 0, then by definition Q̂h(s, a) = 0 and therefore ζh(s, a) := (ThṼh+1)(s, a)−
Q̂h(s, a) = (ThṼh+1)(s, a) ≥ 0. If Q̄h(s, a) > 0, then Q̂h(s, a) ≤ Q̄h(s, a) and

ζh(s, a) :=(ThṼh+1)(s, a)− Q̂h(s, a) ≥ (ThṼh+1)(s, a)− Q̄h(s, a)

=(ThṼh+1)(s, a)− (T̃hṼh+1)(s, a) + Γh(s, a) ≥ 0.

Step 2: The second step is to show ζh(s, a) ≤ 2Γh(s, a), ∀s, a, h ∈ S ×A× [H].

Under the assumption that |(ThṼh+1 − T̃hṼh+1)(s, a)| ≤ Γh(s, a), we have

Q̄h(s, a) = (T̃hṼh+1)(s, a)− Γh(s, a) ≤ (ThṼh+1)(s, a) ≤ H − h+ 1,

which implies that Q̂h(s, a) = max(Q̄h(s, a), 0). Therefore, it holds that

ζh(s, a) :=(ThṼh+1)(s, a)− Q̂h(s, a) ≤ (ThṼh+1)(s, a)− Q̄h(s, a)

=(ThṼh+1)(s, a)− (T̃hṼh+1)(s, a) + Γh(s, a) ≤ 2 · Γh(s, a).

For the last statement, denote F := {0 ≤ ζh(s, a) ≤ 2Γh(s, a), ∀s, a, h ∈ S × A × [H]}. Note
conditional on F, then by (39), V π

1 (s)− V π̂
1 (s) ≤

∑H
h=1 2 · Eπ[Γh(sh, ah) | s1 = s] holds for any
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policy π almost surely. Therefore,

P

[
∀π, V π

1 (s)− V π̂
1 (s) ≤

H∑
h=1

2 · Eπ[Γh(sh, ah) | s1 = s].

]

=P

[
∀π, V π

1 (s)− V π̂
1 (s) ≤

H∑
h=1

2 · Eπ[Γh(sh, ah) | s1 = s]

∣∣∣∣∣F
]
· P[F]

+P

[
∀π, V π

1 (s)− V π̂
1 (s) ≤

H∑
h=1

2 · Eπ[Γh(sh, ah) | s1 = s]

∣∣∣∣∣Fc

]
· P[Fc]

≥P

[
∀π, V π

1 (s)− V π̂
1 (s) ≤

H∑
h=1

2 · Eπ[Γh(sh, ah) | s1 = s]

∣∣∣∣∣F
]
· P[F] = 1 · P[F] ≥ 1− δ,

which finishes the proof.

D.3.2 BOUND THE PESSIMISTIC PENALTY

By Lemma D.3, it remains to bound |(ThṼh+1)(s, a)−(T̃hṼh+1)(s, a)|. Suppose wh is the coefficient
corresponding to the ThṼh+1 (such wh exists by Lemma E.14), i.e. ThṼh+1 = ϕ⊤wh, and recall
(T̃hṼh+1)(s, a) = ϕ(s, a)⊤w̃h, then:(

ThṼh+1

)
(s, a)−

(
T̃hṼh+1

)
(s, a) = ϕ(s, a)⊤ (wh − w̃h)

=ϕ(s, a)⊤wh − ϕ(s, a)⊤Λ̃−1
h

(
K∑

τ=1

ϕ (sτh, a
τ
h) ·

(
rτh + Ṽh+1

(
sτh+1

))
/σ̃2

h(s
τ
h, a

τ
h) + ϕ3

)

=ϕ(s, a)⊤wh − ϕ(s, a)⊤Λ̂−1
h

(
K∑

τ=1

ϕ (sτh, a
τ
h) ·

(
rτh + Ṽh+1

(
sτh+1

))
/σ̃2

h(s
τ
h, a

τ
h)

)
︸ ︷︷ ︸

(i)

− ϕ(s, a)⊤Λ̂−1
h ϕ3︸ ︷︷ ︸

(ii)

+ϕ(s, a)⊤(Λ̂−1
h − Λ̃−1

h )

(
K∑

τ=1

ϕ (sτh, a
τ
h) ·

(
rτh + Ṽh+1

(
sτh+1

))
/σ̃2

h(s
τ
h, a

τ
h) + ϕ3

)
︸ ︷︷ ︸

(iii)

,

(40)
where Λ̂h = Λ̃h −K2 =

∑K
τ=1 ϕ (sτh, a

τ
h)ϕ (sτh, a

τ
h)

⊤
/σ̃2

h(s
τ
h, a

τ
h) + λI .

Term (ii) can be handled by the following Lemma D.4

Lemma D.4. Recall κ in Assumption 2.2. Under the high probability event in Lemma D.2, suppose

K ≥ max

{
512H4·log( 2Hd

δ )
κ2 , 4λH2

κ

}
, then with probability 1− δ, for all s, a, h ∈ S × A × [H], it

holds that ∣∣∣ϕ(s, a)⊤Λ̂−1
h ϕ3

∣∣∣ ≤ 4H2L/κ

K
.

Proof of Lemma D.4. Define Λ̃p
h = Eµ,h[σ̃

−2
h (s, a)ϕ(s, a)ϕ(s, a)⊤]. Then because of Assumption

2.2 and σ̃h ≤ H , it holds that λmin(Λ̃
p
h) ≥ κ

H2 . Therefore, due to Lemma E.13, we have with

26



Under review as a conference paper at ICLR 2023

probability 1− δ, ∣∣∣ϕ(s, a)⊤Λ̂−1
h ϕ3

∣∣∣ ≤ ∥ϕ(s, a)∥Λ̂−1
h

· ∥ϕ3∥Λ̂−1
h

≤ 4

K
∥ϕ(s, a)∥(Λ̃p

h)
−1 · ∥ϕ3∥(Λ̃p

h)
−1

≤4L

K
∥(Λ̃p

h)
−1∥

≤4H2L/κ

K
.

The first inequality is because of Cauchy-Schwarz inequality. The second inequality holds with
probability 1 − δ due to Lemma E.13 and a union bound. The third inequality holds because√
a⊤ ·A · a ≤

√
∥a∥2∥A∥2∥a∥2 = ∥a∥2

√
∥A∥2. The last inequality arises from ∥(Λ̃p

h)
−1∥ =

λmax((Λ̃
p
h)

−1) = λ−1
min(Λ̃

p
h) ≤

H2

κ .

The difference between Λ̃−1
h and Λ̂−1

h can be bounded by the following Lemma D.5

Lemma D.5. Under the high probability event in Lemma D.2, suppose K ≥ 128H4 log 2dH
δ

κ2 , then with

probability 1− δ, for all h ∈ [H], it holds that ∥Λ̂−1
h − Λ̃−1

h ∥ ≤ 4H4E/κ2

K2 .

Proof of Lemma D.5. First of all, we have

∥Λ̂−1
h − Λ̃−1

h ∥ = ∥Λ̂−1
h · (Λ̂h − Λ̃h) · Λ̃−1

h ∥
≤∥Λ̂−1

h ∥ · ∥Λ̂h − Λ̃h∥ · ∥Λ̃−1
h ∥

≤λ−1
min(Λ̂h) · λ−1

min(Λ̃h) · E.

(41)

The first inequality is because ∥A ·B∥ ≤ ∥A∥ · ∥B∥. The second inequality is due to Lemma D.2.

Let Λ̂′
h = 1

K Λ̂h, then because of Lemma E.12, with probability 1− δ, it holds that for all h ∈ [H],∥∥∥∥Λ̂′
h − Eµ,h[ϕ(s, a)ϕ(s, a)

⊤/σ̃2
h(s, a)]−

λ

K
Id

∥∥∥∥ ≤ 4
√
2√
K

(
log

2dH

δ

)1/2

,

which implies that when K ≥ 128H4 log 2dH
δ

κ2 , it holds that (according to Weyl’s Inequality)

λmin(Λ̂
′
h) ≥ λmin(Eµ,h[ϕ(s, a)ϕ(s, a)

⊤/σ̃2
h(s, a)]) +

λ

K
− κ

2H2
≥ κ

2H2
.

Under this high probability event, we have λmin(Λ̂h) ≥ Kκ
2H2 and therefore λmin(Λ̃h) ≥ λmin(Λ̂h) ≥

Kκ
2H2 . Plugging these two results into (41), we have

∥Λ̂−1
h − Λ̃−1

h ∥ ≤ 4H4E/κ2

K2
.

Then we can bound term (iii) by the following Lemma D.6

Lemma D.6. Suppose K ≥ max{ 128H4 log 2dH
δ

κ2 ,
√
2L√
dκ

}, under the high probability events in
Lemma D.2 and Lemma D.5, it holds that for all s, a, h ∈ S ×A× [H],∣∣∣∣∣ϕ(s, a)⊤(Λ̂−1

h − Λ̃−1
h )

(
K∑

τ=1

ϕ (sτh, a
τ
h) ·

(
rτh + Ṽh+1

(
sτh+1

))
/σ̃2

h(s
τ
h, a

τ
h) + ϕ3

)∣∣∣∣∣ ≤ 4
√
2H4E

√
d/κ3/2

K
.

Proof of Lemma D.6. First of all, the left hand side is bounded by∥∥∥∥∥(Λ̂−1
h − Λ̃−1

h )

(
K∑

τ=1

ϕ (sτh, a
τ
h) ·

(
rτh + Ṽh+1

(
sτh+1

))
/σ̃2

h(s
τ
h, a

τ
h)

)∥∥∥∥∥
2

+
4H4EL/κ2

K2
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due to Lemma D.5. Then the left hand side can be further bounded by

H

K∑
τ=1

∥∥∥(Λ̂−1
h − Λ̃−1

h )ϕ (sτh, a
τ
h) /σ̃h(s

τ
h, a

τ
h)
∥∥∥
2
+

4H4EL/κ2

K2

≤H

K∑
τ=1

√√√√Tr

(
(Λ̂−1

h − Λ̃−1
h ) ·

ϕ (sτh, a
τ
h)ϕ (sτh, a

τ
h)

⊤

σ̃2
h(s

τ
h, a

τ
h)

· (Λ̂−1
h − Λ̃−1

h )

)
+

4H4EL/κ2

K2

≤H

√
K · Tr

(
(Λ̂−1

h − Λ̃−1
h ) · Λ̂h · (Λ̂−1

h − Λ̃−1
h )
)
+

4H4EL/κ2

K2

≤H

√
Kd · λmax

(
(Λ̂−1

h − Λ̃−1
h ) · Λ̂h · (Λ̂−1

h − Λ̃−1
h )
)
+

4H4EL/κ2

K2

=H

√
Kd ·

∥∥∥(Λ̂−1
h − Λ̃−1

h ) · Λ̂h · (Λ̂−1
h − Λ̃−1

h )
∥∥∥
2
+

4H4EL/κ2

K2

≤H

√
Kd ·

∥∥∥Λ̃−1
h

∥∥∥
2
·
∥∥∥Λ̃h − Λ̂h

∥∥∥
2
·
∥∥∥Λ̂−1

h − Λ̃−1
h

∥∥∥
2
+

4H4EL/κ2

K2

≤2
√
2H4E

√
d/κ3/2

K
+

4H4EL/κ2

K2

≤4
√
2H4E

√
d/κ3/2

K
.

The first inequality is because ∥a∥2 =
√
a⊤a =

√
Tr(aa⊤). The second inequality is due to

Cauchy-Schwarz inequality. The third inequality is because for positive definite matrix A, it holds
that Tr(A) =

∑d
i=1 λi(A) ≤ dλmax(A). The equation is because for symmetric, positive definite

matrix A, ∥A∥2 = λmax(A). The forth inequality is due to ∥A ·B∥ ≤ ∥A∥ · ∥B∥. The fifth
inequality is because of Lemma D.2, Lemma D.5 and the statement in the proof of Lemma D.5 that
λmin(Λ̃h) ≥ Kκ

2H2 . The last inequality uses the assumption that K ≥
√
2L√
dκ

.

Now the remaining part is term (i), we have

ϕ(s, a)⊤wh − ϕ(s, a)⊤Λ̂−1
h

(
K∑

τ=1

ϕ (sτh, a
τ
h) ·

(
rτh + Ṽh+1

(
sτh+1

))
/σ̃2

h(s
τ
h, a

τ
h)

)
︸ ︷︷ ︸

(i)

=ϕ(s, a)⊤wh − ϕ(s, a)⊤Λ̂−1
h

(
K∑

τ=1

ϕ (sτh, a
τ
h) ·

(
ThṼh+1

)
(sτh, a

τ
h) /σ̃

2
h(s

τ
h, a

τ
h)

)
︸ ︷︷ ︸

(iv)

− ϕ(s, a)⊤Λ̂−1
h

(
K∑

τ=1

ϕ (sτh, a
τ
h) ·

(
rτh + Ṽh+1

(
sτh+1

)
−
(
ThṼh+1

)
(sτh, a

τ
h)
)
/σ̃2

h(s
τ
h, a

τ
h)

)
︸ ︷︷ ︸

(v)

.

(42)

We are able to bound term (iv) by the following Lemma D.7.

Lemma D.7. Recall κ in Assumption 2.2. Under the high probability event in Lemma D.2, suppose

K ≥ max

{
512H4·log( 2Hd

δ )
κ2 , 4λH2

κ

}
, then with probability 1− δ, for all s, a, h ∈ S ×A× [H],

∣∣∣∣∣ϕ(s, a)⊤wh − ϕ(s, a)⊤Λ̂−1
h

(
K∑

τ=1

ϕ (sτh, a
τ
h) ·

(
ThṼh+1

)
(sτh, a

τ
h) /σ̃

2
h(s

τ
h, a

τ
h)

)∣∣∣∣∣ ≤ 8λH3
√
d/κ

K
.
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Proof of Lemma D.7. Recall ThṼh+1 = ϕ⊤wh and apply Lemma E.13, we obtain with probability
1− δ, for all s, a, h ∈ S ×A× [H],∣∣∣∣∣ϕ(s, a)⊤wh − ϕ(s, a)⊤Λ̂−1

h

(
K∑

τ=1

ϕ (sτh, a
τ
h) ·

(
ThṼh+1

)
(sτh, a

τ
h) /σ̃

2
h(s

τ
h, a

τ
h)

)∣∣∣∣∣
=

∣∣∣∣∣ϕ(s, a)⊤wh − ϕ(s, a)⊤Λ̂−1
h

(
K∑

τ=1

ϕ (sτh, a
τ
h) · ϕ(sτh, aτh)⊤wh/σ̃

2
h(s

τ
h, a

τ
h)

)∣∣∣∣∣
=
∣∣∣ϕ(s, a)⊤wh − ϕ(s, a)⊤Λ̂−1

h

(
Λ̂h − λI

)
wh

∣∣∣
=
∣∣∣λ · ϕ(s, a)⊤Λ̂−1

h wh

∣∣∣
≤λ ∥ϕ(s, a)∥Λ̂−1

h
· ∥wh∥Λ̂−1

h

≤4λ

K
∥ϕ(s, a)∥(Λ̃p

h)
−1 · ∥wh∥(Λ̃p

h)
−1

≤4λ

K
· 2H

√
d ·
∥∥∥(Λ̃p

h)
−1
∥∥∥

≤8λH3
√
d/κ

K
,

where Λ̃p
h := Eµ,h

[
σ̃h(s, a)

−2ϕ(s, a)ϕ(s, a)⊤
]
. The first inequality applies Cauchy-Schwarz in-

equality. The second inequality holds with probability 1− δ due to Lemma E.13 and a union bound.
The third inequality uses

√
a⊤ ·A · a ≤

√
∥a∥2 ∥A∥2 ∥a∥2 = ∥a∥2

√
∥A∥2 and ∥wh∥ ≤ 2H

√
d. Fi-

nally, as λmin(Λ̃
p
h) ≥

κ
maxh,s,a σ̃h(s,a)2

≥ κ
H2 implies

∥∥∥(Λ̃p
h)

−1
∥∥∥ ≤ H2

κ , the last inequality holds.

For term (v), denote: xτ =
ϕ(sτh,a

τ
h)

σ̃h(sτh,a
τ
h)
, ητ =

(
rτh + Ṽh+1

(
sτh+1

)
−
(
ThṼh+1

)
(sτh, a

τ
h)
)
/σ̃h(s

τ
h, a

τ
h),

then by Cauchy-Schwarz inequality, it holds that for all h, s, a ∈ [H]× S ×A,∣∣∣∣∣ϕ(s, a)⊤Λ̂−1
h

(
K∑

τ=1

ϕ (sτh, a
τ
h) ·

(
rτh + Ṽh+1

(
sτh+1

)
−
(
ThṼh+1

)
(sτh, a

τ
h)
)
/σ̃2

h(s
τ
h, a

τ
h)

)∣∣∣∣∣
≤
√
ϕ(s, a)⊤Λ̂−1

h ϕ(s, a) ·

∥∥∥∥∥
K∑

τ=1

xτητ

∥∥∥∥∥
Λ̂−1

h

.

(43)

We bound
√
ϕ(s, a)⊤Λ̂−1

h ϕ(s, a) by
√
ϕ(s, a)⊤Λ̃−1

h ϕ(s, a) using the following Lemma D.8.

Lemma D.8. Suppose K ≥ max{ 128H4 log 2dH
δ

κ2 ,
√
2L√
dκ

}, under the high probability events in
Lemma D.2 and Lemma D.5, it holds that for all s, a, h ∈ S ×A× [H],√

ϕ(s, a)⊤Λ̂−1
h ϕ(s, a) ≤

√
ϕ(s, a)⊤Λ̃−1

h ϕ(s, a) +
2H2

√
E/κ

K
.

Proof of Lemma D.8.√
ϕ(s, a)⊤Λ̂−1

h ϕ(s, a) =

√
ϕ(s, a)⊤Λ̃−1

h ϕ(s, a) + ϕ(s, a)⊤(Λ̂−1
h − Λ̃−1

h )ϕ(s, a)

≤
√
ϕ(s, a)⊤Λ̃−1

h ϕ(s, a) +
∥∥∥Λ̂−1

h − Λ̃−1
h

∥∥∥
2

≤
√
ϕ(s, a)⊤Λ̃−1

h ϕ(s, a) +

√∥∥∥Λ̂−1
h − Λ̃−1

h

∥∥∥
2

≤
√
ϕ(s, a)⊤Λ̃−1

h ϕ(s, a) +
2H2

√
E/κ

K
.

(44)
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The first inequality uses |a⊤Aa| ≤ ∥a∥22 · ∥A∥. The second inequality is because for a, b ≥ 0,√
a+

√
b ≥

√
a+ b. The last inequality uses Lemma D.5.

Remark D.9. Similarly, under the same assumption in Lemma D.8, we also have for all s, a, h ∈
S ×A× [H], √

ϕ(s, a)⊤Λ̃−1
h ϕ(s, a) ≤

√
ϕ(s, a)⊤Λ̂−1

h ϕ(s, a) +
2H2

√
E/κ

K
.

D.3.3 AN INTERMEDIATE RESULT: BOUNDING THE VARIANCE

Before we handle
∥∥∥∑K

τ=1 xτητ

∥∥∥
Λ̂−1

h

, we first bound suph

∥∥∥σ̃2
h − σ2

Ṽh+1

∥∥∥
∞

by the following

Lemma D.10.
Lemma D.10 (Private version of Lemma C.7 in (Yin et al., 2022)). Recall the definition of σ̃h(·, ·)2 =

max{1, ṼarhṼh+1(·, ·)} in Algorithm 2 where
[
ṼarhṼh+1

]
(·, ·) =

〈
ϕ(·, ·), β̃h

〉
[0,(H−h+1)2] −[〈

ϕ(·, ·), θ̃h
〉
[0,H−h+1]

]2 (β̃h and θ̃h are defined in Algorithm 2) and σṼh+1
(·, ·)2 :=

max{1,VarPh
Ṽh+1(·, ·)}. Suppose K ≥ max

{
512 log( 2Hd

δ )
κ2 , 4λ

κ ,
128 log 2dH

δ

κ2 ,
√
2L

H
√
dκ

}
and K ≥

max{ 4L2

H2d3κ ,
32E2

d2κ2 ,
16λ2

d2κ }, under the high probability event in Lemma D.2, it holds that with proba-
bility 1− 6δ,

sup
h
||σ̃2

h − σ2
Ṽh+1

||∞ ≤ 36

√
H4d3

κK
log

(
(λ+K)2KdH2

λδ

)
.

Proof of Lemma D.10. Step 1: The first step is to show for all h, s, a ∈ [H]×S×A, with probability
1− 3δ,∣∣∣⟨ϕ(s, a), β̃h⟩[0,(H−h+1)2] − Ph(Ṽh+1)

2(s, a)
∣∣∣ ≤ 12

√
H4d3

κK
log

(
(λ+K)2KdH2

λδ

)
.

Proof of Step 1. We can bound the left hand side by the following decomposition:∣∣∣⟨ϕ(s, a), β̃h⟩[0,(H−h+1)2] − Ph(Ṽh+1)
2(s, a)

∣∣∣ ≤ ∣∣∣⟨ϕ(s, a), β̃h⟩ − Ph(Ṽh+1)
2(s, a)

∣∣∣
=

∣∣∣∣∣ϕ(s, a)⊤Σ̃−1
h

(
K∑

τ=1

ϕ(s̄τh, ā
τ
h) · Ṽh+1(s̄

τ
h+1)

2 + ϕ1

)
− Ph(Ṽh+1)

2(s, a)

∣∣∣∣∣
≤

∣∣∣∣∣ϕ(s, a)⊤Σ̄−1
h

(
K∑

τ=1

ϕ(s̄τh, ā
τ
h) · Ṽh+1(s̄

τ
h+1)

2

)
− Ph(Ṽh+1)

2(s, a)

∣∣∣∣∣︸ ︷︷ ︸
(1)

+
∣∣∣ϕ(s, a)⊤Σ̄−1

h ϕ1

∣∣∣︸ ︷︷ ︸
(2)

+

∣∣∣∣∣ϕ(s, a)⊤(Σ̃−1
h − Σ̄−1

h )

(
K∑

τ=1

ϕ(s̄τh, ā
τ
h) · Ṽh+1(s̄

τ
h+1)

2 + ϕ1

)∣∣∣∣∣︸ ︷︷ ︸
(3)

,

where Σ̄h = Σ̃h −K1 =
∑K

τ=1 ϕ(s̄
τ
h, ā

τ
h)ϕ(s̄

τ
h, ā

τ
h)

⊤ + λI .

Similar to the proof in Lemma D.5, when K ≥ max{ 128 log 2dH
δ

κ2 ,
√
2L

H
√
dκ

}, it holds that with probabil-
ity 1− δ, for all h ∈ [H],

λmin(Σ̄h) ≥
Kκ

2
, λmin(Σ̃h) ≥

Kκ

2
,
∥∥∥Σ̃−1

h − Σ̄−1
h

∥∥∥
2
≤ 4E/κ2

K2
.

(The only difference to Lemma D.5 is here Eµ,h[ϕ(s, a)ϕ(s, a)
⊤] ≥ κ.)

Under this high probability event, for term (2), it holds that for all h, s, a ∈ [H]× S ×A,∣∣ϕ(s, a)⊤Σ̄−1
h ϕ1

∣∣ ≤ ∥ϕ(s, a)∥ ·
∥∥Σ̄−1

h

∥∥ · ∥ϕ1∥ ≤ λ−1
min(Σ̄h) ·HL ≤ 2HL/κ

K
. (45)
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For term (3), similar to Lemma D.6, we have for all h, s, a ∈ [H]× S ×A,∣∣∣∣∣ϕ(s, a)⊤(Σ̃−1
h − Σ̄−1

h )

(
K∑

τ=1

ϕ(s̄τh, ā
τ
h) · Ṽh+1(s̄

τ
h+1)

2 + ϕ1

)∣∣∣∣∣ ≤ 4
√
2H2E

√
d/κ3/2

K
. (46)

(The only difference to Lemma D.6 is that here Ṽh+1(s)
2 ≤ H2, ∥ϕ1∥2 ≤ HL,

∥∥∥Σ̃−1
h

∥∥∥
2
≤ 2

Kκ and∥∥∥Σ̃−1
h − Σ̄−1

h

∥∥∥
2
≤ 4E/κ2

K2 .)

We further decompose term (1) as below.

(1) =

∣∣∣∣∣ϕ(s, a)⊤Σ̄−1
h

(
K∑

τ=1

ϕ(s̄τh, ā
τ
h) · Ṽh+1(s̄

τ
h+1)

2

)
− Ph(Ṽh+1)

2(s, a)

∣∣∣∣∣
=

∣∣∣∣∣ϕ(s, a)⊤Σ̄−1
h

K∑
τ=1

ϕ(s̄τh, ā
τ
h) · Ṽh+1(s̄

τ
h+1)

2 − ϕ(s, a)⊤Σ̄−1
h (

K∑
τ=1

ϕ(s̄τh, ā
τ
h)ϕ(s̄

τ
h, ā

τ
h)

⊤ + λI)

∫
S
(Ṽh+1)

2(s′)dνh(s
′)

∣∣∣∣∣
≤

∣∣∣∣∣ϕ(s, a)⊤Σ̄−1
h

K∑
τ=1

ϕ(s̄τh, ā
τ
h) ·

(
Ṽh+1(s̄

τ
h+1)

2 − Ph(Ṽh+1)
2(s̄τh, ā

τ
h)
)∣∣∣∣∣︸ ︷︷ ︸

(4)

+λ

∣∣∣∣ϕ(s, a)⊤Σ̄−1
h

∫
S
(Ṽh+1)

2(s′)dνh(s
′)

∣∣∣∣︸ ︷︷ ︸
(5)

.

(47)

For term (5), because K ≥ max

{
512 log( 2Hd

δ )
κ2 , 4λ

κ

}
, by Lemma E.13 and a union bound, with

probability 1− δ, for all h, s, a ∈ [H]× S ×A,

λ

∣∣∣∣ϕ(s, a)⊤Σ̄−1
h

∫
S
(Ṽh+1)

2(s′)dνh(s
′)

∣∣∣∣ ≤ λ ∥ϕ(s, a)∥Σ̄−1
h

∥∥∥∥∫
S
(Ṽh+1)

2(s′)dνh(s
′)

∥∥∥∥
Σ̄−1

h

≤λ
2√
K

∥ϕ(s, a)∥(Σp
h)

−1

2√
K

∥∥∥∥∫
S
(Ṽh+1)

2(s′)dνh(s
′)

∥∥∥∥
(Σp

h)
−1

≤ 4λ
∥∥(Σp

h)
−1
∥∥ H2

√
d

K
≤ 4λ

H2
√
d

κK
,

(48)
where Σp

h = Eµ,h[ϕ(s, a)ϕ(s, a)
⊤] and λmin(Σ

p
h) ≥ κ.

For term (4), it can be bounded by the following inequality (because of Cauchy-Schwarz inequality).

(4) ≤ ∥ϕ(s, a)∥Σ̄−1
h

·

∥∥∥∥∥
K∑

τ=1

ϕ(s̄τh, ā
τ
h) ·

(
Ṽh+1(s̄

τ
h+1)

2 − Ph(Ṽh+1)
2(s̄τh, ā

τ
h)
)∥∥∥∥∥

Σ̄−1
h

. (49)

Bounding using covering. Note for any fix Vh+1, we can define xτ = ϕ(s̄τh, ā
τ
h) (∥ϕ∥2 ≤ 1) and

ητ = Vh+1(s̄
τ
h+1)

2 − Ph(Vh+1)
2(s̄τh, ā

τ
h) is H2-subgaussian, by Lemma E.9 (where t = K and

L = 1), it holds that with probability 1− δ,∥∥∥∥∥
K∑

τ=1

ϕ(s̄τh, ā
τ
h) ·

(
Vh+1(s̄

τ
h+1)

2 − Ph(Vh+1)
2(s̄τh, ā

τ
h)
)∥∥∥∥∥

Σ̄−1
h

≤

√
8H4 · d

2
log

(
λ+K

λδ

)
.

Let Nh(ϵ) be the minimal ϵ-cover (with respect to the supremum norm) of

Vh :=

{
Vh : Vh(·) = maxa∈A{min{ϕ(s, a)⊤θ − C1

√
d · ϕ(·, ·)⊤Λ̃−1

h ϕ(·, ·)− C2, H − h+ 1}+}
}
.

That is, for any V ∈ Vh, there exists a value function V ′ ∈ Nh(ϵ) such that
sups∈S |V (s)− V ′(s)| < ϵ. Now by a union bound, we obtain with probability 1− δ,

sup
Vh+1∈Nh+1(ϵ)

∥∥∥∥∥
K∑

τ=1

ϕ(s̄τh, ā
τ
h) ·

(
Vh+1(s̄

τ
h+1)

2 − Ph(Vh+1)
2(s̄τh, ā

τ
h)
)∥∥∥∥∥

Σ̄−1
h

≤

√
8H4 · d

2
log

(
λ+K

λδ
|Nh+1(ϵ)|

)
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which implies ∥∥∥∥∥
K∑

τ=1

ϕ(s̄τh, ā
τ
h) ·

(
Ṽh+1(s̄

τ
h+1)

2 − Ph(Ṽh+1)
2(s̄τh, ā

τ
h)
)∥∥∥∥∥

Σ̄−1
h

≤

√
8H4 · d

2
log

(
λ+K

λδ
|Nh+1(ϵ)|

)
+ 4H2

√
ϵ2K2/λ

choosing ϵ = d
√
λ/K, applying Lemma B.3 of (Jin et al., 2021)13 to the covering number Nh+1(ϵ)

w.r.t. Vh+1, we can further bound above by

≤

√
8H4 · d

3

2
log

(
λ+K

λδ
2dHK

)
+ 4H2

√
d2 ≤ 6

√
H4 · d3 log

(
λ+K

λδ
2dHK

)
Apply a union bound for h ∈ [H], we have with probability 1− δ, for all h ∈ [H],∥∥∥∥∥

K∑
τ=1

ϕ(s̄τh, ā
τ
h) ·

(
Ṽh+1(s̄

τ
h+1)

2 − Ph(Ṽh+1)
2(s̄τh, ā

τ
h)
)∥∥∥∥∥

Σ̄−1
h

≤ 6

√
H4d3 log

(
(λ+K)2KdH2

λδ

)
(50)

and similar to term (2), it holds that for all h, s, a ∈ [H]× S ×A,

∥ϕ(s, a)∥Σ̄−1
h

≤
√∥∥Σ̄−1

h

∥∥ ≤
√

2

κK
. (51)

Combining (45), (46), (47), (48), (49), (50), (51) and the assumption that K ≥
max{ 4L2

H2d3κ ,
32E2

d2κ2 ,
16λ2

d2κ }, we obtain with probability 1− 3δ for all h, s, a ∈ [H]× S ×A,∣∣∣⟨ϕ(s, a), β̃h⟩[0,(H−h+1)2] − Ph(Ṽh+1)
2(s, a)

∣∣∣ ≤ 12

√
H4d3

κK
log

(
(λ+K)2KdH2

λδ

)
.

Step 2: The second step is to show for all h, s, a ∈ [H]× S ×A, with probability 1− 3δ,∣∣∣⟨ϕ(s, a), θ̃h⟩[0,H−h+1] − Ph(Ṽh+1)(s, a)
∣∣∣ ≤ 12

√
H2d3

κK
log

(
(λ+K)2KdH2

λδ

)
. (52)

The proof of Step 2 is nearly identical to Step 1 except Ṽ 2
h is replaced by Ṽh.

Step 3: The last step is to prove suph||σ̃2
h − σ2

Ṽh+1
||∞ ≤ 36

√
H4d3

κK log
(

(λ+K)2KdH2

λδ

)
with high

probability.

Proof of Step 3. By (52),∣∣∣[〈ϕ(·, ·), θ̃h〉[0,H−h+1]

]2 − [Ph(Ṽh+1)(s, a)
]2∣∣∣

=
∣∣∣⟨ϕ(s, a), θ̃h⟩[0,H−h+1] + Ph(Ṽh+1)(s, a)

∣∣∣ · ∣∣∣⟨ϕ(s, a), θ̃h⟩[0,H−h+1] − Ph(Ṽh+1)(s, a)
∣∣∣

≤2H ·
∣∣∣⟨ϕ(s, a), θ̃h⟩[0,H−h+1] − Ph(Ṽh+1)(s, a)

∣∣∣ ≤ 24

√
H4d3

κK
log

(
(λ+K)2KdH2

λδ

)
.

Combining this with Step 1, we have with probability 1− 6δ, ∀h, s, a ∈ [H]× S ×A,∣∣∣∣ṼarhṼh+1(s, a)−VarPh
Ṽh+1(s, a)

∣∣∣∣ ≤ 36

√
H4d3

κK
log

(
(λ+K)2KdH2

λδ

)
.

Finally, by the non-expansiveness of operator max{1, ·}, the proof is complete.
13Note that the conclusion in (Jin et al., 2021) hold here even though we have an extra constant C2.
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D.3.4 VALIDITY OF OUR PESSIMISM

Recall the definition Λ̂h =
∑K

τ=1 ϕ (sτh, a
τ
h)ϕ (sτh, a

τ
h)

⊤
/σ̃2

h(s
τ
h, a

τ
h) + λ · I and

Λh =
∑K

τ=1 ϕ(s
τ
h, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤/σ2
Ṽh+1

(sτh, a
τ
h)+λI . Then we have the following lemma to bound

the term
√
ϕ(s, a)⊤Λ̂−1

h ϕ(s, a) by
√
ϕ(s, a)⊤Λ−1

h ϕ(s, a).

Lemma D.11 (Private version of lemma C.3 in (Yin et al., 2022)). Denote the quantities C1 =

max{2λ, 128 log(2dH/δ), 128H4 log(2dH/δ)
κ2 } and C2 = Õ(H12d3/κ5). Suppose the number of

episode K satisfies K > max{C1, C2} and the condition in Lemma D.10, under the high probability
events in Lemma D.2 and Lemma D.10, it holds that with probability 1 − 2δ, for all h, s, a ∈
[H]× S ×A, √

ϕ(s, a)⊤Λ̂−1
h ϕ(s, a) ≤ 2

√
ϕ(s, a)⊤Λ−1

h ϕ(s, a).

Proof of Lemma D.11. By definition
√
ϕ(s, a)⊤Λ̂−1

h ϕ(s, a) = ∥ϕ(s, a)∥Λ̂−1
h

. Then denote

Λ̂′
h =

1

K
Λ̂h, Λ′

h =
1

K
Λh,

where Λh =
∑K

τ=1 ϕ(s
τ
h, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤/σ2
Ṽh+1

(sτh, a
τ
h) + λI . Under the assumption of K, by the

conclusion in Lemma D.10, we have∥∥∥Λ̂′
h − Λ′

h

∥∥∥ ≤ sup
s,a

∥∥∥∥∥ϕ(s, a)ϕ(s, a)⊤σ̃2
h(s, a)

− ϕ(s, a)ϕ(s, a)⊤

σ2
Ṽh+1

(s, a)

∥∥∥∥∥
≤ sup

s,a

∣∣∣∣∣ σ̃
2
h(s, a)− σ2

Ṽh+1
(s, a)

σ̃2
h(s, a) · σ2

Ṽh+1
(s, a)

∣∣∣∣∣ · ∥ϕ(s, a)∥2
≤ sup

s,a

∣∣∣∣∣ σ̃
2
h(s, a)− σ2

Ṽh+1
(s, a)

1

∣∣∣∣∣ · 1
≤36

√
H4d3

κK
log

(
(λ+K)2KdH2

λδ

)
.

(53)

Next by Lemma E.12 (with ϕ to be ϕ/σṼh+1
and therefore C = 1) and a union bound, it holds with

probability 1− δ, for all h ∈ [H],∥∥∥∥Λ′
h −

(
Eµ,h[ϕ(s, a)ϕ(s, a)

⊤/σ2
Ṽh+1

(s, a)] +
λ

K
Id

)∥∥∥∥ ≤ 4
√
2√
K

(
log

2dH

δ

)1/2

.

Therefore by Weyl’s inequality and the assumption that K satisfies that
K > max{2λ, 128 log(2dH/δ), 128H4 log(2dH/δ)

κ2 }, the above inequality leads to

∥Λ′
h∥ =λmax(Λ

′
h) ≤ λmax

(
Eµ,h[ϕ(s, a)ϕ(s, a)

⊤/σ2
Ṽh+1

(s, a)]
)
+

λ

K
+

4
√
2√
K

(
log

2dH

δ

)1/2

=
∥∥∥Eµ,h[ϕ(s, a)ϕ(s, a)

⊤/σ2
Ṽh+1

(s, a)]
∥∥∥
2
+

λ

K
+

4
√
2√
K

(
log

2dH

δ

)1/2

≤∥ϕ(s, a)∥2 + λ

K
+

4
√
2√
K

(
log

2dH

δ

)1/2

≤ 1 +
λ

K
+

4
√
2√
K

(
log

2dH

δ

)1/2

≤ 2,

λmin(Λ
′
h) ≥λmin

(
Eµ,h[ϕ(s, a)ϕ(s, a)

⊤/σ2
Ṽh+1

(s, a)]
)
+

λ

K
− 4

√
2√
K

(
log

2dH

δ

)1/2

≥λmin

(
Eµ,h[ϕ(s, a)ϕ(s, a)

⊤/σ2
Ṽh+1

(s, a)]
)
− 4

√
2√
K

(
log

2dH

δ

)1/2

≥ κ

H2
− 4

√
2√
K

(
log

2dH

δ

)1/2

≥ κ

2H2
.
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Hence with probability 1− δ, ∥Λ′
h∥ ≤ 2 and

∥∥Λ′−1
h

∥∥ = λ−1
min(Λ

′
h) ≤ 2H2

κ . Similarly, one can show∥∥∥Λ̂′−1
h

∥∥∥ ≤ 2H2

κ with probability 1− δ using identical proof.

Now apply Lemma E.11 and a union bound to Λ̂′
h and Λ′

h, we obtain with probability 1− δ, for all
h, s, a ∈ [H]× S ×A,

∥ϕ(s, a)∥Λ̂′−1
h

≤

[
1 +

√∥∥Λ′−1
h

∥∥ · ∥Λ′
h∥ ·

∥∥∥Λ̂′−1
h

∥∥∥ · ∥∥∥Λ̂′
h − Λ′

h

∥∥∥] · ∥ϕ(s, a)∥Λ′−1
h

≤

[
1 +

√
2H2

κ
· 2 · 2H

2

κ
·
∥∥∥Λ̂′

h − Λ′
h

∥∥∥] · ∥ϕ(s, a)∥Λ′−1
h

≤

1 +
√√√√288H4

κ2

(√
H4d3

κK
log

(
(λ+K)2KdH2

λδ

)) · ∥ϕ(s, a)∥Λ′−1
h

≤2 ∥ϕ(s, a)∥Λ′−1
h

where the third inequality uses (53) and the last inequality uses K > Õ(H12d3/κ5). Note the
conclusion can be derived directly by the above inequality multiplying 1/

√
K on both sides.

In order to bound
∥∥∥∑K

τ=1 xτητ

∥∥∥
Λ̂−1

h

, we apply the following Lemma D.12.

Lemma D.12 (Lemma C.4 in (Yin et al., 2022)). Recall xτ =
ϕ(sτh,a

τ
h)

σ̃h(sτh,a
τ
h)

and

ητ =
(
rτh + Ṽh+1

(
sτh+1

)
−
(
ThṼh+1

)
(sτh, a

τ
h)
)
/σ̃h(s

τ
h, a

τ
h). Denote

ξ := sup
V ∈[0,H], s′∼Ph(s,a), h∈[H]

∣∣∣∣rh + V (s′)− (ThV ) (s, a)

σV (s, a)

∣∣∣∣ .
Suppose K ≥ Õ(H12d3/κ5)14, then with probability 1− δ,∥∥∥∥∥

K∑
τ=1

xτητ

∥∥∥∥∥
Λ̂−1

h

≤ Õ
(
max

{√
d, ξ
})

,

where Õ absorbs constants and Polylog terms.

Now we are ready to prove the following key lemma, which gives a high probability bound for∣∣∣(ThṼh+1 − T̃hṼh+1)(s, a)
∣∣∣.

Lemma D.13. Assume K > max{M1,M2,M3,M4}, for any 0 < λ < κ, suppose
√
d > ξ,

where ξ := supV ∈[0,H], s′∼Ph(s,a), h∈[H]

∣∣∣∣ rh+V (s′)−(ThV )(s,a)

σV (s,a)

∣∣∣∣. Then with probability 1− δ, for all

h, s, a ∈ [H]× S ×A,∣∣∣(ThṼh+1 − T̃hṼh+1)(s, a)
∣∣∣ ≤ Õ

(√
d

√
ϕ(s, a)⊤Λ̃−1

h ϕ(s, a)

)
+

D

K
,

where Λ̃h =
∑K

τ=1 ϕ(s
τ
h, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤/σ̃2
h(s

τ
h, a

τ
h) + λI +K2,

D = Õ

(
H2L

κ
+

H4E
√
d

κ3/2
+H3

√
d+

H2
√
Ed

κ

)
= Õ

(
H2L

κ
+

H4E
√
d

κ3/2
+H3

√
d

)
and Õ absorbs constants and Polylog terms.

14Note that here the assumption is stronger than the assumption in (Yin et al., 2022), therefore the conclusion
of Lemma C.4 holds.
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Proof of Lemma D.13. The proof is by combining (40), (42), Lemma D.4, Lemma D.6, Lemma D.7,
Lemma D.8, Lemma D.12 and a union bound.

Remark D.14. Under the same assumption of Lemma D.13, because of Remark D.9 and Lemma D.11,
we have with probability 1− δ, for all h, s, a ∈ [H]× S ×A,∣∣∣(ThṼh+1 − T̃hṼh+1)(s, a)

∣∣∣ ≤ Õ

(√
d

√
ϕ(s, a)⊤Λ̃−1

h ϕ(s, a)

)
+

D

K

≤Õ

(√
d

√
ϕ(s, a)⊤Λ̂−1

h ϕ(s, a)

)
+

2D

K

≤Õ

(
2
√
d
√
ϕ(s, a)⊤Λ−1

h ϕ(s, a)

)
+

2D

K
.

(54)

Because D = Õ
(

H2L
κ + H4E

√
d

κ3/2 +H3
√
d
)

and Õ absorbs constant, we will write as below for
simplicity: ∣∣∣(ThṼh+1 − T̃hṼh+1)(s, a)

∣∣∣ ≤ Õ

(√
d
√

ϕ(s, a)⊤Λ−1
h ϕ(s, a)

)
+

D

K
. (55)

D.3.5 FINALIZE THE PROOF OF THE FIRST PART

We are ready to prove the first part of Theorem 4.1.

Theorem D.15 (First part of Theorem 4.1). Let K be the number of episodes. Suppose
√
d > ξ, where

ξ := supV ∈[0,H], s′∼Ph(s,a), h∈[H]

∣∣∣∣ rh+V (s′)−(ThV )(s,a)

σV (s,a)

∣∣∣∣ and K > max{M1,M2,M3,M4}.

Then for any 0 < λ < κ, with probability 1 − δ, for all policy π simultaneously, the output π̂
of Algorithm 2 satisfies

vπ − vπ̂ ≤ Õ

(
√
d ·

H∑
h=1

Eπ

[(
ϕ(·, ·)⊤Λ−1

h ϕ(·, ·)
)1/2])

+
DH

K
,

where Λh =
∑K

τ=1
ϕ(sτh,a

τ
h)·ϕ(s

τ
h,a

τ
h)

⊤

σ2
Ṽh+1(sτ

h
,aτ

h
)

+ λId, D = Õ
(

H2L
κ + H4E

√
d

κ3/2 +H3
√
d
)

and Õ absorbs

constants and Polylog terms.

Proof of Theorem D.15. Combining Lemma D.3 and Remark D.14, we have with probability 1− δ,
for all policy π simultaneously,

V π
1 (s)− V π̂

1 (s) ≤ Õ

(
√
d ·

H∑
h=1

Eπ

[(
ϕ(·, ·)⊤Λ−1

h ϕ(·, ·)
)1/2∣∣∣s1 = s

])
+

DH

K
, (56)

now the proof is complete by taking the initial distribution d1 on both sides.

D.3.6 FINALIZE THE PROOF OF THE SECOND PART

To prove the second part of Theorem 4.1, we begin with a crude bound on suph

∥∥∥V ⋆
h − Ṽh

∥∥∥
∞

.

Lemma D.16 (Private version of Lemma C.8 in (Yin et al., 2022)). Suppose K ≥
max{M1,M2,M3,M4}, under the high probability event in Lemma D.13, with probability at
least 1− δ,

sup
h

∥∥∥V ⋆
h − Ṽh

∥∥∥
∞

≤ Õ

(
H2

√
d√

κK

)
.

Proof of Lemma D.16. Step 1: The first step is to show with probability at least 1 − δ,
suph

∥∥V ⋆
h − V π̂

h

∥∥
∞ ≤ Õ

(
H2

√
d√

κK

)
.
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Indeed, combine Lemma D.3 and Lemma D.13, similar to the proof of Theorem D.15, we directly
have with probability 1− δ, for all policy π simultaneously, and for all s ∈ S, h ∈ [H],

V π
h (s)− V π̂

h (s) ≤ Õ

(
√
d ·

H∑
t=h

Eπ

[(
ϕ(·, ·)⊤Λ−1

t ϕ(·, ·)
)1/2∣∣∣sh = s

])
+

DH

K
, (57)

Next, since K ≥ max

{
512 log( 2Hd

δ )
κ2 , 4λ

κ

}
, by Lemma E.13 and a union bound over h ∈ [H], with

probability 1− δ,

sup
s,a

∥ϕ(s, a)∥Λ−1
h

≤ 2√
K

sup
s,a

∥ϕ(s, a)∥(Λp
h)

−1 ≤ 2√
K

√
λ−1
min(Λ

p
h) ≤

2H√
κK

, ∀h ∈ [H],

where Λp
h = Eµ,h[σ

−2

Ṽh+1
(s, a)ϕ(s, a)ϕ(s, a)⊤] and λmin(Λ

p
h) ≥

κ
H2 .

Lastly, taking π = π⋆ in (57) to obtain

0 ≤ V π⋆

h (s)− V π̂
h (s) ≤Õ

(
√
d ·

H∑
t=h

Eπ⋆

[(
ϕ(·, ·)⊤Λ−1

t ϕ(·, ·)
)1/2∣∣∣sh = s

])
+

DH

K

≤Õ

(
H2

√
d√

κK

)
+ Õ

(
H3L/κ

K
+

H5E
√
d/κ3/2

K
+

H4
√
d

K

)
.

(58)

This implies by using the condition K > max{H2L2

dκ , H6E2

κ2 , H4κ}, we finish the proof of Step 1.

Step 2: The second step is to show with probability 1− δ, suph
∥∥∥Ṽh − V π̂

h

∥∥∥
∞

≤ Õ
(

H2
√
d√

κK

)
.

Indeed, applying Lemma E.7 with π = π′ = π̂, then with probability 1− δ, for all s, h∣∣∣Ṽh(s)− V π̂
h (s)

∣∣∣ = ∣∣∣∣∣
H∑
t=h

Eπ̂

[
Q̂h(sh, ah)−

(
ThṼh+1

)
(sh, ah)

∣∣∣sh = s
]∣∣∣∣∣

≤
H∑
t=h

∥∥∥(T̃hṼh+1 − ThṼh+1)(s, a)
∥∥∥
∞

+H · ∥Γh(s, a)∥∞

≤Õ

(
H
√
d

∥∥∥∥√ϕ(s, a)⊤Λ−1
h ϕ(s, a)

∥∥∥∥
∞

)
+ Õ

(
DH

K

)
≤Õ

(
H2

√
d√

κK

)
,

where the second inequality uses Lemma D.13, Remark D.14 and the last inequality holds due to the
same reason as Step 1.

Step 3: The proof of the lemma is complete by combining Step 1, Step 2, triangular inequality and a
union bound.

Then we can give a high probability bound of suph||σ2
Ṽh+1

− σ⋆2
h ||∞.

Lemma D.17 (Private version of Lemma C.10 in (Yin et al., 2022)). Recall σ2
Ṽh+1

=

max
{
1,VarPh

Ṽh+1

}
and σ⋆2

h = max
{
1,VarPh

V ⋆
h+1

}
. Suppose K ≥ max{M1,M2,M3,M4},

then with probability 1− δ,

sup
h
||σ2

Ṽh+1
− σ⋆2

h ||∞ ≤ Õ

(
H3

√
d√

κK

)
.
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Proof of Lemma D.17. By definition and the non-expansiveness of max{1, ·}, we have∥∥∥σ2
Ṽh+1

− σ⋆2
h

∥∥∥
∞

≤
∥∥∥VarṼh+1 −VarV ⋆

h+1

∥∥∥
∞

≤
∥∥∥Ph

(
Ṽ 2
h+1 − V ⋆2

h+1

)∥∥∥
∞

+
∥∥∥(PhṼh+1)

2 − (PhV
⋆
h+1)

2
∥∥∥
∞

≤
∥∥∥Ṽ 2

h+1 − V ⋆2
h+1

∥∥∥
∞

+
∥∥∥(PhṼh+1 + PhV

⋆
h+1)(PhṼh+1 − PhV

⋆
h+1)

∥∥∥
∞

≤2H
∥∥∥Ṽh+1 − V ⋆

h+1

∥∥∥
∞

+ 2H
∥∥∥PhṼh+1 − PhV

⋆
h+1

∥∥∥
∞

≤Õ

(
H3

√
d√

κK

)
.

The second inequality is because of the definition of variance. The last inequality comes from
Lemma D.16.

We transfer
√
ϕ(s, a)⊤Λ−1

h ϕ(s, a) to
√
ϕ(s, a)⊤Λ⋆−1

h ϕ(s, a) by the following Lemma D.18.

Lemma D.18 (Private version of Lemma C.11 in (Yin et al., 2022)). Suppose K ≥
max{M1,M2,M3,M4}, then with probability 1− δ,√

ϕ(s, a)⊤Λ−1
h ϕ(s, a) ≤ 2

√
ϕ(s, a)⊤Λ⋆−1

h ϕ(s, a), ∀h, s, a ∈ [H]× S ×A,

Proof of Lemma D.18. By definition
√
ϕ(s, a)⊤Λ−1

h ϕ(s, a) = ∥ϕ(s, a)∥Λ−1
h

. Then denote

Λ′
h =

1

K
Λh, Λ⋆′

h =
1

K
Λ⋆
h,

where Λ⋆
h =

∑K
τ=1 ϕ(s

τ
h, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤/σ2
V ⋆
h+1

(sτh, a
τ
h) + λI . Under the condition of K, by

Lemma D.17, with probability 1− δ, for all h ∈ [H],

∥∥∥Λ⋆′

h − Λ′
h

∥∥∥ ≤ sup
s,a

∥∥∥∥∥ϕ(s, a)ϕ(s, a)⊤σ⋆2
h (s, a)

− ϕ(s, a)ϕ(s, a)⊤

σ2
Ṽh+1

(s, a)

∥∥∥∥∥
≤ sup

s,a

∣∣∣∣∣σ
⋆2
h (s, a)− σ2

Ṽh+1
(s, a)

σ⋆2
h (s, a) · σ2

Ṽh+1
(s, a)

∣∣∣∣∣ · ∥ϕ(s, a)∥2
≤ sup

s,a

∣∣∣∣∣σ
⋆2
h (s, a)− σ2

Ṽh+1
(s, a)

1

∣∣∣∣∣ · 1
≤Õ

(
H3

√
d√

κK

)
.

(59)

Next by Lemma E.12 (with ϕ to be ϕ/σV ⋆
h+1

and C = 1), it holds with probability 1− δ,

∥∥∥∥Λ⋆′

h −
(
Eµ,h[ϕ(s, a)ϕ(s, a)

⊤/σ2
V ⋆
h+1

(s, a)] +
λ

K
Id

)∥∥∥∥ ≤ 4
√
2√
K

(
log

2dH

δ

)1/2

.
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Therefore by Weyl’s inequality and the condition K > max{2λ, 128 log
(
2dH
δ

)
, 128H4 log(2dH/δ)

κ2 },
the above inequality implies∥∥∥Λ⋆′

h

∥∥∥ =λmax(Λ
⋆′

h ) ≤ λmax

(
Eµ,h[ϕ(s, a)ϕ(s, a)

⊤/σ2
V ⋆
h+1

(s, a)]
)
+

λ

K
+

4
√
2√
K

(
log

2dH

δ

)1/2

≤
∥∥∥Eµ,h[ϕ(s, a)ϕ(s, a)

⊤/σ2
V ⋆
h+1

(s, a)]
∥∥∥+ λ

K
+

4
√
2√
K

(
log

2dH

δ

)1/2

≤∥ϕ(s, a)∥2 + λ

K
+

4
√
2√
K

(
log

2dH

δ

)1/2

≤ 1 +
λ

K
+

4
√
2√
K

(
log

2dH

δ

)1/2

≤ 2,

λmin(Λ
⋆′

h ) ≥λmin

(
Eµ,h[ϕ(s, a)ϕ(s, a)

⊤/σ2
V ⋆
h+1

(s, a)]
)
+

λ

K
− 4

√
2√
K

(
log

2dH

δ

)1/2

≥λmin

(
Eµ,h[ϕ(s, a)ϕ(s, a)

⊤/σ2
V ⋆
h+1

(s, a)]
)
− 4

√
2√
K

(
log

2dH

δ

)1/2

≥ κ

H2
− 4

√
2√
K

(
log

2dH

δ

)1/2

≥ κ

2H2
.

Hence with probability 1− δ,
∥∥∥Λ⋆′

h

∥∥∥ ≤ 2 and
∥∥∥Λ⋆′−1

h

∥∥∥ = λ−1
min(Λ

⋆′

h ) ≤ 2H2

κ . Similarly, we can show

that
∥∥∥Λ′−1

h

∥∥∥ ≤ 2H2

κ holds with probability 1− δ by using identical proof.

Now apply Lemma E.11 and a union bound to Λ⋆′

h and Λ′
h, we obtain with probability 1− δ, for all

h, s, a ∈ [H]× S ×A,

∥ϕ(s, a)∥Λ′−1
h

≤
[
1 +

√∥∥Λ⋆′−1
h

∥∥ · ∥∥Λ⋆′
h

∥∥ · ∥∥Λ′−1
h

∥∥ · ∥∥Λ⋆′
h − Λ′

h

∥∥] · ∥ϕ(s, a)∥
Λ⋆′−1

h

≤

[
1 +

√
2H2

κ
· 2 · 2H

2

κ
·
∥∥Λ⋆′

h − Λ′
h

∥∥] · ∥ϕ(s, a)∥
Λ⋆′−1

h

≤

1 +
√√√√H4

κ2

[
Õ

(
H3

√
d√

κK

)] · ∥ϕ(s, a)∥
Λ⋆′−1

h

≤2 ∥ϕ(s, a)∥
Λ⋆′−1

h

where the third inequality uses (59) and the last inequality uses K ≥ Õ(H14d/κ5). The conclusion
can be derived directly by the above inequality multiplying 1/

√
K on both sides.

Finally, the second part of Theorem 4.1 can be proven by combining Theorem D.15 (with π = π⋆)
and Lemma D.18.

D.4 PUT EVERYTHING TOGHTHER

Combining Lemma D.1, Theorem D.15, and the discussion above, the proof of Theorem 4.1 is
complete.

E ASSISTING TECHNICAL LEMMAS

Lemma E.1 (Multiplicative Chernoff bound (Chernoff et al., 1952)). Let X be a Binomial random
variable with parameter p, n. For any 1 ≥ θ > 0, we have that

P[X < (1− θ)pn] < e−
θ2pn

2 , and P[X ≥ (1 + θ)pn] < e−
θ2pn

3

Lemma E.2 (Hoeffding’s Inequality (Sridharan, 2002)). Let x1, ..., xn be independent bounded
random variables such that E[xi] = 0 and |xi| ≤ ξi with probability 1. Then for any ϵ > 0 we have

P

(
1

n

n∑
i=1

xi ≥ ϵ

)
≤ e

− 2n2ϵ2∑n
i=1

ξ2
i .
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Lemma E.3 (Bernstein’s Inequality). Let x1, ..., xn be independent bounded random variables such
that E[xi] = 0 and |xi| ≤ ξ with probability 1. Let σ2 = 1

n

∑n
i=1 Var[xi], then with probability

1− δ we have
1

n

n∑
i=1

xi ≤
√

2σ2 · log(1/δ)
n

+
2ξ

3n
log(1/δ).

Lemma E.4 (Empirical Bernstein’s Inequality (Maurer & Pontil, 2009)). Let x1, ..., xn be i.i.d
random variables such that |xi| ≤ ξ with probability 1. Let x̄ = 1

n

∑n
i=1 xi and V̂n = 1

n

∑n
i=1(xi −

x̄)2, then with probability 1− δ we have∣∣∣∣∣ 1n
n∑

i=1

xi − E[x]

∣∣∣∣∣ ≤
√

2V̂n · log(2/δ)
n

+
7ξ

3n
log(2/δ).

Lemma E.5 (Lemma I.8 in (Yin & Wang, 2021b)). Let n ≥ 2 and V ∈ RS be any function with
||V ||∞ ≤ H , P be any S-dimensional distribution and P̂ be its empirical version using n samples.
Then with probability 1− δ,∣∣∣∣∣√VarP̂ (V )−

√
n− 1

n
VarP (V )

∣∣∣∣∣ ≤ 2H

√
log(2/δ)

n− 1
.

Lemma E.6 (Claim 2 in (Vietri et al., 2020)). Let y ∈ R be any positive real number. Then for all
x ∈ R with x ≥ 2y, it holds that 1

x−y ≤ 1
x + 2y

x2 .

E.1 EXTENDED VALUE DIFFERENCE

Lemma E.7 (Extended Value Difference (Section B.1 in (Cai et al., 2020))). Let π = {πh}Hh=1 and
π′ = {π′

h}Hh=1 be two arbitrary policies and let {Q̂h}Hh=1 be any given Q-functions. Then define
V̂h(s) := ⟨Q̂h(s, ·), πh(· | s)⟩ for all s ∈ S. Then for all s ∈ S,

V̂1(s)− V π′

1 (s) =

H∑
h=1

Eπ′

[
⟨Q̂h (sh, ·) , πh (· | sh)− π′

h (· | sh)⟩ | s1 = s
]

+

H∑
h=1

Eπ′

[
Q̂h (sh, ah)−

(
ThV̂h+1

)
(sh, ah) | s1 = s

] (60)

where (ThV )(·, ·) := rh(·, ·) + (PhV )(·, ·) for any V ∈ RS .

Lemma E.8 (Lemma I.10 in (Yin & Wang, 2021b)). Let π̂ = {π̂h}Hh=1 and Q̂h(·, ·) be the ar-
bitrary policy and Q-function and also V̂h(s) = ⟨Q̂h(s, ·), π̂h(·|s)⟩ ∀s ∈ S, and ξh(s, a) =

(ThV̂h+1)(s, a)− Q̂h(s, a) element-wisely. Then for any arbitrary π, we have

V π
1 (s)− V π̂

1 (s) =

H∑
h=1

Eπ [ξh(sh, ah) | s1 = s]−
H∑

h=1

Eπ̂ [ξh(sh, ah) | s1 = s]

+

H∑
h=1

Eπ

[
⟨Q̂h (sh, ·) , πh (·|sh)− π̂h (·|sh)⟩ | s1 = s

]
where the expectation are taken over sh, ah.

E.2 ASSISTING LEMMAS FOR LINEAR MDP SETTING

Lemma E.9 (Hoeffding inequality for self-normalized martingales (Abbasi-Yadkori et al., 2011)).
Let {ηt}∞t=1 be a real-valued stochastic process. Let {Ft}∞t=0 be a filtration, such that ηt is Ft-
measurable. Assume ηt also satisfies ηt given Ft−1 is zero-mean and R-subgaussian, i.e.

∀λ ∈ R, E
[
eληt | Ft−1

]
≤ eλ

2R2/2.
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Let {xt}∞t=1 be an Rd-valued stochastic process where xt is Ft−1 measurable and ∥xt∥ ≤ L. Let
Λt = λId +

∑t
s=1 xsx

⊤
s . Then for any δ > 0, with probability 1− δ, for all t > 0,∥∥∥∥∥

t∑
s=1

xsηs

∥∥∥∥∥
2

Λ−1
t

≤ 8R2 · d
2
log

(
λ+ tL

λδ

)
.

Lemma E.10 (Bernstein inequality for self-normalized martingales (Zhou et al., 2021)). Let {ηt}∞t=1
be a real-valued stochastic process. Let {Ft}∞t=0 be a filtration, such that ηt is Ft-measurable.
Assume ηt also satisfies

|ηt| ≤ R,E [ηt | Ft−1] = 0,E
[
η2t | Ft−1

]
≤ σ2.

Let {xt}∞t=1 be an Rd-valued stochastic process where xt is Ft−1 measurable and ∥xt∥ ≤ L. Let
Λt = λId +

∑t
s=1 xsx

⊤
s . Then for any δ > 0, with probability 1− δ, for all t > 0,∥∥∥∥∥

t∑
s=1

xsηs

∥∥∥∥∥
Λ−1

t

≤ 8σ

√
d log

(
1 +

tL2

λd

)
· log

(
4t2

δ

)
+ 4R log

(
4t2

δ

)
Lemma E.11 (Lemma H.4 in (Yin et al., 2022)). Let Λ1 and Λ2 ∈ Rd×d be two positive semi-definite
matrices. Then:

∥Λ−1
1 ∥ ≤ ∥Λ−1

2 ∥+ ∥Λ−1
1 ∥ · ∥Λ−1

2 ∥ · ∥Λ1 − Λ2∥
and

∥ϕ∥Λ−1
1

≤
[
1 +

√
∥Λ−1

2 ∥ · ∥Λ2∥ · ∥Λ−1
1 ∥ · ∥Λ1 − Λ2∥

]
· ∥ϕ∥Λ−1

2
.

for all ϕ ∈ Rd.

Lemma E.12 (Lemma H.4 in (Min et al., 2021)). Let ϕ : S ×A → Rd satisfies ∥ϕ(s, a)∥ ≤ C for
all s, a ∈ S × A. For any K > 0, λ > 0, define ḠK =

∑K
k=1 ϕ(sk, ak)ϕ(sk, ak)

⊤ + λId where
(sk, ak)’s are i.i.d samples from some distribution ν. Then with probability 1− δ,∥∥∥∥ ḠK

K
− Eν

[
ḠK

K

]∥∥∥∥ ≤ 4
√
2C2

√
K

(
log

2d

δ

)1/2

.

Lemma E.13 (Lemma H.5 in (Min et al., 2021)). Let ϕ : S × A → Rd be a bounded function s.t.
∥ϕ∥2 ≤ C. Define ḠK =

∑K
k=1 ϕ(sk, ak)ϕ(sk, ak)

⊤ + λId where (sk, ak)’s are i.i.d samples from
some distribution ν. Let G = Eν [ϕ(s, a)ϕ(s, a)

⊤]. Then for any δ ∈ (0, 1), if K satisfies

K ≥ max

{
512C4

∥∥G−1
∥∥2 log(2d

δ

)
, 4λ

∥∥G−1
∥∥} .

Then with probability at least 1− δ, it holds simultaneously for all u ∈ Rd that

∥u∥Ḡ−1
K

≤ 2√
K

∥u∥G−1 .

Lemma E.14 (Lemma H.9 in (Yin et al., 2022)). For a linear MDP, for any 0 ≤ V (·) ≤ H , there
exists a wh ∈ Rd s.t. ThV = ⟨ϕ,wh⟩ and ∥wh∥2 ≤ 2H

√
d for all h ∈ [H]. Here Th(V )(s, a) =

rh(x, a) + (PhV )(s, a). Similarly, for any π, there exists wπ
h ∈ Rd, such that Qπ

h = ⟨ϕ,wπ
h⟩ with

∥wπ
h∥2 ≤ 2(H − h+ 1)

√
d.

E.3 ASSISTING LEMMAS FOR DIFFERENTIAL PRIVACY

Lemma E.15 (Converting zCDP to DP (Bun & Steinke, 2016)). If M satisfies ρ-zCDP then M
satisfies (ρ+ 2

√
ρ log(1/δ), δ)-DP.

Lemma E.16 (zCDP Composition (Bun & Steinke, 2016)). Let M : Un → Y and M ′ : Un → Z
be randomized mechanisms. Suppose that M satisfies ρ-zCDP and M ′ satisfies ρ′-zCDP. Define
M ′′ : Un → Y ×Z by M ′′(U) = (M(U),M ′(U)). Then M ′′ satisfies (ρ+ ρ′)-zCDP.
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Lemma E.17 (Adaptive composition and Post processing of zCDP (Bun & Steinke, 2016)). Let
M : Xn → Y and M ′ : Xn × Y → Z . Suppose M satisfies ρ-zCDP and M ′ satisfies ρ′-zCDP
(as a function of its first argument). Define M ′′ : Xn → Z by M ′′(x) = M ′(x,M(x)). Then M ′′

satisfies (ρ+ ρ′)-zCDP.

Definition E.18 (ℓ1 sensitivity). Define the ℓ1 sensitivity of a function f : NX 7→ Rd as

∆1(f) = sup
neighboring U,U ′

∥f(U)− f(U ′)∥1.

Definition E.19 (Laplace Mechanism (Dwork et al., 2014)). Given any function f : NX 7→ Rd, the
Laplace mechanism is defined as:

ML(x, f, ϵ) = f(x) + (Y1, · · · , Yd),

where Yi are i.i.d. random variables drawn from Lap(∆1(f)/ϵ).

Lemma E.20 (Privacy guarantee of Laplace Mechanism (Dwork et al., 2014)). The Laplace mecha-
nism preserves (ϵ, 0)-differential privacy. For simplicity, we say ϵ-DP.

F DETAILS FOR THE EVALUATION PART

In the Evaluation part, we apply a synthetic linear MDP case that is similar to (Min et al., 2021; Yin
et al., 2022) but with some modifications for our evaluation task. The linear MDP example we use
consists of |S| = 2 states and |A| = 100 actions, while the feature dimension d = 10. We denote
S = {0, 1} and A = {0, 1, . . . , 99} respectively. For each action a ∈ {0, 1, . . . , 99}, we obtain a
vector a ∈ R8 via binary encoding. More specifically, each coordinate of a is either 0 or 1.

First, we define the following indicator function δ(s, a) =

{
1 if 1{s = 0} = 1{a = 0}
0 otherwise

, then

our non-stationary linear MDP example can be characterized by the following parameters.

The feature map ϕ is:
ϕ(s, a) =

(
a⊤, δ(s, a), 1− δ(s, a)

)⊤ ∈ R10.

The unknown measure νh is:

νh(0) = (0, · · · , 0, αh,1, αh,2) ,

νh(1) = (0, · · · , 0, 1− αh,1, 1− αh,2) ,

where {αh,1, αh,2}h∈[H] is a sequence of random values sampled uniformly from [0, 1].
The unknown vector θh is:

θh = (rh/8, 0, rh/8, 1/2− rh/2, rh/8, 0, rh/8, 0, rh/2, 1/2− rh/2) ∈ R10,

where rh is also sampled uniformly from [0, 1]. Therefore, the transition kernel follows Ph(s
′|s, a) =

⟨ϕ(s, a),νh(s
′)⟩ and the expected reward function rh(s, a) = ⟨ϕ(s, a), θh⟩.

Finally, the behavior policy is to always choose action a = 0 with probability p, and other actions
uniformly with probability (1− p)/99. Here we choose p = 0.6. The initial distribution is a uniform
distribution over S = {0, 1}.
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