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Abstract

We consider the adversarial linear contextual bandit setting, which allows for
the loss functions associated with each of K arms to change over time without
restriction. Assuming the d-dimensional contexts are drawn from a fixed known
distribution, the worst-case expected regret over the course of T rounds is known
to scale as Õ(

√
KdT ). Under the additional assumption that the density of the

contexts is log-concave, we obtain a second-order bound of order Õ(K
√
dVT ) in

terms of the cumulative second moment of the learner’s losses VT , and a closely
related first-order bound of order Õ(K

√
dL∗

T ) in terms of the cumulative loss of
the best policy L∗

T . Since VT or L∗
T may be significantly smaller than T , these

improve over the worst-case regret whenever the environment is relatively benign.
Our results are obtained using a truncated version of the continuous exponential
weights algorithm over the probability simplex, which we analyse by exploiting a
novel connection to the linear bandit setting without contexts.

1 Introduction

The contextual bandit problem is a generalization of the multi-armed bandit setting in which a
learner observes relevant contextual information before choosing an arm. The goal of the learner is to
minimize the excess cumulative loss of the chosen arms compared to the best fixed policy for mapping
contexts to arms. This framework addresses a broad range of important real-world problems like
sequential treatment allocation (Tewari and Murphy, 2017), online recommendation (Beygelzimer
et al., 2011) or online advertising (Li et al., 2010), and is actively used in practice (Agarwal et al.,
2016). Numerous variants of the setting have been studied, which differ in the assumptions they
make about the losses and the contexts. In this paper, we focus on the recently introduced setting of
Neu and Olkhovskaya (2020) where the contexts are finite-dimensional i.i.d. random vectors, and
the losses are time-varying linear functions of the context that may potentially be generated by an
adversary. In this setting, the worst-case rate for the expected regret is known to be Õ(

√
T ) for time

horizon T (Neu and Olkhovskaya, 2020).

Our main contribution is to replace the worst-case rate by adaptive bounds. Specifically, we obtain a
bound of Õ(

√
VT ) in terms of a quadratic measure of variance VT for the losses of the algorithm, and

a bound of Õ(
√
L∗
T ), where L∗

T is the cumulative loss incurred by the optimal policy. Such bounds
in terms of L∗

T or VT are generally referred to as first-order and second-order bounds, respectively,
∗Work was done when the author was affiliated with Vrije Universiteit Amsterdam.
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and have been extensively studied in the bandit literature. They can lead to much stronger guarantees
in the often realistic case when T is large, but the losses vary little or when there exists a policy with
very low cumulative loss.

Worst-case guarantees in terms of T have first been proved for the contextual bandit problem with
finite policy classes by Auer et al. (2002b), with further improvements by Beygelzimer et al. (2011).
These methods can deal with adversarial losses and contexts, but only work for finite policy classes
and have run-time scaling linearly with the size of the class—which is generally unacceptable in
practice. This latter challenge has been addressed by a line of work culminating in Agarwal et al.
(2014), which only requires access to an optimization oracle over the policy class. Their results,
however, remain restricted to i.i.d. contexts and losses. An alternative line of work has been initiated
by Auer (2002); Chu et al. (2011); Abbasi-Yadkori et al. (2011), who studied the special case of
i.i.d. linear loss functions with changing decision sets. The case of i.i.d. contexts and adversarial
linear losses has first been studied by Neu and Olkhovskaya (2020).

Improvements of worst-case guarantees of order
√
T to first-order bounds scaling with

√
L∗
T have

been known for a variety of bandit settings since the works of Stoltz (2005); Allenberg et al. (2006),
and Neu (2015). Regarding contextual bandits, the COLT 2017 open problem of Agarwal et al.
(2017) asks for efficient algorithms that achieve first-order bounds for large, but finite, policy classes,
either when both contexts and losses are i.i.d. or when both are fully adversarial. First to answer the
open problem were Allen-Zhu et al. (2018), who obtained an optimal first-order regret guarantee for
adversarial losses and contexts, but with an algorithm that is inefficient for large policy classes. Foster
and Krishnamurthy (2021) provide the first efficient algorithm for the non-adversarial setting where
the loss function is fixed over time and one has access to an oracle that can solve various optimization
tasks over the policy class. We improve on these works in terms of the computational efficiency of
our algorithm and by allowing the loss function to vary adversarially over time, although we do rely
on the extra assumption that the loss functions are linear.

Another relevant framework is the adversarial linear bandit setting (without contexts), where there
also exist adaptive results (Bubeck et al., 2019; Lee et al., 2020; Ito et al., 2020). While conceptually
related, an important distinction is that the linear bandit setting assumes a fixed decision set, whereas
reducing the linear contextual bandit problem to a linear bandit problem requires the use of decision
sets that change as a function of the contexts.

Main Contributions. We consider a K-armed linear contextual bandit problem with d-dimensional
contexts over T rounds. The contexts are assumed to be drawn i.i.d., but the linear loss functions
mapping contexts to losses for the arms are chosen by an adaptive adversary. The aim of the learner
is to minimize their regret, which is the gap between the expected cumulative loss of the learner and
the expected cumulative loss of the best fixed policy π∗

T chosen in full knowledge of the sequence
of losses. In this setting, π∗

T is known to be a linear classifier, i.e. it chooses the arm with smallest
predicted loss, where the predictions are fixed linear functions of the context (see Section 2). The
goal is therefore to compete with all linear classifiers. We first obtain the following second-order
bound on the expected regret

RT = Õ
(
K
√
dVT

)
, (1)

where VT is defined in (5) as a measure of the cumulative second moments of the losses for the arms
played by the algorithm. Following Ito et al. (2020), we allow these moments to be centered around
optimistic estimates that can further improve the bound when available or can simply be set to zero
when they are not. We further obtain a first order bound of the form

RT (π
∗
T ) = Õ

(
K
√
dL∗

T

)
. (2)

The second-order bound is obtained using a truncated version of the continuous exponential weights
algorithm over the probability simplex, similar to the algorithm for linear non-contextual bandits of
Ito et al. (2020), and the first-order bound may be obtained as a corollary. As discussed in Section 3.3,
the computational complexity of this method is dominated by two steps that together require Õ(K5)+
(d/ϵ)O(1) per round for approximation up to precision ϵ > 0, which is computationally feasible for
moderate K and ϵ. Both results are not strict improvements on the worst-case rate of Õ(

√
KdT )

by Neu and Olkhovskaya (2020): first, they have a slightly worse dependence on K. We consider
this a price worth paying for the first adaptive bounds in this setting. Second, they require the extra
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assumption that the distribution of the contexts is log-concave. Although log-concavity is weaker
than assuming the contexts follow e.g. (truncated) Gaussian distributions, we conjecture that it may
not be necessary to obtain a computationally efficient algorithm. This conjecture is based on the
observation that there exists in fact an easy way to obtain at least the first-order bound (2) without the
log-concavity assumption, but with an algorithm that has no hope of being efficiently implemented.
As described in Section 2.2, this is possible by running the MYGA algorithm (Allen-Zhu et al., 2018)
on O( T

dK2 )
Kd experts that cover the set of linear classifiers to sufficient precision. The run-time of

this approach is prohibitive, because it scales linearly with the number of experts, which is a large
polynomial in T .

Techniques. The LinExp3 method of Neu and Olkhovskaya (2020) is based on an adaptation of
the classic Exp3 algorithm for regular multi-armed bandits (Auer et al., 2002a). A natural approach
would therefore be to replace the Exp3 component in LinExp3 by a method with first-order guarantees
for the multi-armed bandit setting, but, as discussed in Section D, this leads to difficulties controlling
the variance. Instead of building on Exp3, we therefore follow the perhaps surprising approach of
building our algorithm on continuous exponential weights over the probability simplex (van der
Hoeven et al., 2018). In particular, our approach is based on a combination of the recently proposed
techniques of Ito et al. (2020) for linear bandits with tools designed by Neu and Olkhovskaya (2020)
to deal with the contextual case.

Outline. The rest of the paper is organized as follows. After describing the setting in the next
section, we state a formal version of the simple first-order bound that can be obtained using the
MYGA algorithm (Theorem 2.1). This is followed by Section 3, which states our main results
corresponding to the regret bounds in Equations 1 and 2. Section 4 then gives a high-level overview
of the proofs, with pointers provided to the details in the appendix. Finally, Section 5 concludes with
discussion.

2 Preliminaries

Notation Let ∆K = {w ∈ RK |w1 ≥ 0, . . . , wK ≥ 0,
∑K
a=1 wa = 1} denote the (K − 1)-

dimensional probability simplex. For any positive semi-definite matrix M ∈ Rd×d, ∥v∥M =√
vTMv denotes the corresponding Mahalanobis norm, and for any positive integer n, we abbreviate

[n] = {1, . . . , n}.

2.1 Setting

We consider the setting of (Neu and Olkhovskaya, 2020), in which there is an interaction between a
learner and an unknown environment. This interaction proceeds in rounds indexed by t ∈ [T ], such
that for each t:

1. The environment commits to [K] parameter vectors θt,1, . . . , θt,K ∈ Rd without revealing
any to the learner.

2. A context vector Xt ∈ Rd is drawn i.i.d. from some fixed distribution D according to
Xt ∼ D, and revealed to the learner.

3. The learner commits to an actionAt ∈ [K], and incurs the loss ℓt(Xt, At), where ℓt(X, a) =
⟨X, θt,a⟩.

The environment is allowed to randomize its choices of θt,a. These must be independent from the
context Xt in round t, but they may depend on previous contexts Xs and actions As for s < t.

We write πt(a|Xt) for the policy of the learner in round t conditional on observing contextXt, so that
At ∼ πt(Xt), and we use the following notation for the expected cumulative losses of the algorithm
and policy π, respectively:

LT = E

[
T∑
t=1

ℓt(Xt, At)

]
, LπT = E

[
T∑
t=1

ℓt(Xt, π(Xt))

]
.
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Let Π be the set of all all stationary deterministic policies π : Rd → [K], we define the optimal policy
π∗ as π∗ = arg minπ∈Π L

π
T . Then the learner’s goal is to compete with policy π∗, as measured by

the expected regret:

RT = LT − Lπ
∗

T = E

[
T∑
t=1

〈
Xt, θt,At − θt,π∗(Xt)

〉]
,

where the expectation is taken over each Xt ∼ D, and any randomness applied by the learner or
environment in their respective choices. Using the linearity of the loss functions it can be shown that
the optimal policy is always a linear classifier (Neu and Olkhovskaya, 2020):

π∗
T (x) = arg min

a

〈
x,

T∑
t=1

E[θt,a]

〉
.

We may therefore restrict attention to competing with policies of the form

πβ(x) = arg min
a

⟨x, βa⟩ (β ∈ RK×d). (3)

For deriving our technical results, it will be useful to define the filtration Ft = σ({Xs, As : s ≤ t}),
and the notations Et [·] = E [ ·| Ft−1] and Pt [·] = P [ ·| Ft−1].

Assumptions Following Neu and Olkhovskaya (2020), we assume that ∥Xt∥ ≤ σ, ∥θt,a∥ ≤ R

and ℓt(x, a) ∈ [−1, 1] almost surely. In addition, the covariance matrix Σ = E[XXT

] of the context
distribution is assumed to be positive definite, with smallest eigenvalue λmin(Σ) > 0.

2.2 An Inefficient Algorithm

A first order bound for our problem can be obtained by instantiating the MYGA algorithm of Allen-
Zhu et al. (2018) for a set of Θ( T

K2d )
Kd experts that cover the parameter space of policies of the

form (3), which is guaranteed to contain the optimal policy π∗
T :

Theorem 2.1. Suppose that 0 ≤ ℓt(a,Xt) ≤ 1 almost surely for all a ∈ [K]. Then, by instantiating
MYGA with Θ( T

K2d )
Kd experts, it obtains the following first-order bound for the adversarial linear

contextual bandit problem:

RT = O
(
K
√
dL∗

T log T +K2d log T
)
. (4)

Although this provides a quick way to see that first-order bounds are possible, the resulting algorithm
is completely impractical, because its run-time is proportional to the number of experts, which grows
as a large polynomial in T . The proof, including a more detailed description of the experts, can be
found in Appendix A.

3 First- and Second-Order Bounds

In this section we present an algorithm using a novel adaptation of a method developed for the
adversarial linear bandit to be suitable for use in the adversarial linear contextual bandit setting.
The method proposed is based on a form of continuous exponential weights that has been shown
to lead to a first-order bound in the former (Ito et al., 2020). The algorithm allows for optimistic
estimates mt,a ∈ Rd for the environment’s choices θt,a, which can always be set to 0 when they are
not available. We show two types of guarantees. First, in Theorem 3.1, we obtain a second-order
regret bound in terms of the cumulative squared error of the estimates mt,a:

VT = E

[
T∑
s=1

⟨Xs, θs,As −ms,As⟩
2

]
. (5)

Taking mt,a = 0, this provides a second-order regret bound in terms of the squared losses. Al-
ternatively, mt,a may be estimated using an online regression algorithm, as described by Ito et al.
(2020). As our second result, we show in Theorem 3.2 that a first-order bound can be derived for the
same algorithm with a different choice of hyperparameters and the assumption that the losses are
non-negative.
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Algorithm 1 CONTEXTEW
Parameters: γ > 0, η1 ≥ . . . ≥ ηT > 0, m1, . . . ,mT

For t = 1, . . . , T :
1. Observe Xt.
2. Repeat:

Pick Qt from the distribution pt defined in (8), until
K∑
a=1

∥Qt,aXt∥2Σ−1
t,a

≤ dKγ2, (6)

where Σt,a is defined in (9).

3. Set Q̃t = Qt equal to the last sample of Qt, which caused the loop to exit, and choose an
arm according to At ∼ Q̃t.

4. Observe the loss ℓt(Xt, At) and estimate θ̂t,a for all a according to (12).

3.1 Algorithm Description

Our full algorithm is shown in Algorithm 1. As it is an adaptation of continuous exponential weights
for the contextual bandits setting, we refer to it as CONTEXTEW. It runs a two-stage sampling
procedure: after observing context Xt, the first stage of the algorithm samples a random policy
Q̃t ∈ ∆K , and then the second stage consists of drawing an arm At randomly from Q̃t. The
distribution of Q̃t is constructed as follows: first we sample a different policyQt from the exponential
weights distribution over the probability simplex with density proportional to

wt(q|Xt) = exp(−ηt
K∑
a=1

qa⟨Xt,

t−1∑
s=1

θ̂s,a +mt,a⟩), (7)

where ms,a is a function that is measurable with respect to Fs−1. The sum∑K
a=1 qa

〈
Xt,

∑t−1
s=1 θ̂s,a

〉
estimates the cumulative loss that the policy q would have incurred

if it had been played in all previous rounds. It relies on estimates θ̂s,a of the loss vectors θs,a, which
will be defined below, and a time-varying learning rate ηt > 0, which is hyperparameter of the
algorithm. The normalized density function corresponding to the weights in (7) is:

pt(q|Xt) =
wt(q|Xt)∫

∆K wt(q|Xt)dq
. (8)

Following Ito et al. (2020), we then introduce a rejection sampling step (6) to reduce the variance,
which is based on the following covariance matrices Σt,a corresponding to Qt:

Σt,a = Et
[
Q2
t,aXtX

T

t

]
, (9)

so that Q̃t ends up being sampled according to the following truncated exponential weights density:

p̃t(q|Xt) =
pt(q|Xt)1

{∑K
a=1 ∥qaXt∥2Σ−1

t,a
≤ dKγ2

}
Pt
[∑K

a=1 ∥qaXt∥2Σ−1
t,a

≤ dKγ2|Xt

] , (10)

with truncation level hyperparameter γ > 0. We will show that all Σt,a are invertible, as are their
analogues in which Qt is replaced by Q̃t:

Σ̃t,a = Et
[
Q̃2
t,aXtX

T

t

]
. (11)

It remains to specify our estimators for θt,a, which are defined as follows:

θ̂t,a = mt,a + Q̃t,aΣ̃
−1
t,aXt (⟨Xt, θt,a⟩ − ⟨Xt,mt,a⟩)1 {At = a} . (12)
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These estimates can be shown to be unbiased:

Et
[
θ̂t,a

]
= mt,a + Σ̃−1

t,aEt
[
Q̃t,aXtX

T

t 1 {At = a}
]
(θt,a −mt,a)

= mt,a + Σ̃−1
t,aEt

[
Q̃2
t,aXtX

T

t

]
(θt,a −mt,a) = θt,a.

3.2 Results

We instantiate CONTEXTEW with adaptive learning rates ηt. For our second-order result, these
are defined in terms of the empirical counterpart to Vt: V̂t =

∑t
s=1 ⟨Xs, θs,As

−ms,As
⟩2 , and we

abbreviate Gt = 8

√
V̂t−1 ln(2T 2) + 144 ln2 T + 176 lnT. Then we set

ηt = (100dKγ2 + d(V̂t−1 + 1 +Gt−1))
−1/2. (13)

This leads to the following second-order bound:
Theorem 3.1 (Second-Order). Suppose D has a log-concave density. Then, for γ = 4 log(10dKT ),
ηt as in (13) and any Ft−1-measurable estimates mt, the expected regret of CONTEXTEW is at most
RT = Õ(K

√
dVT ).

To tune ηt adaptively for our first-order bound, we define it using the algorithm’s empirical cumulative
loss L̂t =

∑t
s=1 ℓt(Xs, As), which acts as a self-confident empirical estimate of L∗

T . We further
abbreviate

Ht = 8

√
2L̂t lnT + 40 ln2 T + 72 lnT, (14)

and then set
ηt = (100dγ2 + dK(L̂t−1 + 1 +Ht−1))

−1/2. (15)
This leads to the following first-order bound:
Theorem 3.2 (First-Order). Suppose that D has a log-concave density and that 0 ≤ ℓt(a,Xt) ≤ 1
almost surely for all a ∈ [K]. Then, for γ = 4 log(10dKT ), ηt as in (15) and mt = 0, the expected
regret of CONTEXTEW is at most RT = Õ(K

√
dL∗

T ).

3.3 Computational Efficiency

The two computational bottlenecks in the algorithm are the cost of sampling from the output distribu-
tion pt(q|Xt) and computation of the covariance matrices Σt,a in each round.

Due to the log-linearity of our method, there exists several practical methods of sampling. As
mentioned in Ito et al. (2020), one can employ the methods of Lovász and Vempala (2007), which was
shown in Lovász and Vempala (2006) to enjoy a bound of O(K4log(1/ϵ)) (where ϵ is a bound on the
total variation distance between the output distribution and the target), but this still requires knowledge
of a density dominating the target distribution on all but a set with total starting mass ≤ ϵ/2. In
Narayanan and Rakhlin (2017), a method is developed for general log-concave distributions which,
specialized to log-linear distributions (and without additional assumptions on the initial distribution)
yields an O(K3ν2 + log(1/ϵ)) method when the geometry admits a ν-self concordant barrier. Since
there always exists a K-self-concordant barrier for a K-dimensional convex body, and thus the
running time of this method for our problem is O(K5 + logT ) up to a precision ϵ ∼ 1

Tβ for some
β > 0. As referred to in Ito et al. (2020), the covariance matrix Σt,a is computable in O((d/ϵ)O(1))
sampling steps drawing upon the results of Lovász and Vempala (2007).

4 Analysis

In this section we provide the analysis of CONTEXTEW from which Theorems 3.1 and 3.2 fol-
low. Throughout the analysis, we will be extensively using the following property of log-concave
distributions:
Lemma 4.1. If x follows a log-concave distribution p over Rd and E [xxT] ≼ I , we have, for any
α ≥ 0 :

P
[
∥x∥22 ≥ dα2

]
≤ d exp(1− α). (16)
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This result was proven in Lemma 1 in Ito et al. (2020), and also follows from Lemma 5.7 in Lovász
and Vempala (2007).

First, we need to introduce some notation which will be useful for the reduction to the linear
bandit setting and for the accompanying proofs. We denote za(q, x) = qax and z(q, x) =
(z1(q, x), . . . , zK(q, x))T. We also define Σt = diaga∈[K](Σa,t) as a block diagonal arrangement of
the covariance matrices per arm. Using this notation, the distribution of the sampling algorithm (10)
may be rewritten as

p̃t(q|x) =
pt(q|x)1

{
∥z(q, x)∥2Σ−1

t
≤ dKγ2

}
Pt
[
∥z(q, x)∥2Σ−1

t
≤ dKγ2

] . (17)

Let Q̃t(x) ∼ p̃t(q|x), Qt(x) ∼ pt(q|x) and Z̃t(x) = z(Q̃t(x), x), Zt(x) = z(Qt(x), x), Z∗(x) =
z(π∗(x), x). And we denote the aggregated loss parameter θt = (θ1, . . . , θK)T and its estimate
θ̂t = (θ̂1, . . . , θ̂K)T. Then we can express the regret as follows:

RT = E

[
T∑
t=1

ℓt(Xt, At)− ℓt(Xt, π
∗(Xt))

]
= E

[
T∑
t=1

〈
Z̃t(Xt)− Z∗(Xt), θt

〉]
. (18)

The crucial observation is that the log-concavity of the distribution of Zt(Xt) follows from that of
the distribution of Xt:
Lemma 4.2. Suppose z(q, x) =

∑
a qaφ(x, a) for φ(x, a) = (0̄⊺, . . . , x⊺, · · · ) such that x is on

the da’th co-ordinate and Q(x) ∼ pt(·|x) for pt(·|x) defined in (8). If X ∼ pX(·) and pX(·) is
log-concave and Z(x) = z(Qt(x), x), then Z(X) also follows a log-concave distribution.

The proof of this result is a rather straightforward computation of the density of Zt(Xt) and can be
found in Appendix C. To proceed, we write regret as a sum of two terms

Rt = E

[
T∑
t=1

〈
Z̃t(Xt)− Zt(Xt), θt

〉]
+ E

[
T∑
t=1

⟨Zt(Xt)− Z∗(Xt), θt⟩

]
. (19)

Having shown that Zt(Xt) is log-concave, and since the log-concavity is preserved under linear

transformations, for y = Σ
−1/2T

t Zt(Xt) we can see that E [yyT] = I , and thus by Lemma 4.1 it
immediately follows that the probability that (6) is not satisfied is small for a proposed choice of
γ = 4 log(10dKT ):

Pt
[
∥Zt(Xt)∥2Σ−1

t
> dKγ2

]
≤ dK exp(1− γ) ≤ 3dK exp(−γ) ≤ 1

6T 2
.

Using this observation, we show that the first term of (19) is just O(1), which is formally proved in
Lemma C.2 in the appendix.

To control the second term of the regret decomposition (19), consider the reduction of the contextual
bandit problem to a combination of auxiliary online learning problems that are defined separately for
each context, as proposed in Neu and Olkhovskaya (2020), Lemma 3. More details and a full proof
can be found in Appendix C.
Lemma 4.3. Let π∗ be any fixed stochastic policy and let X0 ∼ D be a sample from the context
distribution independent from FT . Suppose that pt ∈ Ft−1, such that pt(·|x) is a probability density
with respect to Lebesgue measure with support ∆K and let Qt(x) ∼ pt(·|x). Then,

Et [⟨Zt(Xt)− Z∗(Xt), θt⟩] = Et
[〈
Zt(X0)− Z∗(X0), θ̂t

〉]
. (20)

To see why this would be useful further in the proof, we interpret the right-hand side of (20) as
follows. Consider the online learning problem for a fixed x with the decision set to be ∆K and
losses ℓt(x, q) = ⟨z(q, x), θ̂t⟩ and consider running a version of a contextual bandit problem with
a fixed context x, such that the probability of an action q defined as in Equation 8, so pt(q|x) ∝
exp

(
−ηt

∑K
a=1 qa

〈
x,
∑t−1
s=1 θ̂s,a

〉)
. Then, the regret for the fixed x against π∗(x) can be written

as:

R̂T (x) =

T∑
t=1

EQt(x)∼pt(·|x)

[
⟨z(Qt(x), x)− z(π∗(x), x), θ̂t⟩

]
.
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Then it is easy to see that the right-hand side of (20) is equal to E
[
R̂T (X0)

]
. Thus, we first show

a bound on R̂T (x) that holds almost surely for any x and then take an expectation with respect to
X0. We control the regret R̂T (x) by following the general schema of the optimistic mirror descent
analysis developed in (Rakhlin and Sridharan, 2013; Ito et al., 2020). With this analysis, we get the
following bound for any x ∈ X :

Lemma 4.4. Assume that ηt+1 ≤ ηt for all t, let q0 be a uniform distribution over [K] and
ψ(y) = exp(y)− y − 1. Then, the regret R̂T (x) of CONTEXTEW almost surely satisfies

R̂T (x) ≤
1

T

T∑
t=1

〈
z(q0 − π∗(x), x), θ̂t

〉
+
K log T

ηT

+

T∑
t=1

1

ηt
EQt(x)∼pt(·|x)

[
ψ
(
−ηt

〈
z(Qt(x), x), θ̂t −mt

〉)]
, (21)

for ψ(y) = exp(y)− y − 1.

We place the derivation of the this bound in the appendix. The crucial ingredient is to show that the
square of the estimated loss can be bounded by the square of the true loss. Using the definition of θt,
denoting V art = tr

(
Σ̃−1
t Zt(X0)Zt(X0)

TΣ̃−1
t Zt(Xt)Zt(Xt)

T

)
, we get

Et
[(

−ηt
〈
Zt(X0), θ̂t −mt

〉)2]
= Et

[
η2t (ℓt(At, Xt)−XT

tmt,At)
2
V art

]
, (22)

As additional corollary of the concentration result for log-concave random variables, we can show
the following relation between matrices Σt and Σ̃t:

3

4
Σt ⪯ Σ̃t ⪯

4

3
Σt, (23)

which we prove in Lemma C.2 in the appendix. Then we can show that, almost surely:

EX0 [V art] = EX0

[
tr
(
Σ̃−1
t Zt(X0)Zt(X0)

TΣ̃−1
t Zt(Xt)Zt(Xt)

T

)]
= tr

(
Σ̃−1
t ΣtΣ̃

−1
t Zt(Xt)Zt(Xt)

T

)
≤ 4

3
tr
(
Σ̃−1
t Σ̃tΣ̃

−1
t Zt(Xt)Zt(Xt)

T

)
=

4

3
Zt(Xt)

TΣ̃−1
t Zt(Xt) ≤ Zt(Xt)

TΣ−1
t Zt(Xt) ≤ dKγ2. (24)

where the first inequality follows from (23) and the second inequality is immediate from (23) and
the fact that for symmetric positive definite matrices A ⪰ B follows from B−1 ⪰ A−1. The last
inequality follows from (6) in the CONTEXTEW. So, from (22) and (35), we get

Et
[(

−ηt
〈
Zt(X0), θ̂t −mt

〉)2]
≤ dKγ2Et

[
η2t (ℓt(At, Xt)−XT

tmt,At
)
2
]
,

which, as we stated above, is the key step to prove Theorem 3.1.

First-order regret bound To prove result of Theorem 3.2, we show that the bound in the Theo-
rem 3.1 can instantiated to obtain a first-order regret bound with a different choice of the learning rate
ηt. Going along the same lines with regard to the concentration of L̂t as for V̂t, by setting mt = 0̄
and noticing that then VT ≤ LT we get

RT ≤ 2dKγ2E

[
T∑
t=1

ηtℓt(At, Xt)
2

]
+ Õ(K

√
dVT ) ≤ 4

√
dKγ2

√
LT + Õ(K

√
dLT ).

Since RT = Lt − L∗
T , by solving the quadratic inequality with respect to L∗

T , we get that LT ≤
L∗
T + Õ(K

√
d), yielding the final bound.
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5 Discussion

In conclusion, by applying the approach of (Ito et al., 2020) we have constructed the first scheme
achieving Õ

(
K
√
dL∗

T

)
regret with a runtime of O

(
(K5 + logT ) · gΣ

)
, where gΣ is the time taken

to construct the covariance matrix per round - a potentially large polynomial improvement over the
O
(
TKd

)
runtime of MYGA. The application of linear bandit algorithms to the contextual bandit

problem constitutes, to the best of our knowledge, a novel approach. In doing so we’ve found a
number of positive aspects, including efficiency, but also the direct applicability of other properties
enjoyed by the algorithm such as second order bounds (Ito et al., 2020).

Our approach is based on reducing the linear contextual bandit problem to a linear bandit problem, as
opposed to a multi-armed bandit problem as in (Neu and Olkhovskaya, 2020). While the specifics of
this reduction heavily relied on the joint log-concavity of the context distributions and the exponential-
weights posterior over the simplex of actions, we wonder if such approaches can be successfully
applied to achieve other types of improvements for linear contextual bandits. In particular, it is curious
to what extent other recent advances in the linear bandit problem can be translated to the linear
contextual bandit setting. Note that, while the truncation step in Algorithm 1 has an insignificant
computational cost as the condition is satisfied with probability O(1− 1/T ), it can be removed by
paying a log(1/λmin(Σ)) multiplicative term in the regret by implementing additional exploration
with probability 1/T . It is natural to ask whether or not approaches based on other instantiations
of online mirror descent would also yield first-order bounds, and possibly improve the dependence
on K. The answer is not obvious: for an example of how a naive application of an instantiation of
FTRL fails to achieve a first-order bound, see Appendix D.

A relevant question pertains to whether or not such an application of algorithms for linear bandits is
necessary at all, but standard approaches such as direct adaptation of Exp3, and first-order adaptations
thereof such as GREEN Allenberg et al. (2006) do not seem to give the desired result.In addition,
thresholding the worst performing arms inevitably biases the loss estimator due to undersampling of
those arms for which the threshold has been applied, and the resulting additional bias term picked up
in the regret scales with 1/λmin(Σt,a), which may be arbitrarily large. Another standard approach of
finding an optimistic estimator yielded no fruit during the course of this study due to the lack of the
existence of such an estimator without saving all previous losses explicitly.

Our algorithm achieves the regret bound O(K
√
dVT ), while the worst case guarantee of LINEXP3

of Neu and Olkhovskaya (2020) is O(
√
dKT ). This discrepancy is not surprising as the Algorithm 1

of Ito et al. (2020) scales as O(n
√
T ) (n being the dimension of the action space for the linear

bandit), which arises from the deployment of continuous exponential weights. MYGA achieves the
same O(K

√
dL∗

T ) bound due to the number of experts needed to cover the joint set of additive loss
parameters. It is worth here emphasising that no known algorithm achieves a better dependence on
K than O(K

√
dL∗

T ) for the linear adversarial contextual bandit problem. Meanwhile, if the linear
bandit is played on the n-simplex, an improvement to

√
nT is possible. For further discussion of this

point, see Section 28.5 of Lattimore and Szepesvári (2020). It is thus still unclear whether or not the
extra factor of

√
K is necessary if one aims for a first-order bound.

An additional point is that while the MYGA algorithm Allen-Zhu et al. (2018) allows for adversarially
chosen contexts, the analysis of MYGA for our setting relies heavily on the assumption that contexts
are drawn i.i.d. at each iteration. A natural question is then whether or not a similar result is achievable
in the adversarial context case. It is known that achieving sub-linear regret is not possible even for
full-information online learning of one-dimensional threshold classifiers when both contexts and
losses are adversarial (Ben-David et al., 2009; Syrgkanis et al., 2016), which renders sub-linear regret
similarly impossible to guarantee for the even harder setting that we consider in this paper. However,
we do conjecture that we could overcome the assumption that the distribution is known or that we
can sample from it by employing a more elaborate algorithm to estimate the distribution from the
data. Indeed, it is not obvious if the distributional assumption of a lower bound to the covariance
matrix eigenvalues is entirely necessary, since the regret does not depend on this.

Lastly, it would be an interesting challenge to see if a high-probability regret bound could be obtained
in the form stated in the COLT 2017 open problem Agarwal et al. (2017) for this setting, but since a
high-probability O(

√
T ) has not yet been proved for the problem here considered, the latter may be

more worthy of focus in the short term.
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A First-order Bound by Reduction to MYGA

Proof. The MYGA algorithm of Allen-Zhu et al. (2018) competes with a class of experts E, where
each expert e ∈ E provides a stochastic prediction ξet ∈ ∆K in each round t. It provides the following
expected regret bound with respect to the best expert:

RT = O

(√
Klog(|E|+ T )L∗

T +Klog(|E|+ T )

)
. (25)

Losses for the arms can be adversarial, and are assumed to take values in [0, 1].

We will instantiate the experts to cover the parameter space {β ∈ RK×d : maxa ∥βa∥ ≤ RT} of
potentially optimal parameters for deterministic policies of the form (3), which we know must contain
the optimal policy π∗

T with corresponding parameters β∗ = E[
∑T
t=1 θt]. The covering number for

a ball of radius RT at precision ϵ > 0 is between
(
RT
ϵ

)d
and

(
3RT
ϵ

)d
, so by taking the Cartesian

product of this covering with itself K times we can cover all β with
(
RT
ϵ

)Kd ≤ |E| ≤
(
3RT
ϵ

)Kd
points β1, . . . , β|E|. Let β̈ ∈ {β1, . . . , β|E|} be the closest point in the covering to the optimal
parameters β∗. Then its expected approximation error can be upper bounded as follows:

E

[
T∑
t=1

〈
Xt, θt,πβ̈(Xt)

〉
−
〈
Xt, θt,πβ∗ (Xt)

〉]
= E

[
T∑
t=1

〈
X0, θt,πβ̈(X0)

〉
−
〈
X0, θt,πβ∗ (X0)

〉]
= E

[〈
X0, β

∗
πβ̈(X0)

〉
−
〈
X0, β

∗
πβ∗ (X0)

〉]
≤ E

[〈
X0, β̈πβ̈(X0)

〉
−
〈
X0, β

∗
πβ∗ (X0)

〉]
+ σϵ

= E
[
min
a

〈
X0, β̈a

〉
−
〈
X0, β

∗
πβ∗ (X0)

〉]
+ σϵ

≤ E
[〈
X0, β̈πβ∗ (x0)

〉
−
〈
X0, β

∗
πβ∗ (x0)

〉]
+ σϵ

≤ E
[〈
X0, β

∗
πβ∗ (x0)

〉
−
〈
X0, β

∗
πβ∗ (x0)

〉]
+ 2σϵ

= 2σϵ.

Adding this to (25), instantiated with |E| ≤
(
3RT
ϵ

)Kd
, and choosing ϵ = dK2

2 completes the
proof.

B Auxiliary lemmas

To ensure that step 2 in CONTEXTEW is defined correctly, we show that the matrix Σt is full rank:
Lemma B.1. Let the distribution of Xt be such that λmin(E [XtX

T
t ]) > 0. Then, we can show

λmin(Σt,a) > 0 (26)

for any a ∈ [K], and consequently
λmin(Σt) > 0 (27)

Proof. To show that Σt,a is full rank, it suffices to show that there is no v ∈ Rd such that vTΣt,av =
0. Suppose, to the contrary, that such a v does exist. Then 0 = vTEt

[
Q2
t,a(Xt)XtX

T
t

]
v =

Et
[
Q2
t,a(v

TXt)
2
]
, which implies that Qt,avTXt = 0 almost surely. Since Qt,a > 0 almost surely, it

follows that in fact vTXt = 0 almost surely and therefore 0 = Et
[
(vTXt)

2
]
= vTEt [XtX

T
t ] v. But

this contradicts our assumption that λmin(Et [XtX
T
t ]) > 0.

We will use a simple corollary of Freedman’s inequality Freedman (1975) that was introduced in
Lemma 2 in Bartlett et al. (2008):
Lemma B.2. Let Y1, . . . , Yt be a martingale difference sequence with respect to a filtration F1 ⊂
· · · ⊂ Ft such that E [Ys |Fs ] = 0. Suppose that Ys ≤ b holds almost surely. Then with probability

at least 1− δ we have
∑t
s=1 Ys ≤ 2max{2

√∑t
s=1 E [Y 2

s |Fs ], b
√
ln(1/δ)}

√
ln(1/δ).
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In our analysis, we will use some results from Ito et al. (2020). We will make use of the following
concentration property of log-concave distributions, Lemma 1 from Ito et al. (2020):
Lemma B.3. If y follows a log-concave distribution p over Rd and Ey∼p [yyT] ≼ I , we have

P
[
∥y∥22 ≥ dα2

]
≤ d exp(1− α),

for arbitrary α ≥ 0.

The lemma presented below introduces a property that will be instrumental in analyzing the variance
of loss estimates, presented as Lemma 6 in Ito et al. (2020):
Lemma B.4. If y follows a log-concave distribution over R, and if E

[
y2
]
≤ 1/100, we have

E [ψ(y)] ≤ E
[
y2
]
+ 30 exp

(
− 1√

E [y2]

)
≤ 2E

[
y2
]
, where ψ(x) = exp(x)− x− 1.

C Proof of Theorem 3.1

The proof of Theorem 3.1 proceeds in a sequence of lemmas. First, we need to show that the
distribution of Zt(Xt) is log-concave for all t ∈ [T ], and after we follow the analysis of Algorithm 1
of Ito et al. (2020), bounding both components of (19) taking into account the required alterations to
incorporate contextual structure
Lemma C.1. Suppose z(q, x) =

∑
a qaφ(x, a) for φ(x, a) = (0̄⊺, . . . , x⊺, · · · ) such that x is on the

da’th co-ordinate and Q(x) ∼ p(·|x) for p(·|x) log-concave. If X ∼ pX(·) and pX(·) is log-concave
and Z(x) = z(Q(x), x), then Z(X) also follows a log-concave distribution.

Proof. Assume that |xi| > 0 for all i ∈ [d]. Set (z1, . . . , zK−1, x) = h(q11̄, . . . , qK−11̄, x), where
h : RdK → RdK and zi = (. . . , zji , . . . )

T for each i ∈ {1, . . . ,K − 1}. Thus zji = hi(qi, x
j) =

qi(x
j) and hK(x) = x. The Jacobian of h−1(z1, . . . , zK−1, x) can be expressed as the block matrix

J(h−1(z1, . . . , zK−1, x)) =

[
Λx Γz,x

0d×(K−1) Idd×d

]
,

where Λx ∈ R(K−1)×(K−1) is diagonal with (Λx)ii =
1
xi and Γz,x ∈ R(K−1)×d with (Γz,x)ij =

− zji
(xj)2 . Since J(h−1(z1, . . . , zK−1, x)) is upper-triangular, det(J(h−1(z1, . . . , zK−1, x))) =(∏d
i=1

1
xi

)K−1

. The joint distribution of Zi and X can thus be written

pZ1,...,ZK−1,X(z1, . . . , zK−1, x) = pQ,X
(
h−1(z1, . . . , zK−1, x)

)( d∏
i=1

1

xi

)K−1

with the joint distribution between Q and X of the form

pQ,X
(
h−1(z1, . . . , zK−1, x)

)
=

e−η⟨ψ(z,x,φ),Θ̂t−1⟩∫
q′∈C e

−η⟨∑K−1
a=1 q′aφ(x,a),Θ̂t−1⟩dq′

pX(x)

where (ψ(z, x, φ))i =
∑K−1
a=1

zia
xiφ(x, a)

i +
(
1−

∑K−1
a=1

zia
xi

)
φ(x,K)i has been defined for read-

ability. We can reabsorb the factor
(∏d

i=1
1
xi

)K−1

in the denominator to rewrite the normalization
constant as a in terms of the random variable Z(x), and so

pZ1,...,ZK−1,X(z1, . . . , zK−1, x) =
e−η⟨ψ(z,x,φ),Θ̂t−1⟩∫

z′∈Z(x)
e−η⟨ψ(z′,x,φ),Θ̂t−1⟩dz′

pX(x).

Define a new function g : Rd×K → Rd×K such that y = g(z1, . . . , zK−1, x) =
(. . . , gi(z1, . . . , zK−1, x), . . . )

T, where for i ∈ [1,K − 1], gi(z1, . . . , zK−1, x) = zi and
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gK(z1, . . . , zK−1, x) = (. . . ,
(
1− 1

xi

∑K−1
a=1 zia

)
xi, . . . ). Then for i ∈ {1, . . . ,K − 1}, g−1

i (y) =

yi and g−1
K (y) =

∑K
a=1 ya. The determinant det(J(g−1(y))) = 1, so

pY (y) = pZ1,·,ZK−1,X(g−1(y))

=
e−η⟨y,Θ̂t−1⟩∫

y′∈Y (y)
e−η⟨y′,Θ̂t−1⟩dy′

pX

(
K∑
a=1

ya

)
.

Since both pX and e−η⟨y,Θ̂t−1⟩∫
y′∈Y (y)

e−η⟨y′,Θ̂t−1⟩dy′
are both log-concave, the lemma follows.

Having shown the log-concavity of Z(Xt), we may safely proceed.

We state the analog of Lemma 4 in Ito et al. (2020) adapted to our setting, leading to a bound on the
first term of (19) as well as providing a useful relation between Σt and Σ̃t.
Lemma C.2. ∣∣∣∣Et [〈Zt(Xt)− Z̃t(Xt), θt

〉] ∣∣∣∣ ≤ 1

2T 2
, (28)

and we have
3

4
Σt ⪯ Σ̃t ⪯

4

3
Σt. (29)

Proof. From definition of p̃t, for any x ∈ X , θ ∈ Θ, we have

Et
[〈
Z̃t(Xt), θ

〉]
=

1

Pt
[
∥Zt(Xt)∥2Σ−1

t
≤ dKγ2

] ∫
∆K

∫
X
⟨z(q, x), θ⟩1

{
∥z(q, x)∥2Σ−1

t
≤ dKγ2

}
pt(q|x)p(x)dxdq

=
1

1− δ

∫
∆K

∫
X
⟨z(q, x), θ⟩1

{
∥z(q, x)∥2Σ−1

t
≤ dKγ2

}
pt(q|x)p(x)dxdq

=
1

1− δ

(
Et [⟨Zt(Xt), θ⟩]−

∫
∆K

∫
X
⟨z(q, x), θ⟩1

{
∥z(q, x)∥2Σ−1

t
> dKγ2

}
pt(q|x)p(x)dxdq

)
,

where δ = Pt
[
∥Zt(Xt)∥2Σ−1

t
> dKγ2

]
. Plugging this into the l.h.s. of (28) yields∣∣∣∣Et [〈Zt(Xt)− Z̃t(Xt), θt

〉] ∣∣∣∣
=

1

1− δ

∣∣∣∣δEt [⟨Zt(Xt), θt⟩] +
∫
∆K

∫
X
⟨z(q, x), θ⟩1

{
∥z(q, x)∥2Σ−1

t
> dKγ2

}
pt(q|x)p(x)dxdq

∣∣∣∣
≤ 1

1− δ

(
δ +

∫
∆K

∫
X
1
{
∥z(q, x)∥2Σ−1

t
> dKγ2

}
pt(q|x)p(x)dxdq

)
=

2δ

1− δ
.

Since the distribution of Zt(Xt) is log-concave (Lemma C.1), we can apply Lemma 1 of Ito et al.
(2020) to x = Σ

−1/2
t Zt(Xt). The assumptions of Lemma 1 of Ito et al. (2020) hold since we have

E [xxT] = I and since log-concavity is preserved under linear maps. Using Lemma 1 of Ito et al.
(2020), we have

δ = Pt
[
∥Zt(Xt)∥2Σ−1

t
> dKγ2

]
≤ dK exp(1− γ) ≤ 3dK exp(−γ) ≤ 1

6T 2
,

where the last inequality follows from γ ≥ 4 log(10dKT ), which obtains (28). We proceed to
showing (29). For any y ∈ RdK , we have

yTΣ̃ty = E
[
(yTZ̃t(Xt))

2
]
=

1

1− δ
Et
[
(yTZt(Xt))

21
{
∥Zt(Xt)∥2Σ−1

t
≤ dKγ2

}]
≤ 1

1− δ
Et
[
(yTZt(Xt))

2
]
=

1

1− δ
yTΣty.

14



Since this holds for all y ∈ RdK and 1
1−δ ≤ 4

3 , the second inequality in (29) holds. Furthermore, we
have

yTΣty − yTΣ̃ty = Et
[
(yTZt(Xt))

2
]
− 1

1− δ
Et
[
(yTZt(Xt))

21
{
∥Zt(Xt)∥2Σ−1

t
≤ dKγ2

}]
≤ Et

[
(yTZt(Xt))

21
{
∥Zt(Xt)∥2Σ−1

t
> dKγ2

}]
≤ yTΣtyEt

[
∥Zt(Xt)∥2Σ−1

t
1
{
∥Zt(Xt)∥2Σ−1

t
> dKγ2

}]
, (30)

where the last inequality follows from Cauchy-Schwarz:

(yTZt(Xt))
2 =

(〈
Σ

1/2
t y,Σ

−1/2
t x

〉)2
≤
∥∥∥Σ1/2

t y
∥∥∥2
2
·
∥∥∥Σ−1/2

t x
∥∥∥2
2
= yTΣty ∥x∥2Σ−1

t
.

The right-hand side of (30) can be bounded using Lemma B.3 as follows:

Et
[
∥Zt(Xt)∥2Σ−1

t
1
{
∥Zt(Xt)∥2Σ−1

t
> dKγ2

}]
≤

∞∑
n=1

(n+ 1)2dKγ2Pt
[
n2dKγ2 ≤ ∥Zt(Xt)∥2Σ−1

t
≤ (n+ 1)2dKγ2

]
≤

∞∑
n=1

(n+ 1)2(dK)2γ2 exp(1− nγ)

≤ (dK)2γ2
∞∑
n=1

exp(2 + n− nγ) = (dK)2γ2
exp(3− γ)

1− exp(1− γ)
≤ 1

4
. (31)

Combining (31) and (30) we get the first inequality of (29).

Lemma C.3. Let π∗ be any fixed stochastic policy and let X0 ∼ D be a sample from the context
distribution independent from FT . Suppose that pt ∈ Ft−1, such that pt(·|x) is a probability density
with respect to Lebesgue measure with support ∆K and let Qt(x) ∼ pt(·|x). Then,

E

[
T∑
t=1

⟨z(Qt(Xt), Xt)− z(π∗(Xt), Xt), θt⟩

]
= E

[
T∑
t=1

〈
z(Qt(X0), X0)− z(π∗(X0)), X0, θ̂t

〉]
.

Proof. For any t, we have

Et
[〈
Zt(X0)− Z∗(X0), θ̂t

〉]
= Et

[
Et
[〈
Zt(X0)− Z∗(X0), θ̂t

〉∣∣∣X0

]]
= Et [Et [ ⟨Zt(X0)− Z∗(X0), θt⟩|X0]] = Et [⟨Zt(Xt)− Z∗(Xt), θt⟩] .

Then, we prove the almost sure regret bound for any x and then take an expectation over X0. We
further proceed with an adaptation of the analysis of the continuous exponential weights algorithm,
which was stated in Ito et al. (2020) as Lemma 16, but we include it here for the clarity. Let
ψ(y) = exp(y)− y − 1. For any x ∈ X , we show the following :
Lemma C.4. Assume that ηt+1 ≤ ηt for all t, let q0 be a uniform distribution over [K] and
ψ(y) = exp(y) − y − 1. Then, the regret R̂T (x) for any x ∈ X of CONTEXTEW almost surely
satisfies

R̂T (x) ≤
1

T

T∑
t=1

〈
z(q0 − π∗(x), x), θ̂t

〉
+
K log T

ηT
+

T∑
t=1

1

ηt
EQt(x)∼pt(·|x)

[
ψ
(
−ηt

〈
z(Qt(x), x), θ̂t −mt

〉)]
.

Proof. Note that we can write R̂T (x) as

R̂T (x) =

T∑
t=1

(∫
∆K

pt(q|x)
〈
z(q, x), θ̂t

〉
dq −

〈
z(π∗(x), x),

T∑
t=1

θ̂t

〉)
.
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Define Wt(x) =
∫
∆K wt(q|x)dq, ut(q|x) = exp

(
−ηt

∑
a qa

〈
x,
∑t
s=1 θ̂s,a

〉)
, Ut(x) =∫

∆K ut(q|x)dq and vt(q|x) = exp
(
−ηt+1

∑
a qa

〈
x,
∑t
s=1 θ̂s,a

〉)
, Vt(x) =

∫
∆K vt(q|x)dq. We

have

Ut(x) =

∫
∆K

wt(q|x) exp
(
−ηt

〈
z(q, x), θ̂t −mt

〉)
dq =Wt(x)

∫
∆K

pt(q|x) exp
(
−ηt

〈
z(q, x), θ̂t −mt

〉)
dq

=Wt(x)

∫
∆K

pt(q|x)
(
1− ηt

〈
z(q, x), θ̂t −mt

〉
+ ψ(−ηt

〈
z(q, x), θ̂t −mt

〉
)
)
dq.

Taking the logarithm of both sides, we get

log(Ut(x)) = log(Wt(x)) + log

(∫
∆K

pt(q|x)
(
1− ηt

〈
z(q, x), θ̂t −mt

〉
+ ψ(−ηt

〈
z(q, x), θ̂t −mt

〉
)
)
dq

)
≤ log(Wt(x)) +

∫
∆K

pt(q|x)
(
−ηt

〈
z(q, x), θ̂t −mt

〉
+ ψ(−ηt

〈
z(q, x), θ̂t −mt

〉
)
)
dq,

(32)

where we used the inequality log(1 + x) ≤ x for x > −1.

Vt−1(x) =

∫
∆K

wt(q|x) exp

(
ηt
∑
a

qa ⟨x,mt,a⟩

)
dq =Wt(x)

∫
∆K

pt(q|x) exp

(
ηt
∑
a

qa ⟨x,mt,a⟩

)
dq

≥Wt(x) exp

(
ηt

∫
∆K

pt(q|x)
∑
a

qa ⟨x,mt,a⟩ dq

)
, (33)

using Jensen’s inequality. It holds that∫
∆K

pt(q|x)
∑
a

qa ⟨x,mt,a⟩ dq ≤
1

ηt
log

Vt−1(x)

Wt(x)
.

Then, we get
T∑
t=1

∫
∆K

pt(q|x)
〈
z(q, x), θ̂t

〉
dq ≤

T∑
t=1

1

ηt

(
log

Vt−1(x)

Ut(x)
+

∫
∆K

pt(q|x)ψ(−ηt
〈
z(q, x), θ̂t −mt

〉
)dq

)
.

Noting that V0 = U0, we have
T∑
t=1

1

ηt
log

Vt−1(x)

Ut(x)
=

T∑
t=1

1

ηt

(
log

Vt−1(x)

V0
− log

Ut(x)

U0

)

=

T−1∑
t=1

(
1

ηt+1
log

Vt(x)

V0
− 1

ηt
log

Ut(x)

U0

)
− 1

ηT
log

UT (x)

U0

To bound the first term, we use that ηt+1 ≤ ηt and an additional application of Jensen’s inequality:

1

ηt+1
log

Vt(x)

V0
=

1

ηt+1
logE

[
exp

(
−ηt+1⟨

t∑
s=1

θ̂s, z(Qt, x)⟩

)]

=
1

ηt+1
logE

exp(−ηt⟨ t∑
s=1

θ̂s, z(Qt, x)⟩

) ηt+1
ηt


≤ 1

ηt
logE

[
exp

(
−ηt⟨

t∑
s=1

θ̂s, z(Qt, x)⟩

)]
=

1

ηt
log

Ut(x)

U0
,

Set Qπ∗(x) := {(1 − 1
T )π

∗(x) + 1
T q|q ∈ ∆K}, and denote q0 as the uniform distribution over K

arms. We then have

UT (x) ≥
∫
Qπ∗(x)

exp

(
−ηT

〈
z(q, x),

T∑
t=1

θ̂t

〉)
dq

16



= T−K
∫
∆K

exp

(
−ηT

〈
z((1− 1

T
)π∗(x) +

1

T
q, x),

T∑
t=1

θ̂t

〉)
dq

≥ T−KU0(x) exp

(
−ηT

〈
z((1− 1

T
)π∗(x) +

1

T
q0, x),

T∑
t=1

θ̂t

〉)
,

where the first inequality constitutes a change of variables and the second follows from Jensen’s
bound. After rearranging and taking the logarithm, we get

− 1

ηT
log

UT (x)

U0(x)
≤

T∑
t=1

〈
z((1− 1

T
)π∗(x) +

1

T
q0, x), θ̂t

〉
+
K log T

ηT

=

T∑
t=1

〈
z(π∗(x), x),

T∑
t=1

θ̂t

〉
+

1

T

T∑
t=1

〈
z(q0 − π∗(x), x), θ̂t

〉
+
K log T

ηT
.

Combining everything together, we get

T∑
t=1

(∫
∆K

pt(q|x)
〈
z(q, x), θ̂t

〉
dq −

〈
z(π∗(x), x),

T∑
t=1

θ̂t

〉)
≤

T∑
t=1

1

ηt

∫
∆K

pt(q|x)ψ(−ηt
〈
z(q, x), θ̂t −mt

〉
)dq

+
1

T

T∑
t=1

〈
z(q0 − π∗(x), x), θ̂t

〉
+
K log T

ηT
.

From Lemma 4.3 and Lemma 4.4, we get a bound on the second term of (19):

E

[
T∑
t=1

⟨Zt(Xt)− Z∗(Xt), θt⟩

]
= E

[
T∑
t=1

〈
Zt(X0)− Z∗(X0), θ̂t

〉]

≤ E

[
T∑
t=1

1

ηt
ψ
(
−ηt

〈
Zt(X0), θ̂t −mt

〉)
+

1

T

T∑
t=1

〈
z(q0 − π∗(X0), X0), θ̂t

〉
+
K log T

ηT

]
.

(34)

We first find a bound on the first term using Lemma B.4. To satisfy the assumptions of Lemma B.4,

we need to show that Et
[(

−ηt
〈
Zt(X0), θ̂t −mt

〉)2]
≤ 1

100 :

Et
[(

−ηt
〈
Zt(X0), θ̂t −mt

〉)2]
= Et

[
η2t (ℓt(At, Xt)−XT

tmt,At)
2 tr
(
Σ̃−1
t Zt(X0)Zt(X0)

TΣ̃−1
t Zt(Xt)Zt(Xt)

T

)]
= η2tEt

[
(ℓt(At, Xt)−XT

tmt,At)
2 tr
(
Σ̃−1
t ΣtΣ̃

−1
t Zt(Xt)Zt(Xt)

T

)]
≤ η2t

4

3
Et
[
(ℓt(At, Xt)−XT

tmt,At
)
2 tr
(
Σ̃−1
t Σ̃tΣ̃

−1
t Zt(Xt)Zt(Xt)

T

)]
= η2t

4

3
Et
[
(ℓt(At, Xt)−XT

tmt,At
)
2
Zt(Xt)

TΣ̃−1
t Zt(Xt)

]
≤ η2tEt

[
(ℓt(At, Xt)−XT

tmt,At)
2
Zt(Xt)

TΣ−1
t Zt(Xt)

]
≤ dKη2t γ

2Et
[
(ℓt(At, Xt)−XT

tmt,At)
2
]

(35)

≤ 1

100
, (36)

where the first inequality follows from ℓt ≤ 1 and (29), the second is immediate from (29) and
the fact that for symmetric positive definite matrices A ⪰ B follows from B−1 ⪰ A−1. The third
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inequality follows from the truncation in the algorithm and the last is immediate from plugging in the
definition of ηt. So, by applying Lemma B.4 and (35), we get:

1

η
E
[
ψ
(
−η
〈
Zt(X0), θ̂t −mt

〉)]
≤ 2

η
E
[(

−η
〈
Zt(X0), θ̂t −mt

〉)2]
≤ 2dKηγ2Et

[
(ℓt(At, Xt)−XT

tmt,At
)
2
]
.

(37)

For the second term of (34), we simply get from −1 ≤ ℓt ≤ 1 and θ̂t is unbiased:

E

[
1

T

T∑
t=1

〈
z(q0 − π∗(X0), X0), θ̂t

〉]
= E

[
1

T

T∑
t=1

⟨z(q0 − π∗(X0), X0), θt⟩

]
≤ 2. (38)

The expression that we use for the learning rate is the following:

ηt = (100dKγ2 + d(V̂t−1 + 1 +Gt)))
−1/2,

where Gt = 8

√
2V̂t−1 lnT + 144 ln2 T + 176 lnT . We show that with probability at least 1− δ the

following holds for all t ∈ [T ]:

Vt ≤ V̂t + 8

√
V̂t ln(2T/δ) + 72 ln(2T/δ)2 + 88 ln(T/δ) (39)

Let Ys = Es
[
(ℓt(At, Xt)−XT

tmt,At)
2
]
− (ℓt(At, Xt)−XT

tmt,At)
2. Then, Ys ≤ 4 almost surely,

since ℓt(At, Xt) − XT
tmt,At ≤ 2. Similarly we bound the second moment of Ys, using Jensen’s

inequality:

Es
[
Y 2
s

]
= Es

[(
Es
[
(ℓt(At, Xt)−XT

tmt,At
)
2
]
− (ℓt(At, Xt)−XT

tmt,At
)
2
)2]

≤ 2Es
[
(ℓt(At, Xt)−XT

tmt,At)
2
]2

+ 2Es
[
(ℓt(At, Xt)−XT

tmt,At)
4
]

≤ 16Es
[
(ℓt(At, Xt)−XT

tmt,At)
2
]
.

By Lemma B.2, the following holds for some δ′ ∈ (0, 1):

Vt ≤ V̂t + 8max

{
2
√
Vt,
√
ln(1/δ′)

}√
ln(1/δ′) (40)

Note that this inequality i can be rearranged as

Vt ≤ V̂t + 8

√
V̂t ln(1/δ′) + 72 ln(1/δ′)2 + 88 ln(1/δ′).

Then, taking a union bound over t ∈ [T ] and taking δ = δ′/T , we get that (39) holds for all t ∈ [T ].
Let ET be an event that for all t ∈ [1, T ], (39) holds with δ = 1/T . From (37), (38), and the choice
of ηt, we get:

RT ≤ E

[
2dKγ2

T∑
t=1

ηt (ℓt(At, Xt)−XT

tmt,At
)
2
+ 2 +

K log T

ηT

]
(41)

= 2dKγ2E

[
T∑
t=1

ηt (ℓt(At, Xt)−XT

tmt,At
)
2
1 {ET }

]

+ 2dKγ2E

[
T∑
t=1

ηt (ℓt(At, Xt)−XT

tmt,At)
2
1
{
ET
}]

+ 2 + E
[
K log T

ηT

]

≤ 2
√
dKγ2

T∑
t=1

Vt − Vt−1√
Vt

+
1

T
2
√
dKγ2T + 2 +

K log T

η′T

= 2
√
dKγ2

T∑
t=1

(
√
Vt −

√
Vt−1)(

√
Vt +

√
Vt−1)√

Vt
+ 2

√
dKγ2 + 2 +

K log T

η′T

18



≤ 4
√
dKγ2

T∑
t=1

(
√
Vt −

√
Vt−1) + 2

√
dKγ2 + 2 +

K log T

η′T

≤ 4
√
dKγ2

√
VT + 2

√
dKγ2 + 2 +

K log T

η′T
.

which implies the result of Theorem 3.1. In the equation above, η′T = (100dKγ2 + d(Vt−1 + 1 +

G′
t)))

−1/2 and G′
t = 8

√
2Vt−1 lnT + 144 ln2 T + 176 lnT . In line 4 we used that E [1/ηT ] ≤

E [1/η′T ] by Jensen’s inequality to show that

E
[
1

ηT

]
= E

[
(100dKγ2 + dK(V̂t−1 + 1 +Gt))

1/2
]
≤ (100dKγ2+d(Vt−1+1+G′

t))
1/2 =

1

η′T
.

Proof of Theorem 3.2 As it was done in the proof of Theorem 3.1 we control the deviation of the
learning rate

ηt = (100dKγ2 + d(L̂t−1 + 1 +Ht)))
−1/2,

where Ht is as defined in (14). Using Lemma B.2, we show that with probability at least 1− δ the
following holds for all t ∈ [T ]:

Lt ≤ L̂t + 8

√
L̂t ln(1/δ) + 20 ln(2T/δ)2 + 36 ln(2T/δ) (42)

Ds = Es [⟨Xs, θs,As⟩]− ⟨Xs, θs,As⟩. Then, Ds ≤ 2 almost surely and by Jensen’s inequality

Es
[
D2
s

]
= Es

[
(Es [⟨Xs, θs,As

⟩]− ⟨Xs, θs,As
⟩)2
]
≤ 2Es [⟨Xs, θs,As

⟩]2 + 2Es
[
(⟨Xs, θs,As

⟩)2
]
≤ 4Et [ℓt(Xt, At)] .

By Lemma B.2, the following holds for some δ′ ∈ (0, 1):

Lt ≤ L̂t + 4max

{
2
√
Lt,
√
ln(1/δ′)

}√
ln(1/δ′) (43)

which can be rearranged as

Lt ≤ L̂t + 8

√
L̂t ln(1/δ′) + 20 ln(1/δ′)2 + 36 ln(1/δ′).

Then, taking a union bound over t ∈ [T ] and taking δ = δ′/T , we get that (42) holds for all t ∈ [T ].
Let ET be an event that for all t ∈ [1, T ], (42) holds with δ = 1/T . From (37), (38), the choice of ηt,
mt = 0̄ and since 0 ≤ ℓt ≤ 1, we get:

RT ≤ E

[
2dKγ2

T∑
t=1

ηtℓ
2
t (At, Xt) + 2 +

K log T

ηT

]
≤ E

[
2dKγ2

T∑
t=1

ηtℓt(At, Xt) + 2 +
K log T

ηT

]

= 2dKγ2E

[
T∑
t=1

ηtℓt(At, Xt)1 {ET }

]
+ 2dKγ2E

[
T∑
t=1

ηtℓ
2
t (At, Xt)1

{
ET
}]

+ 2 + E
[
K log T

ηT

]

≤ 2
√
dKγ2

T∑
t=1

Lt − Lt−1√
Lt

+
1

T
2
√
dKγ2T + 2 +

K log T

η′T

= 2
√
dKγ2

T∑
t=1

(
√
Lt −

√
Lt−1)(

√
Lt +

√
Lt−1)√

Lt
+ 2

√
dKγ2 + 2 +

K log T

η′T

≤ 4
√
dKγ2

T∑
t=1

(
√
Lt −

√
Lt−1) + 2

√
dKγ2 + 2 +

K log T

η′T

≤ 4
√
dKγ2

√
LT + 2

√
dKγ2 + 2 +

K log T

η′T
,

where in the equation above, η′t = (100dKγ2 + d(Lt−1 + 1 + H ′
t−1)))

−1/2 and H ′
t =

8
√
2Lt−1 lnT + 40 lnT + 72 lnT . By solving the quadratic equation over L∗

T , we obtain the
statement of the theorem.
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D On the difference between LINEXP3 and CONTEXTEW

Consider the LINEXP3 algorithm of Neu and Olkhovskaya (2020), that draws actions after observing
the context Xt with probability

πt (a|Xt) = (1− γ)
wt(Xt, a)∑
a′ wt(Xt, a′)

+
γ

K
,

where wt(Xt, a) = exp
(
−η
∑t−1
s=0⟨Xt, θ̂s,a⟩

)
and using the estimator

θ̃∗t,a = 1 {At = a}S−1
t,aXt ⟨Xt, θt,a⟩ ,

where St,a = Et [πt(a|Xt)XtX
T
t ]. Since LINEXP3 uses implicit exploration with probability γ,

λmin(St,a) ≥ λmin(Σ)
γ
K . But then, setting γ = 0, St,a is still invertible as no actions have

πt (a|Xt) = 0. But still, the smallest eigenvalue λmin(St,a) can be arbitrary small. Then, the analysis
of the variance term in LINEXP3 looks as:

Et

[
K∑
a=1

πt(a|X0)⟨X0, θ̂t,a⟩2
]
= Et

[
K∑
a=1

πt(a|X0)
(
XT

0S
−1
t,aXtX

T

t θt,a1 {At = a}
)2]

= E
[
ℓt(Xt, At)

2tr
(
πt(a|X0)X0X

T

0S
−1
t,aXtX

T

t S
−1
t,a

)]
.

We can define V ar′t for LINEXP3 in direct analogy to V art for CONTEXTEW above, which gives
(almost surely):

EX0
[V ar′t] = EX0

[
tr
(
πt(a|X0)X0X

T

0S
−1
t,aXtX

T

t S
−1
t,a

)]
= EX0

[
tr
(
Σt,aS

−1
t,aXtX

T

t S
−1
t,a

)]
= XT

t S
−1
t,aXt,

which can be arbitrary large.

Meanwhile, the smallest eigenvalue λmin(Σt,a) can be arbitrary small too. But, as we showed above
in the analysis of CONTEXTEW, V art is bounded by dKγ2 because of the log-concavity of Zt(Xt)
and step (6) of CONTEXTEW.
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